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Abstract 

Background Tumour vascular density assessed from CD‑31 immunohistochemistry (IHC) images has previously been 
shown to have prognostic value in breast cancer. Current methods to measure vascular density, however, are time‑
consuming, suffer from high inter‑observer variability and are limited in describing the complex tumour vasculature 
morphometry.

Methods We propose a method for automatically measuring a range of vascular parameters from CD‑31 IHC images, 
which together provide a detailed description of the vasculature morphology. We first used a U‑Net based convo‑
lutional neural network, trained and validated using 36 partially annotated whole slide images from 27 patients, 
to segment vessel structures and tumour regions from which the measurements are taken. The model also segments 
the vascular smooth muscle, benign epithelium, adipose tissue, stroma, lymphocyte clusters, nerves and CD‑31 posi‑
tive leukocytes, and we applied it to an additional 21 images from 15 patients. Using these segmentations, we inves‑
tigated the relationship between the various tissue types and the vasculature and studied the relationship of vari‑
ous vascular parameters with clinical parameters. We also performed a 3D histology analysis on a separate tumour 
sample as a proof of principle, providing a more comprehensive visualization of vasculature morphology compared 
to the standard 2D cross‑section of a tissue sample.

Results Using two‑way cross‑validation, we show that vessels were accurately segmented, with Dice scores of 0.875 
and 0.856, and were accurately identified, with F1 scores of 0.777 and 0.748. All vascular parameters exhibit strong 
( r > 0.7 ) and significant (p<0.001) correlations with measurements taken from the manual ground truth vessel seg‑
mentations. A significant relationship between the major/minor axis ratio, a measure of elongation, and the tumour 
grade was found.
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Conclusion Our proposed method shows promise as a tool for studying the tumour vasculature and its relation‑
ship with surrounding cells and tissue types. Furthermore, the correlation with tumour grade highlights the clinical 
relevance of our approach. These findings suggest that our method could have substantial implications for improving 
prognostic assessments and personalizing therapeutic strategies in breast cancer treatment.

Introduction
 The vasculature plays a key role in the tumour micro-
environment by providing the necessary nutrients for 
the growth and survival of cancer cells [1]. Vascular 
endothelial growth factor (VEGF) produced by tumours 
induce angiogenesis. The resulting rapid neo-vasculari-
sation results in a greater number and more immature 
vessels, characterised by a reduced pericyte layer. An 
impaired pericyte coverage results in less functional 
and more leaky vessels. Together with the growth of 
the tumour this creates a high interstitial fluid pressure, 
causing the vessel lumen to narrow or collapse [2, 3]. 
The rapid tumour growth leads to a disorganised vas-
cular network, with tortuous vessels and blunt ends. 
The resulting reduced blood flow limits the amount of 
oxygen perfusion and diffusion within the tumour. The 
cancer cells become hypoxic leading to a more aggres-
sive type of a tumour, which are more resistant to ther-
apeutics. Furthermore, hypoxia-inducible factor (HIF) 
causes an up-regulation of VEGF, making this an aggre-
gated process [4].

Breast cancer can be highly vascularised, making 
this process of development of hypoxia prominent [5]. 
Although various techniques for imaging the breast 
tumour vasculature have been studied [6], immuno-
histochemistry (IHC) remains the gold standard. In 
particular the use of CD-31, which is a highly specific 
marker for endothelial cells, is common in the exami-
nation of the vasculature in histopathology.

Since manually counting all vessels on CD-31 IHC 
slides is time consuming, estimation methods have 
been developed, and attempts have been made to 
standardise these estimations [7]. Although such met-
rics of vascular density have been shown to be of prog-
nostic value [8], they are not used in clinical practice 
due to the subjective nature of these measurements 
[9], as well as being time consuming and of limited 
descriptiveness. Automatic methods [10–13] or semi-
automatic approaches [14] have been previously devel-
oped to address this problem. However, they may have 
limited performance when applied to breast cancer, 
where CD-31 IHC can lead to a considerable amount of 
false positive staining of tissue other than vessels. Spe-
cifically, the expression of CD-31 in macrophages [15] 
and plasmacytic/plasmablastic lesions [16] have been 
identified as a potential for misdiagnosis. Furthermore, 

while simple colour-based stain identification methods 
may perform well for basic tasks like vessel counting, 
they fall short for more advanced quantification tasks. 
These methods often struggle to accurately measure 
complex vascular features because common vascu-
lar markers typically stain only the endothelial cells in 
the vessel wall. This frequently results in incomplete 
representations, such as hollow centers within vessels 
or fragmented vessel walls, particularly when the stain 
does not bind uniformly or when parts of the vessel 
wall are missing due to tissue sectioning. Thus, there 
is a need for a more robust segmentation method that 
provides a more detailed and accurate depiction of the 
tumour vasculature.

All this highlights the need for a comprehensive assess-
ment of the tumour vascular microenvironment. New 
advances in deep learning provide a solution to this 
by learning the imaging features that distinguish one 
cell or tissue type from the other. Thus, we use a deep 
learning-based approach to automatically segment tis-
sue structures and quantify the tumour vascular micro-
environment on full slide IHC images. With the CD-31 
images being counter-stained with hematoxylin to show 
the cell nuclei, we are able to identify tumour regions and 
distinguish them from benign epithelial cells, as well as 
other distinct tissue types such as nerves, smooth muscle 
and lymphocyte clusters. We subsequently propose vari-
ous parameters of the tumour vasculature extracted from 
the resulting segmentations, and report the segmenta-
tion performance with respect to ground truth manual 
segmentations. With several regional analyses we explore 
the relationship of the vasculature and lymphocytes with 
respect to the tumour, stroma and adipose tissue. Finally, 
we investigate the potential clinical value of the pro-
posed method by relating the various vascular and tissue 
measurements with the tumour grade and node status. 
We also performed a 3D histology analysis on a separate 
tumour sample to gain further insights.

Materials and methods
Data
Three datasets, each from a different clinical study: MIS-
SION [National Research Ethics Service Committee East 
of England, Cambridge South, Research Ethics Com-
mittee number (REC) 15/EE/0378; National Institute 
for Health Research (NIHR) portfolio number 30388], 
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BEHOLD [REC: 14/EE/0145] and TRANSNEO [REC: 
12/EE/0484], were retrospectively analysed in this study. 
They include core biopsies and resections from patients 
with a range of breast cancer types. The complete data-
set includes 8 whole slide images from 7 patients in 
the MISSION study, 28 images from 20 patients in the 
BEHOLD study, and 21 images from 15 patients in the 
TRANSNEO study. Note that multiple images from the 
same patient may originate from the same sample or 
from different samples taken from different locations. 
The TRANSNEO dataset became available later in the 
project and was included to increase the overall data-
set size, increasing the robustness of our findings. The 
occurrence of each tumour type, the number of ER-, PR-, 
and HER2-positive patients, and the grades are provided 
for each dataset in Table 1. Digital images were acquired 
at 20x magnification resulting in images with a pixel size 
of 0.5034 × 0.5034 µm. These datasets are illustrated in 
Fig.  1. Written, informed consent was provided by all 
study participants.

An additional dataset of an ER-patient-derived xeno-
graft (PDX) was collected for 3D histology examination. 
A cryopreserved breast PDX tumour fragment ( 2  mm3) 
in freezing media (foetal bovine serum, heat-activated 
Thermo Fisher Scientific 10500064 +10% dimethyl sul-
foxide Sigma D2650) was defrosted at 37 °C, washed with 
Dulbecco’s modified eagle’s medium (Gibco 41966) and 
mixed with matrigel (Corning 354262) before surgical 
implantation. Tumours were implanted subcutaneously 
into the flank of 6–9 week-old NOD SCID gamma (NSG) 
mice (Jax Stock #005557) as per standard protocols.

Manual annotations of the various tissue types were 
performed by the first author using the brush tool in 

QuPath v0.2.0-m2 [17]. For the biopsies the entire tissue 
section was used (Fig. 2), while for the resections regions 
were selected to attempt to capture the full range of vari-
ation present in the slide (Supplementary Figure S1). The 
tissue classes include vessels, vascular smooth muscle, 
tumour regions, benign epithelial cells, adipose, lym-
phocyte clusters, CD-31 positive leukocytes, nerves and 
background. The remaining tissue is subsequently classi-
fied as stroma.

A convolutional neural network (CNN), as 
described  below, was subsequently trained on this data 
and was used to segment an additional set of regions. 
These regions were manually corrected, again using the 
brush tool in QuPath, to form a final large annotated 
dataset to be used for the training of the various models 
in this study. All segmentations were verified and, if nec-
essary, corrected by a trained pathologist specialised in 
breast pathology. Various background regions with image 
artefacts were also selected to be used only during train-
ing, to increase the robustness of the final model when 
doing full slide inference.

To train and evaluate the deep learning model, the 
binary maps for each class were exported and converted 
into tiles of 512x512 pixels. Figure 2 provides some rep-
resentative samples with all of the tissue types.

Deep learning architecture
The deep learning architecture, as well as the train-
ing, inference, data processing, and evaluation routines, 
including statistical analysis, were all implemented 
in Python (version 3.7). In line with a data-centric AI 
approach, we use a standard U-Net architecture [18], 
implemented in Keras (version 2.4.0) and Tensorflow 
(version 2.4.4), with minimal modifications. Compared to 
the original U-Net, we incorporate batch normalisation 
and use LeakyReLu as the activation function to prevent 
the “dying ReLU” problem. Each convolution, is preceded 
by a reflection padding. This will avoid the progressive 
shrinkage of the feature map. In addition we use mixed 
precision which saves memory and allows us to use a 
batch size of 23 using an NVIDIA Tesla V100S 32GB 
GPU.

For data augmentation we use a random flip, rotation 
with mirror padding, as well as color jitter. The weights 
were optimised using Adam with an exponentially decay-
ing learning rate and warm restarts. As the cost function 
we use a weighted soft Dice loss defined as:

where p ∈ [0, 1] denotes the prediction probability, and 
g ∈ {0, 1} the ground truth at the i-th pixel of the j-th 

(1)Loss(p, g) = 1−
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Table 1 Pathology occurrence for each dataset

n = number of patients. * PR-status not available for 7 patients

Behold Mission Transneo
(n = 20) (n = 7) (n = 15)

Invasive Ductal Carcinoma 15 5 14

Ductal Carcinoma in situ 14 0 0

Invasive Mucinous Carcinoma 1 0 0

Invasive Lobular Carcinoma 5 1 1

Lobular Carcinoma in situ 3 0 0

Invasive Spindle Cell Metaplastic 
Carcinoma

0 1 0

ER‑positive 20 3 15

PR‑positive 19 2 8*

HER2‑positive 5 0 8

Grade 1 3 0 0

Grade 2 8 1 6

Grade 3 9 6 9
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class, with the set of pixels N and classes C. The weights 
of each class are defined by w and estimated based on 
their prevalence and importance. Thus, with adipose, 
stroma and background being rather prevalent they are 
given a weight of 1. tumour, benign tissue, lymphocytes 
and muscle are given a weight of 2 while macrophages 
and nerves, being rather rare, are given a value of 5. Con-
sidering the segmentation performance of the blood ves-
sels is of prime importance, it is given a weight of 10.

Inference and post‑processing
The final layer in the CNN is a Softmax function which 
provides a probability map for each class. The inference 
was done using a sliding window approach across the 
entire slide, whereby the probabilities of each class are 
generated in 512 ×  512 regions with an overlap of 128 
pixels. The probability maps were weighted based on 
the linear distance to the center of tile and the binary 
segmentations for each class were subsequently derived 
from them using majority voting.

The following post processing operations were applied: 

1. A gaussian smoothing was applied to the probability 
maps of all tissue classes except the vessels and leu-
kocyte structures to retain the level of detail in them.

2. A hole filling algorithm was applied to the back-
ground on regions smaller than 10000 pixels.

3. A hole filling algorithm was applied to the stroma on 
regions smaller than 1000 pixels overwriting all but 
the vessel and leukocyte structures.

4. A hole filling algorithm was applied to the adipose on 
regions smaller than 10000 pixels overwriting all but 
the vessel and leukocyte structures.

5. A hole filling algorithm was applied to the vessel seg-
mentations overwriting any other classes.

Quantification
Several parameters were extracted from the result-
ing vascular segmentation maps using custom code. 
These parameters are illustrated in Supplementary Fig-
ure S2 and explained below:

• Density (#/mm2): The number of vessels per square 
mm within the stroma of the region of interest.

• Mean area (µm2): The mean of the surface areas of 
the blood vessels.

• Mean circularity: (Circularity = 
(4 · π · Area)/Perimeter

2) The area versus perimeter 
ratio, which is 1 for a perfect circle and decreases 
with complexity down to 0.

• Mean axis ratio: The mean of the ratio between the 
long and short edge of the rectangles fitted over each 
vessel segmentation.

• Mean thickness (µm): The mean of the vessel thick-
nesses, measured using a maximum diameter sphere 
fitting algorithm.

For the average axis ratio, a minimum bounding box was 
fitted over each vessel segmentation. The ratio of the 
long edge over the short edge defines the major/minor 
axis ratio of the vessel and the average ratio was subse-
quently calculated over all vessels in the image or region. 
The vessel thickness was derived from a measure devel-
oped for quantifying the trabecular bone thickness [19]. 
A distance map was first generated from the segmenta-
tion mask, as well as a skeleton mask. For each point in 
the skeleton mask a sphere was drawn with a radius and 
value corresponding to the value from the distance map 
at this location. Pixel values were only overwritten when 
the new value is greater than the old values. The thick-
ness was then calculated as the average pixel value in the 
thickness map within the vessel segmentation.

Results
This study is composed of two parts as depicted in Fig. 1 
and outlined below, as well as an additional 3D analysis.

Segmentation validation
The evaluation of the U-Net based segmentation per-
formance of the tissue regions and vessels, as well as 
the measurements of the vascular parameters were per-
formed in a two way cross-validation split based on the 
MISSION or BEHOLD study.

The manually annotated regions and the vascular 
parameters extracted from the manually segmented ves-
sels were considered the ground truth. The cross-vali-
dations were performed in such a way that the CNN is 
trained on the manually segmented data from one study 
and validated on the other. In Supplementary Figure  S3 
we can see the confusion matrix of the predictions ver-
sus true classes assessed on a pixel by pixel basis for every 
image segment.

The segmentation performance of the tissue regions 
was assessed using the Dice score and Jaccard index cal-
culated over every image segment (Table 2). The perfor-
mance of identifying individual vessels was also assessed, 
as reported in Table  3. We show a precision, recall and 
F1 score for the proposed method over baseline. Here we 
assume that an overlap between a predicted vessel and 
true vessel > 50% with respect to the true vessel regions 
indicates a True Positive. Furthermore, we show how 
the predicted vessels might be inaccurately identified as 
more than one (number of splits) or several vessels are 
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inaccurately identified as one vessel (number of merged) 
as percentage with respect to the total number of vessels.

All vascular parameters measured from the validation 
set are correlated with the measurements taken from 
the ground truth manual segmentations for both parti-
tions in the cross-validation. Here vessels smaller than 40 
pixels (10 µm2) are considered noise and are discarded. 
Using Pearson’s correlation we show a strong correlation 
( r > 0.7 ) for all parameters with all correlations being 
statistically significant ( p < 0.001 ). The correlation plots 
are shown in Supplementary Figure S4.

Analysis of tumour vascular microenvironment
To investigate the function of the vasculature in the 
tumour microenvironment, we required full slide anno-
tations of the available biopsies and resections. For this 
we again used a CNN to provide an automated full slide 
segmentation. In this case we built a single CNN from all 
data to ensure highly accurate segmentations. In addition 
we included a third dataset from the TRANSNEO study, 
which included diagnostic biopsies with corresponding 
clinical data. The resulting full slide annotations allowed 

us to do a detailed analysis of relationships between 
the vasculature parameters and other tissue regions or 
pathologies. In these analyses we excluded vessels smaller 
than 40 pixels and tumour or adipose regions smaller 
than 1000 pixels (250 µm2 ) to exclude possible artefacts 
or singular adipose or tumour cells. For this analysis we 
included data only from patients with ER-positive breast 
cancer since the ER status has been shown to be associ-
ated with characteristics of the vasculature [20].

We first attempted to verify the differences in the vas-
cular parameters within stroma, adipose and tumour 
tissue. To define these regions, we first applied a mor-
phological dilation of 150 µm to the tumour region and 
the adipose region, while ensuring no overlap between 
them. This was done by applying a smaller dilation in 
turn, while not overwriting the other region. The remain-
ing stroma region was defined as including the lympho-
cyte clusters. These three regions subsequently defined 
the regions of interest for measuring the vascular param-
eters (Fig.  3A and B). A comparison of each parameter 
per patient with respect to the tissue region is provided 
in Fig. 4.

To assess the relationship of the lymphocytes with 
respect to the vasculature and tumour cells, we per-
formed a regional analysis. Starting with the vascular 
segmentations, we applied consecutive morphological 
dilations of 25 µm to extract regions corresponding to 
a range of distances to the vessel (Fig.  3C). For each 
region we subsequently calculate the lymphocyte per-
centage, which is defined by the lymphocyte area rela-
tive to the combined stroma and lymphocyte area. The 
same was done for the tumour whereby the lympho-
cyte percentage was assessed for consecutive regions 
around the tumour (Fig.  3D). The subsequent plots 
are shown in Fig. 5A and B. Paired t-tests between the 
consecutive regions show that the lymphocytes are 
more prominent in close proximity to the vessels. This 
suggested a strong relationship between the lympho-
cytes and the vasculature. Furthermore, the lympho-
cyte percentage (lymphocyte density) decreased when 
measuring further away from the tumour. However, 
this was only the case when measuring more than 150 
µm from the tumour border. The majority of lympho-
cytes appeared around the 125–150 µm distance from 
the tumour, while reducing significantly when measur-
ing close to the tumour border.

To investigate this further, a similar regional analy-
sis was performed for the vessel density and size with 
respect to the distance from the tumour (Fig.  5C and 
D). Vessels closer to the tumour boundary were more 
numerous and smaller. This corresponds to the hypoth-
esis that the tumour incurs a rapid neovascularisation.

Table 2 The segmentation performance measured by Dice 
score and Jaccard index for both datasets in the cross‑validation

Behold Mission

Dice Jaccard Dice Jaccard

Vessel 0.875 0.777 0.856 0.748

Tumour 0.701 0.539 0.815 0.688

Benign 0.476 0.312 0.556 0.385

Adipose 0.898 0.814 0.915 0.843

Lymphocytes 0.698 0.536 0.648 0.480

Muscle 0.714 0.555 0.736 0.582

Leukocytes 0.715 0.557 0.780 0.640

Nerve 0.764 0.618 0.873 0.775

Stroma 0.886 0.796 0.899 0.817

Background 0.753 0.604 0.954 0.913

Table 3 The vessel detection performance and percentage 
of splits and merges relative to the total number of vessels (n), 
measured for both datasets in the cross‑validation

Behold Mission
(n = 17940) (n = 16894)

Precision 0.791 0.776

Recall 0.655 0.727

F1 score 0.717 0.750

merged (%) 2.386 3.344

split (%) 1.048 0.900
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Fig. 1 A flowchart visualization of the study design, with the top (Section 1) showing the annotation, training, and cross‑validation 
of the Convolutional Neural Network (CNN). The bottom (Section 2) illustrates the setup for the analysis of the tumour microenvironment in the 38 
ER‑positive patients using a model constructed from the entire annotated dataset. In this section we specify how many of whole slide images are 
from a needle biopsy or a resection, which represents a larger tissue section removed during surgery

Fig. 2 Left: Representative selection of tiles (512 × 512 pixels) with the corresponding tissue labels by manual annotation used for training the deep 
learning models. Right: Manual and automatic segmentation of the full CD‑31 IHC digital pathology slide of a core needle biopsy from the MISSION 
study using a CNN trained on the BEHOLD study data
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To understand the significance of the vascular meas-
urements with respect to clinical parameters, we per-
form several additional evaluations. We compare the 
tumour vasculature parameters as described previ-
ously between patients with grade 1 or 2 and those 
with grade 3 (Fig. 6). Here a significant difference was 
seen in the mean axis ratio with respect to the tumour 

grade. In addition, the parameters were compared with 
respect to the lymph node status where available (Sup-
plementary Figure  S5), but this showed no significant 
differences.

Within the tumour regions we can also measure the 
tumour-stroma ratio, which gives us a quantitative 
measure of the tumour morphology. Here the stroma is 

Fig. 3 Examples of the regions used in the various examinations. The original IHC image (A). The tumour, adipose, and stroma regions (B), defined 
by dilating the tumour and adipose segmentations by 150 µm. The consecutive regions around the vessels (C), each corresponding to 25 µm. The 
consecutive regions around the tumour (D), each corresponding to 25 µm

Fig. 4 Comparison of the vasculature parameters in the tumour, adipose, and stroma regions for the 38 ER‑positive patients, represented by box 
plots with outliers defined as values beyond 1.5 times the interquartile range. P‑values by two‑tailed, two‑sample t‑tests
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defined as including the lymphocyte regions. In the same 
way the lymphocyte percentage within the tumour region 
provides a quantitative measure of the tumour infiltrating 
lymphocytes. These measures were again evaluated with 
respect to the Grade (Supplementary Figure S6). No sig-
nificant differences were observed here.

Extension to 3D
Now that we have an automatic vessel segmentation tool, 
we are also able to perform a segmentation of the vascu-
lature in 3D by using serial section histology. For this we 
use 22 serial sections of CD-31 IHC images of a human 
tumour grown as a xenograft in an immunodeficiency 

Fig. 5 The lymphocyte density relative to the distance from the vessel (A) or tumour (B), and the vessel density (C) and size (D) relative 
to the distance from the tumour for the 38 ER‑positive patients. The box plots display outliers as black circles beyond 1.5 times the interquartile 
range. Each randomly coloured dot represents an individual patient’s data for a specific distance range, and the same colour is used for each 
patient across all distance ranges, with lines connecting the dots to show the trend for that patient across the full range of distances. * p < 0.05 
between consecutive regions assessed using two‑tailed, paired t‑tests
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mouse. The serial sections were first aligned and the 
deformations corrected using a custom module in 
ScanXm1 (Minogame Ltd, Cambridge, UK). The deep 
learning based segmentation method was subsequently 
applied to each section to generate 3D tumour and ves-
sel segmentations. A surface mesh was then generated 
for each vessel structure, which is shown together with a 
volume rendering of the tumour segmentation in Fig. 7. 
For each volume also an animation is provided in the 
supplementary videos. In Supplementary video S1 we 
can see normal vessels at the tumour borders, which may 
contain some skin vessels. However, when examining the 
vessels inside of the tumour, they appear highly disorgan-
ised (Supplementary video S2). In some parts they appear 
to be regular vessels that were compressed by a growing 
tumour or high interstitial fluid pressure to become flat 
latices (Supplementary video S3). Interestingly, at the 
border of the necrotic region we also see regular vessels 
(Supplementary video S4), which may have appeared 
in response to an increased VEGF, while not being sup-
pressed by the tumour.

Discussion
In this study we proposed a deep learning based method 
for the automatic segmentation and subsequent quan-
tification of the tumour vasculature environment from 
CD-31 IHC images.

Our vessel segmentation performance, with a Dice 
score of 0.875 and 0.856, and a Jaccard index of 0.777 
and 0.748, is comparable to previous studies which seg-
ment the vasculature from H&E digital pathology images. 
Yi et al. [21] report a Jaccard index of 0.755, while Frazz 
et  al. report a Dice score and Jaccard index of 0.9390 
and 0.8851 in [22], and 0.8714 and 0.7721 in [23]. These 

studies, however, use standard H&E stained slides, which 
have some considerable limitations compared to the use 
of IHC markers specific to the vasculature. They rely 
heavily on red blood cells being present in the vessels, 
which might not be the case. Furthermore, H&E sec-
tions will only clearly show the larger vessels, while it is 
the micro-vasculature which is of particular interest in 
cancer biology. Illustrative of this is a study showing that 
the presence of vascular invasion is easily missed when 
assessed from H&E slides [24]. To acquire accurate meas-
ures of the vascular morphology, CD-31 IHC remains the 
most appropriate modality by highlighting the epithelial 
cells in the vessel wall, thereby allowing us to get a more 
complete picture of the microvasculature structure. A 
direct comparison of our segmentation results with the 
above papers will therefore not be appropriate.

We furthermore show that the proposed vascu-
lar parameters extracted from the vessel segmenta-
tions correlate well with the parameters measured from 
the ground truth manual segmentations, with strong 
( r > 0.7 ) and significant ( p < 0.001 ) correlations for all 
parameters.

Other markers, such as Von Willebrand Factor (vWF) 
and CD34, are also used to highlight vasculature. How-
ever, CD31 is often preferred because it is generally more 
sensitive than vWF in detecting small blood vessels and 
capillaries. While CD34 is another commonly used vas-
cular marker, it is less suitable for quantifying vessels in 
breast cancer due to its lower specificity, staining not 
only endothelial cells but also stromal and non-endothe-
lial cells. Nonetheless, these markers may be appropriate 
in other contexts. Considering the high level of augmen-
tation used in training the neural network, the same 
model may work just as well on these markers, although 
some fine-tuning with data specific to those stains may 
further improve its performance.

Fig. 6 Bar plot of vascular parameters against grade for the 38 ER‑positive patients, with outliers defined as values beyond 1.5 
times the interquartile range. P‑values by two‑tailed, two‑sample t‑tests with Benjamini‑Hochberg correction

1 https://www.scanxm.com/
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By examining the differences in vascular parameters 
relative to other tissue types we show that these param-
eters vary in expected ways. In [25], a higher vascular 
density had been measured in adipose-rich tissue com-
pared to stroma-rich tissue in cancer-adjacent breast 
tissue. Figure  4 demonstrates that the vascular density, 
defined as the number of blood vessels per square mil-
limetre within the stroma of the adipose region, is signifi-
cantly greater ( p < 0.05 ) than the vascular density in the 
remaining stroma. This similarly suggests that the prox-
imity of adipose tissue is associated with increased vas-
cularisation within the stroma. In the same figure we also 
show that stroma vasculature near the tumour is more 
dense, as well as being of smaller size, compared to the 
vasculature in the stroma further away from the tumour. 
These findings are also in line with the common notion 
that neo-vascularisation occurs in proximity to the 
tumour. This was examined in greater detail in a regional 
analysis of vascular density and size relative to the dis-
tance from the tumour. In this analysis, we demonstrated 
that vessel density significantly decreases, and vessel size 
significantly increases as the measurement distance from 
the tumour border increases (Fig.  5C and D). All this 
gives confidence in the validity of these measurements.

Regarding the segmentation performance of tumour 
regions, we show a Dice score of 0.701 and 0.815. This 
is an improvement over previous studies, such as the by 
of Cruz-Roa et al. [26]. There, a Dice score of 0.6041 was 
reported for the segmentation of a mixture of invasive 

and noninvasive breast cancer, as is the case in our study. 
The difference in performance can be explained by the 
more detailed tumour delineation in our data. Impor-
tantly, these results show that tumour regions can be seg-
mented from only the hematoxylin stained cell nuclei in 
IHC images. This eliminates the need for the co-registra-
tion with H&E images when examining structures seen in 
IHC in proximity to other tissue types.

In order for the tumour tissue to be classified correctly, 
it was necessary to also include benign epithelial tissue 
in the model to prevent this from being misclassified as 
tumour tissue. Its low segmentation performance is due 
to the way tumour regions were defined. Since we do not 
identify individual cells, the annotated tumour regions 
may contain a considerable number of normal cells. So 
when the neural network correctly predicts some cells 
as being normal, they may be within a region defined as 
tumour. Hence, the neural network should be better at 
correctly identifying benign tissue than what the Dice 
score of 0.476 and 0.556 indicates.

Also the lymphocyte regions are of limited segmenta-
tion performance, which is due to its loose definition as 
a cluster of lymphocytes. This may result in annotations 
that differ greatly in appearance between tissue sam-
ples. However, once the model is trained, it will pro-
vide unbiased predictions, thus generating consistent 
segmentations.

The nerve tissue has previously been identified as a 
possible structure of interest and has been included in 

Fig. 7 3D histology of four regions in a human tumour grown as a xenograft in a recipient mouse. The segmented tumour is shown 
as a transparent blue volume, while the segmented vessels are shown as a red surface mesh
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a model to segment together with the vasculature from 
H&E images [23]. Using their proposed FABNet archi-
tecture they report a Dice score of 0.879 for the nerve 
segmentation, which is consistent with our Dice score of 
0.764 and 0.873.

In our study the CD-31 positive leukocytes show a 
low segmentation performance, as the CD-31 positive 
macrophages and plasma cells are easily misclassified as 
a blood vessels [15, 16]. Although it is difficult to assess 
whether our vessel detection with an F1 score > 0.7 
(Table 3) is sufficiently accurate, by including these struc-
tures in the model, our proposed method may at least 
reduce the number of false positives.

In this study we have shown the potential value of vas-
cular parameters in assessing the pathological status of 
the tumour. This is evident in the significant difference 
observed in the mean major/minor axis ratio relative to 
the tumour grade (Fig.  6). However, none of the other 
parameters have shown any relationship with the grade. 
This is despite the mean number of vessels having previ-
ously been shown to be inversely related to the tumour 
grade in breast cancer [27].

Previous research has established a link between lym-
phatic vessel density and lymph node metastasis [28]. 
Our analysis of the vascular density with respect to the 
node status shows no significant relationship. However, 
it is worth noting that prior to adjusting for multiple 
comparisons, the relationship approached significance 
(p=0.06). The use of CD-31, which highlights both lym-
phatic and blood vessel walls without differentiation, pre-
sents a challenge in this analysis. Removing the influence 
of blood vessels from this assessment, possibly through 
the use of a marker specific for the lymphatic endothe-
lium such as D2-40 [24, 29], may improve the predictive 
value of this metric.

A low tumour to stroma ratio (TSR) has been shown to 
be associated with poor clinical outcomes in most solid 
tumour types [30], which includes triple negative breast 
cancer [20]. However, a recent study using an automated 
image analysis using QuPath shows that for ER-positive 
breast cancer the opposite is true, with a low TSR being 
associated with a favourable prognosis [31]. Our results 
corroborate these findings by showing a lower TSR for 
patients with a lower grade, although the differences are 
not statistically significant.

By measuring the lymphocyte percentage within the 
tumour stroma region we provide a pseudo measure for 
the amount of TILs, which have previously been shown 
to be associated with outcome [32–34]. In accordance 
with these previous studies we show that a greater lym-
phocytes percentage was associated with high grade, but 
again not statistically significant. In [35] a computational 
tumour infiltrating lymphocytes (cTILs) biomarker was 

proposed, which is substantially equivalent to our lym-
phocyte percentage measure. An ROC analysis showed 
that this biomarker achieved 100% sensitivity in pre-
dicting pathological complete response (pCR), although 
also not reaching statistical significance. In [36] graph-
based features derived from paired tile-level classifica-
tion maps was used to predict pCR and residual disease 
(RD) using machine learning methods. Here the tumour 
and TILs interaction was shown to best predict pCR, 
while the microvessel density and polyploid giant can-
cer cells pair was most predictive for RD. While all these 
studies are limited by their sample size, they do show 
the value of examining and quantifying the various cel-
lular and tissue interactions within the tumour vascular 
microenvironment.

When examining the tumour tissue in 3D, the tumour 
vasculature appears complex and highly disorganized. 
The 2D descriptors proposed in this work may not be 
adequate for characterizing these intricate morphologies. 
Some recent work does indeed show a prognostic and 
predictive value in breast cancer by measuring the 3D 
vascular morphology from the larger vessels seen in CT 
and contrast-enhanced MRI [37].

Some limitations of this study should be noted. A com-
plication encountered in our study is the presence of 
extravascular blood. Since red blood cells are often vis-
ible within blood vessels, the deep learning model may 
learn to identify a cluster of extravascular red blood cells 
as a blood vessel, thereby introducing an error to the vas-
cular parameter measurements. Until a solution is devel-
oped for this, more care in the histological processing, 
or a manual removal of these regions will prevent this 
source of error.

Another limitation of this study is the limited num-
ber of images available to us due to the infrequent use 
of CD-31 IHC in clinical practice. Although in absolute 
numbers we use a substantial amount of annotated data, 
they were derived from relatively few samples, thereby 
potentially inducing a batch effect. Nonetheless, our 
study shows that the CD-31 IHC images provide a com-
prehensive view of the tumour microenvironment with 
potentially valuable insights. Integrating CD-31 IHC 
alongside standard H&E staining, while minimally dis-
rupting the clinical workflow, may therefore become 
more prevalent in the future.

Conclusion
In this study, we developed a method for automatically 
measuring parameters describing the vasculature mor-
phology from CD-31 IHC images. By segmenting a range 
of tissue types, we were also able to examine the inter-
actions of the vasculature with its environment. Further-
more, we have shown a significant relationship between 
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the major/minor axis ratio and the tumour grade, sug-
gesting future clinical utility of the proposed method. 
More work is required to assess whether the proposed or 
other, potentially three-dimensional, vascular measure-
ments from digital pathology imaging have any prognos-
tic or predictive value in clinical practice, or could inform 
future treatment decisions.
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