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Abstract 

Background Breast cancer subtypes Luminal A and Luminal B are classified by the expression of PAM50 genes 
and may benefit from different treatment strategies. Machine learning models based on H&E images may contain 
features associated with subtype, allowing early identification of tumors with higher risk of recurrence.

Methods H&E images (n = 630 ER+/HER2-breast cancers) were pixel-level segmented into epithelium and stroma. 
Convolutional neural network and multiple instance learning were used to extract image features from original 
and segmented images. Patient-level classification models were trained to discriminate Luminal A versus B image 
features in tenfold cross-validation, with or without grade adjustment. The best-performing visual classifier was incor-
porated into envisioned diagnostic protocols as an alternative to genomic testing (PAM50). The protocols were then 
compared in time-to-recurrence models.

Results Among ER+/HER2-tumors, the image-based protocol differentiated recurrence times with a hazard ratio 
(HR) of 2.81 (95% CI: 1.73–4.56), which was similar to the HR for PAM50 (2.66, 95% CI: 1.65–4.28). Grade adjustment did 
not improve subtype prediction accuracy, but did help balance sensitivity and specificity. Among high grade partici-
pants, sensitivity and specificity (0.734 and 0.474, respectively) became more similar (0.732 and 0.624, respectively) 
in grade-adjusted models. The original and epithelium-specific images had similar performance and highest accuracy, 
followed by stroma or binarized images showing only the epithelial-stromal interface.

Conclusions Given low rates of genomic testing uptake nationally, image-based methods may help identify ER+/
HER2-patients who could benefit from testing.
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Background
Breast cancer heterogeneity motivates a precision medi-
cine approach. PAM50 subtypes and risk of recurrence 
(ROR) scores identify intrinsic molecular subtypes 
(Luminal A, Luminal B, HER2-enriched, Basal-like, or 
Normal-like) or recurrence risk, respectively, and can 
provide prognostic information to aid chemotherapy 
decisions [1–3]. Among ER-positive (ER+), HER2-nega-
tive (HER2-) tumors, high ROR tumors are more aggres-
sive, have higher relapse rates, and are more likely to 
benefit from chemotherapy compared to low ROR/Lumi-
nal A tumors[2–4]. However, genomic testing takes time 
and can be costly and may not be universally available to 
all patients. Our recent findings suggest that among eli-
gible ER+/HER2-breast cancer patients, a minority ( ∼
40%) received prognostic or predictive genomic testing 
[5]. In contrast, hematoxylin and eosin (H&E)-stained 
biopsy slides are routinely collected in every patient dur-
ing diagnostic workup [6]. We hypothesized that such 
slides could be used to predict genomic risk of recurrence 
scores among ER+/HER2-tumors, thereby enabling the 
identification of patients who may benefit from genomic 
testing.

We envisioned three risk-stratification protocols 
among non-metastatic, ER+/HER2-breast cancers, 
based on stage, histological and/or genomic factors. In 

a reference protocol (Fig.  1. A) most similar to current 
guidelines, patients with advanced stage (stage 3) were 
considered higher-risk and patients with lower stage dis-
ease (1, 2) were recommended to receive genomic test-
ing. Current guidelines recommend such tests for node 
negative or positive (1–3 nodes), early stage patients. For 
comparison with this approach, we envisioned an image-
based approach that stratified risk only on AI-models 
trained on histology (B). Finally, we envisioned a hybrid 
image-plus-genomics testing where genomic testing was 
applied for lower-stage tumors with histologically-pre-
dicted high risk (C). Comparisons of these approaches 
offer insights about efficient application of histologic and 
genomic methods in resource scarce contexts.

Methods
Study population
The primary data for this study were from the Carolina 
Breast Cancer Study Phase 3 (CBCS3, 2008–2013), a 
population-based study of breast cancer in 44 counties of 
North Carolina. The study oversampled younger women 
(<50 years old) and Black women, resulting in a diverse 
study population. This analysis utilized hematoxylin and 
eosin (H&E)-stained TMA images, excluding partici-
pants who did not have a scanned H&E stained image 
(n = 993), who did not have research-based genomic 

Fig. 1 Scenarios for Screening Low Stage ER+/HER2-cancers. A A conceptualized reference breast cancer diagnosis protocol containing genomic 
testing. B An alternative protocol which can be implemented by replacing genomic testing with a machine learning model. C A hybrid protocol 
which recommends genomic testing only for potential high risk breast cancer patients as predicted by the machine learning model. The numbers 
below boxes represent the corresponding patient count from the CBCS cohort
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test results (n = 708), and who were missing grade (n = 
47). We also excluded those who were ER- (n = 239) or 
who were HER2+ (n = 136) as these patients are not the 
target population for existing prognostic and predictive 
genomic tests. The final study population included 630 
ER+/HER2-participants. The distribution of the partici-
pants is shown in Table  1.

To evaluate the generalizability of our findings in 
CBCS3 data, we employed the Cancer Genome Atlas 
Breast Invasive Carcinoma (TCGA-BRCA) dataset as 
an external validation group [7, 8]. This dataset includes 
FFPE diagnositic H&E-stained whole slide images (WSIs) 
and corresponding clinical data. For this analysis, we 
focused on a subset of 635 ER+/HER2-patients.

We aimed to distinguish between Luminal A (n = 408) 
and Luminal B (n = 156) among lower stage, genomic-
testing eligible tumors. Therefore, we excluded partici-
pants with other breast cancer subtypes: Basal-like (n = 
42), HER2-enriched (n = 7), and Normal-like (n = 17) in 
training. After developing the best-performing machine 
learning model for discriminating between Luminal A 
and Luminal B subtypes, we applied the model to all 630 
ER+/HER2-participants, regardless of subtype, to classify 

them into either the low (Luminal A) or high-risk (Lumi-
nal B) group.

Image preprocessing and patch‑level feature extraction
We used 20× scanned images from formalin-fixed par-
affin embedded (FFPE) histologic tissue microarrays 
(CBCS3) and whole slide diagnostic images (TCGA-
BRCA). The total number of core images from 630 
CBCS participants was 2260, and the numbers of pix-
els varied. The median dimension is 2600 × 2600 pixels. 
To ensure consistent image processing across datasets, 
we utilized 4053 pre-selected 2000 × 2000 pixel regions 
from the 635 TCGA WSIs, with one WSI per patient [9]. 
Figure  2 illustrates the overall workflow of constructing 
subject-level feature vectors from core images. First, to 
reduce stain intensity variations by slides, every core is 
stain-normalized as described [10, 11] (Fig.  2. A). Next, 
we segmented the core images into epithelium and col-
lagenous stroma regions. To investigate shapes of the two 
tissue types, we constructed binary images where epithe-
lium and collagenous stroma regions are colored red and 
green, respectively (Fig.  2B). This process is discussed 
in detail in Supplementary Information S1. We divided 

Fig. 2 Pipeline for extracting a 15-dimensional feature vector from a core image. This figure illustrates the process for an epithelial image 
among four types of segmented core images shown in B. A Every core was stain normalized to reduce stain intensity variations by slides. B The 
color-normalized H&E core image was separated into two tissue types, epithelium and collagenous stroma, using pixel-level image segmentation. 
Additionally, we constructed binary images to investigate the regional shape of the epithelium and collagenous stroma. C We divided each 
core into k patches with a size of 200 × 200 pixels. D Non-informative patches with background pixels above a patch-specific threshold were 
excluded. E Patches with artifacts were excluded by a trained artifact detector. F Image features were extracted from each informative patch using 
the convolutional layers of the pre-trained VGG16 architecture. G A one-dimensional patch score was calculated by projecting the patch features 
in the estimated direction that discriminates between Luminal A and Luminal B subtypes. To construct the core-level image feature vector, we 
summarize the k patch scores into 15 equally spaced quantiles
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each core into k patches with a size of 200 × 200 pixels 
(Fig.  2C). Non-informative patches whose background 
pixels were above a proportional threshold were excluded 
(90% for original and binarized images, and 70% for epi-
thelium and stroma images; see Fig.  2D). In addition, 
patches with artifacts were excluded by an artifact detec-
tor trained to identify folds, occlusions, and other image 
defects (Fig. 2E). Supplementary Information S2 provides 
additional details.

CNN features were extracted from each informative 
patch by transfer learning using the convolutional layers 
of the pre-trained VGG16 architecture [12, 13] (Fig. 2F). 

This process outputs a 512-dimensional vector for each 
patch.

Grade‑adjusted patch‑level classification
Figure  2G illustrates that patch-level scores were calcu-
lated for each patch from the 512-dimensional feature 
vector(additional details in Supplementary Information 
S3 and Fig. S3). Briefly, to efficiently summarize the infor-
mation in the distribution of patch scores in each core, we 
used quantiles of the patch score distributions. We chose 
15 equally spaced quantiles, which results in a 15-dimen-
sional vector of quantiles summarizing each core. In the 

Table 1 Characteristics of ER-positive/HER2-negative breast cancer in the carolina breast cancer study phase 3, 2008–2013

Total Luminal A Luminal B HER2‑enriched Basal‑like Normal‑like
(N = 630) (N = 408) (N = 156) (N = 7) (N = 42) (N = 17)

Age of diagnosis

 Median Age (range), years 50 (24–74) 52 (24–74) 48 (28–74) 56 (36–72) 47 (30–74) 56 (42–74)

 Age < 50 , n (%) 309 (49.0) 185 (45.3) 88 (56.4) 3 (42.9) 29 (69.0) 4 (23.5)

 Age ≥ 50 , n (%) 321 (51.0) 223 (54.7) 68 (43.6) 4 (57.1) 13 (31.0) 13 (76.5)

Self race, n (%)

 African American 280 (44.5) 169 (41.4) 80 (51.3) 1 (14.3) 24 (58.5) 6 (35.3)

 White 329 (52.3) 225 (55.1) 70 (44.9) 6 (85.7) 17 (41.5) 11 (64.7)

 Other 20 (3.2) 14 (3.4) 6 (3.8) – – –

 Missing 1 – – – 1 –

Tumor grade, n (%)

 High 187 (29.7) 63 (15.4) 82 (52.6) 4 (57.1) 37 (88.1) 1 (5.9)

 Intermediate 285 (45.2) 207 (50.7) 63 (40.4) 3 (42.9) 3 (7.1) 9 (52.9)

 Low 158 (25.1) 138 (33.8) 11 (7.1) – 2 (4.8) 7 (41.2)

Stage, n (%)

 I 265 (42.1) 189 (46.3) 49 (31.4) 5 (71.4) 13 (31.0) 9 (52.9)

 II 285 (45.2) 170 (41.7) 86 (55.1) 1 (14.3) 21 (50.0) 7 (41.2)

 III 65 (10.3) 42 (10.3) 16 (10.3) – 7 (16.7) –

 IV 15 (2.4) 7 (1.7) 5 (3.2) 1 (14.3) 1 (2.4) 1 (5.9)

Node status, n (%)

 Negative 374 (59.5) 251 (61.7) 84 (53.8) 5 (71.4) 24 (57.1) 10 (58.8)

 Positive 255 (40.5) 156 (38.3) 72 (46.2) 2 (28.6) 18 (42.9) 7 (41.2)

 Missing 1 1

Size, n (%)

 ≤ 2cm 350 (55.7) 245 (60.2) 70 (45.2) 6 (85.7) 18 (42.9) 11 (64.7)

 > 2cm 278 (44.3) 162 (39.8) 85 (54.8) 1 (14.3) 24 (57.1) 6 (35.3)

 Missing 2 1 1

ROR-P, n (%)

 High 65 (10.3) – 35 (22.4) – 30 (71.4) –

 Intermediate 347 (55.1) 205 (50.2) 121 (77.6) 7 (100.0) 12 (28.6) 2 (11.8)

 Low 218 (34.6) 203 (49.8) – – – 15 (88.2)

Chemo therapy, n (%)

 Yes 339 (53.8) 183 (44.9) 107 (68.6) 5 (71.4) 37 (88.1) 7 (41.2)

 No 291 (46.2) 225 (55.1) 49 (31.4) 2 (28.6) 5 (11.9) 10 (58.8)
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last step, we generated a patient-level feature vector by 
taking the element-wise average of core-level features.

We adopted the Multiple Instance Learning paradigm 
(MIL, [14, 15]) in conjunction with weighted distance-
weighted discrimination (wDWD, [16, 17]). By estimating 
patch-level wDWD direction discriminating Luminal A 
versus Luminal B, patch-level scores were calculated such 
that a more negative score means that the patch is more 
likely to be from a Luminal A (while Luminal Bs have 
positives scores). However, classification rules for Lumi-
nal A versus Luminal B tend to be confounded by tumor 
grade, which precludes capturing subtle features asso-
ciated with Luminal subtypes, especially among lower 
grade participants. To address this, we performed grade 
adjustment using another trained classifier that discrimi-
nates tumor grade.

Patient‑level classification with image features
To conduct patient-level classification between Luminal 
A and Luminal B subtypes, we employed ER-positive 
and HER2-negative samples for training, excluding ER-
borderline and HER2-borderline tumors. We included 
the borderline samples for model validation. Following 
this approach, we employed the 15-dimensional fea-
tures of participants with Luminal A (n = 404) or Lumi-
nal B (n = 150) subtypes for training. For the validation 
set, Luminal A (n = 408) and Luminal B (n = 156) sam-
ples were considered, encompassing ER-borderline and 
HER2-borderline cases. The dataset was divided using 
a stratified tenfold cross-validation technique, ensuring 
that each of the tenfolds maintained similar proportions 
in terms of tumor grade and subtype. The classification 
model employed in this study utilized weighted distance-
weighted discrimination.

Patient‑level classification with image features and clinical 
variables
The approaches above emphasized visualization of image 
features, which could be selected with respect to 15 
dimensional quantiles. However, classification accuracy 
is a vital goal for clinical applications. Hence, we devel-
oped an additional model with a high level of accuracy 
and assessed its effectiveness in diagnostic protocols, 
which we will herein call the stratified model. The strati-
fied model used the wDWD method with tenfold cross-
validation to train and differs from the prior models in 
two ways: it directly utilizes the tumor grade (categorized 
as low-to-medium or high) to determine the classifier 
threshold by grade, and it incorporates clinical variables 
as additional predictors.

Test data: TCGA‑BRCA whole slide images
Our models described so far are trained on the CBCS 
core images. To assess their generalizability, we applied 
to the Cancer Genome Atlas Breast Invasive Carcinoma 
(TCGA-BRCA) dataset [7, 8], using a virtual TMA con-
structed from whole slide diagnostic images [9].

While our grade-adjusted stratified model demon-
strated superior performances (detailed in Results), 
we applied an unadjusted model in TCGA-BRCA with 
strong results. The visual features in the model were 
selected based on the CBCS core images and applied to 
the TCGA-BRCA without further training. A detailed 
comparison of our proposed diagnosis protocols on 
TCGA-BRCA is provided in Diagnosis Protocol Compar-
ison in TCGA-BRCA.

Results
Clinical characteristics of the 630 participants are pre-
sented in Table 1. The characteristics of the ER+/HER2-
breast cancers included in the study population are 
similar to the expected distribution in clinical and sur-
veillance datasets, with higher grade and larger tumor 
size associated with Luminal B breast tumors.

Subtype classifiers with image features
Figure 3 presents the average sensitivity, specificity, and 
AUC scores of the cross-validated samples along with 
their standard errors. Consistent with confounding by 
grade, the specificity of the unadjusted original model 
(Fig.  3A) is 0.790 in low or intermediate grade partici-
pants but drops to 0.474 in high grade participants. Fur-
thermore, this model provides unbalanced results in 
terms of sensitivity and specificity. Specifically, in low or 
intermediate grade participants, sensitivity is 0.555, while 
specificity is 0.790. The grade-adjustment process led to 
more balanced sensitivity and specificity, with sensitiv-
ity increasing to 0.664, and specificity being 0.760 among 
low or medium grade participants. The stratified model 
in the third row shows the best performance in terms of 
balance and accuracy as well as AUC.

To evaluate the role of various tissue components in 
prediction, segmented results were evaluated in Panel 
B. The model based on features of the epithelium image 
(first row of Fig. 3B) had the best AUC. Its performance 
parallels the model based on unsegmented original 
images (second row of Fig.  3A). Results were less accu-
rate for stromal compartment and the binarized model, 
however still has reasonably high accuracy, suggesting 
the importance of the tumor-stroma interface in risk 
assessment.
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Visualization
A visual understanding of the Luminal A versus B image-
based difference is shown in Fig. 4 using the cases of the 
1st, 10th, 90th, and 99th percentiles of the distribution 
of DWD core-level scores. Representative patches are 
shown for each percentile, with the images on the left 
side representing the adjusted original images, with the 
images on the right side representing the adjusted binary 
model. In the original images, the Luminal A cores and 
patches had dense collagenous stroma with wavy col-
lagen fibers. Most of the Luminal B cores, on the other 
hand, were occupied by high cellularity invasive carci-
noma (i.e., malignant tumor cells) with a small amount 
of collagenous stroma and a few adipocytes. Luminal B 
tumor cell groups were bounded by thin bands of col-
lagenous stroma. While all cores contained stroma and 
epithelium, patches with high stromal content or high 

epithelial cellularity represented the extremes of the 
DWD classifier for Luminal A and B, respectively. In 
binarized images, a more jagged shape of the interface 
between epithelium and collagenous stroma was charac-
teristic of Luminal B tumors.

Proposed diagnosis protocols
Using risk stratification protocols as described in Meth-
ods and Fig.  1, we classified patients to perform time-
to-event analyses for recurrence. Figure  5 displays 
Kaplan–Meier curves by risk groups for each protocol 
and reports the hazard ratio (HR) and p-values charac-
terizing the differences between the risk groups. The 
proposed protocol A applied genomic testing to all low 
stage patients, B was solely reliant on histological infor-
mation (Image-Based ML for All Low Stage), and C uti-
lized both genomic testing and machine learning model 

Fig. 3 Performance of subtype classifiers in the CBCS validation set. Average sensitivities, specificities, and AUC scores from tenfold cross-validation, 
along with their standard errors are provided for both low/intermediate and high grade. A Models trained on image features extracted from original 
core images for unadjusted, grade-adjusted, and stratified models. B Grade-adjusted models by image type (epithelium, stroma, or binary)

(See figure on next page.)
Fig. 4 Representative images for special CBCS cores located at the 1st, 10th, 90th, and 99th percentiles of the Luminal A and Luminal 
B DWD distribution, along with their representative patches. Each panel includes two sets of representative images: those generated 
from the grade-adjusted model using original images (left) and those from the grade-adjusted model of binary images (right). 1st and 10th 
percentile Luminal A cores and patches (upper row) exhibit dense collagenous stroma with a wavy collagen fiber pattern in original images. 
Conversely, 90th and 99th Luminal B cores (lower row) predominantly display high cellularity invasive carcinoma surrounded by thin collagenous 
stroma bands. Binarized images highlight a more irregular interface between epithelial (red) and collagenous stroma (green) regions in Luminal B 
tumors
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Fig. 4 (See legend on previous page.)
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(Image-Based ML & Genomics for Low Stage). The 
image only protocol had lower univariate Cox HR (1.95, 
95% CI: 1.21–3.13) than the other two models, but the 
hybrid model had similar HR to the fully genomically-
tested protocol (HR 2.81, 95% CI: 1.73–4.56 for hybrid vs. 
HR 2.66, 95% CI: 1.65–4.28).

In addition to the univariate Cox model, we also 
employed the multivariate Cox model to assess recur-
rence time by risk groups, while appropriately controlling 
for tumor size, node status, and tumor grade. Addition of 
covariates decreased the precision of the effect estimates 
but did not substantially change the magnitude of the 
hazard ratios. We note that these decreases in precision 
may reflect collinearity among covariates. Nonetheless, 
in all cases the hybrid protocol C consistently performs 
well relative to the genomic protocol A, suggesting its 
potential clinical utility.

Additional multivariate Cox models incorporating PR 
status and Ki-67 percentage as covariates are presented 
in Table  S3 in Supplementary Information. Sensitivity 
analysis was also performed stratifying on chemotherapy 
(Fig. S4). In all analyses, the hybrid protocols demon-
strated comparable performance to the genomic-based 
protocol.

Diagnosis protocol comparison in TCGA‑BRCA 
To assess the generalizability of our findings, we con-
ducted survival analyses on ER+ and HER2-tumors 
within the TCGA-BRCA dataset. We applied the 

unadjusted model (trained on CBCS core images) to 
TCGA-BRCA dataset. Given the limited availability of 
clinical covariates in TCGA-BRCA, only node status 
was incorporated into the multivariate Cox models. This 
would be expected to diminish model performance as 
grade was an important contributor to the CBCS models. 
However, application of our model to the TCGA-BRCA 
data demonstrated comparable prognostic performance 
(Fig.  6). Specifically, the hybrid protocol C (HR = 2.66, 
95% CI: 1.49–4.78) exhibited similar hazard ratios to the 
genomic-based protocol A (HR = 2.53, 95% CI: 1.42–
4.52), the magnitudes of which were similar to those 
observed in CBCS.

Discussion
Our results suggest that image features of low stage ER+/
HER2-breast cancers can be used to identify patients 
with higher probability of high genomic risk, and that a 
hybrid protocol that uses histology on all patients and 
flags patients with higher risk tumors may have value 
in ensuring greater equity of access to genomic tests. 
Genomic tests are less frequently applied in uninsured 
women [5] and in some clinical settings that vary by 
geography, however if histologic images could be evalu-
ated to identify tumors that are likely to be at higher risk, 
this may help encourage greater access to testing. At this 
stage, we do not advocate for replacing genomic testing 
with image-based model, but we posit that our model 
serves as proof of principle that image data could be a 

Fig. 5 Survival analysis results for the three protocols in CBCS data. Each panel displays Kaplan-Meier curves for the low-risk and high-risk groups 
classified by the corresponding protocol: A Genomics-based risk groups, B Image-based risk groups, or C Hybrid Image and Genomics-based risk 
groups. Results of univariate and multivariate Cox models for each protocol, including hazard ratios and p-values for differences between the risk 
groups are provided below the Kaplan-Meier plots
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valuable tool for identifying individuals who may benefit 
from genomic testing. Our results showed that the clas-
sification model predicted by image features worked best 
on grade-adjusted unsegmented images. However, the 
interesting finding that jagged borders suggest higher risk 
may be useful for pathologists to further consider in eval-
uating histologic images. These results imply that tumor 
images, including both epithelial features like grade and 
the relative regional shapes of epithelium and collagen-
ous stroma contain information that has value in dis-
criminating higher and lower risk tumors.

In breast cancer, numerous studies have previously uti-
lized machine learning techniques to predict genomic 
subtype [18–20]. Carmichael et al. explored the relation-
ship between PAM50 gene expression and H&E stained 
images, identifying interesting variations shared by both 
data types [11, 21]. Other studies have employed machine 
learning models to predict PAM50 subtypes using tumor 
images [22, 23]. Phan et al. (2021) employed diverse CNN 
architectures for subtype classification and conducted a 
performance comparison between these architectures 
[22]. Couture et  al. (2018) utilized a multiple instance 
learning scheme to assign labels to small regions, achiev-
ing robust accuracies in various tasks, including PAM50 
subtype (Basal-like vs. non Basal-like), tumor grade, and 
histology type classification [23].

Our results show similar accuracy to prior models, 
and consistent with Carmichael et al., suggest that image 
features can be identified for distinguishing Luminal A 

and B tumors. One advantage of our approach was that 
we considered sensitivity and specificity, indicating the 
value of grade adjustment. For a test that is being used to 
exclude low risk patients from a potentially harmful ther-
apy on the basis of limited benefit, sensitivity to detect 
risk is important. Optimizing the balance of sensitivity 
and specificity may also be of greater importance than 
accuracy in some applications of visual tools, and thus 
considering all three metrics is important.

Further, our use of pixel-level tissue segmentation pro-
vided novel biological insights, Inspired by the work of 
Kilmov et  al. (2019) [24]. While Kilmov et  al. employed 
a slide annotation classifier for identifying histologic 
features at the patch level to construct a recurrence risk 
classifier, our innovative contribution lies in the devel-
opment of a pixel-level segmentation model, enabling a 
more comprehensive discrimination between epithelium 
and stroma. This approach used herein to visualize image 
features directly related to the subtype differences may be 
useful to other researchers to identify features of predic-
tive value.

Our model was developed and evaluated using data 
from a population-based cohort of North Carolina 
breast cancer patients. The robust performance of our 
proposed protocol in predicting recurrence within this 
diverse, real-world population suggests that our proto-
col has strong discriminating performance in predict-
ing recurrence, similar to genomic tests themselves. We 
further validated the generalizability of the protocol by 

Fig. 6 Survival analysis results in TCGA  data. Each panel displays Kaplan-Meier curves for the low-risk and high-risk groups classified 
by the corresponding protocol: A Genomics-based risk groups, B Image-based risk groups, or C Hybrid Image and Genomics-based risk groups. 
Results of univariate and multivariate Cox models for each protocol, including hazard ratios and p-values for differences between the risk groups are 
provided below the Kaplan-Meier plots
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testing our model on the external TCGA-BRCA data-
set. While some clinical variables with predictive value 
(notably grade) were missing in the TCGA data, our 
protocol still demonstrated prognostic performance 
comparable to the genomics-based protocol. Fur-
thermore, while our model was trained on TMA core 
images, these results suggest the potential utility of this 
approach for standard diagnostic images, although fur-
ther research is needed to optimize whole slide image 
analysis. Despite dataset limitations, our protocol 
exhibited strong, externally validated prognostic value.

Our results suggest promising practical utility for 
machine learning-based protocols in clinical settings. 
To operationalize this approach broadly, data science 
methods for normalizing images, sampling patches, and 
adjusting for grade based on established parameters 
are needed. Our next step is to develop a user-friendly 
tool incorporating the machine learning pipeline to 
facilitate application in routinely collected diagnos-
tic images. Additionally, our study implies the value 
in expanding histologic image analysis to more tumor 
types, with the potential to offer more equitable prog-
nostic information at diagnosis to a larger number of 
cancer patients. In particular, physicians are in need of 
low cost tools that can help prioritize and improve the 
equity of precision medicine tools, and image-based 
analysis may provide one avenue toward this goal.
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