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ABSTRACT

Let k be a positive integer. There is a longest finite
sequence x1,...,xn in k letters in which no consecutive block
xi,...,x2i is a subsequence of any other consecutive block
xj,...,x2j. Let n(k) be this longest length. We prove that
n(1) = 3, n(2) = 11, and n(3) is incomprehensibly large. We
give a lower bound for n(3) in terms of the familiar Ackerman
hierarchy. We also give asymptotic upper and lower bounds for
n(k). We view n(3) as a particularly elemental description of
an incomprehensibly large integer. Related problems involving
binary sequences (two letters) are also addressed. We also
report on some recent computer explorations of R. Dougherty
which we use to raise the lower bound for n(3).
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1. FINITENESS, AND n(1),n(2)

We use Z for the set of all integers, Z+ for the set of all
positive integers, and N for the set of all nonnegative
integers. Sequences can be either finite or infinite. For
sequences x, it will be convenient to write x[i] for xi, which
is the term of x with index i. Unless stated otherwise, all
nonempty sequences are indexed starting with 1. Sometimes we
consider sequences indexed starting at a positive integer
greater than 1.
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Let x[1],...,x[n] and y[1],...,y[m] be two finite sequences,
where n,m ³ 0. We use the usual notion of subsequence. Thus
x[1],...,x[n] is a subsequence of y[1],...,y[m] if and only
if there exist 1 £ i1 < ... < in £ m such that for all 1 £ j £
n, we have x[j] = y[ij].

We say that x[1],...,x[n] is a proper subsequence of
y[1],...,y[m] if and only if x[1],...,x[n] is a subsequence
of y[1],...,y[m] and n < m.

The focus of this paper is on finite combinatorics. But we
start with the following theorem in infinitary combinatorics.
It is a special case of the familiar fundamental result from
wqo theory known as HigmanÕs Lemma [Hi52]. For the sake of
completeness, we give the Nash-Williams proof from [Nw63]
(adapted to this special case) of the second claim in Theorem
1.1. Note how remarkably nonconstructive this simplest of all
proofs is.

Let x = x[1],...,x[n] be any sequence. We say that x has
property * if and only if for no i < j £ n/2 is it the case
that x[i],...,x[2i] is a subsequence of x[j],...,x[2j]. More
generally, let x = x[m],...,x[n] be a sequence indexed from
m. We say that x has property * if and only if for no m £ i <
j £ n/2 is it the case that x[i],...,x[2i] is a subsequence
of x[j],...,x[2j]. These definitions are also made for
infinite sequences by simply omitting Ò£ n/2.Ó

For any set A, let A* be the set of all finite sequences from
A (including the empty sequence).

THEOREM 1.1. Let k ³ 1. No infinite sequence from {1,...,k}
has property *. In fact, let y[1],y[2],... be elements of
{1,...,k}*. Then there exists i < j such that y[i] is a
subsequence of y[j].

Proof: To see that the second claim implies the first claim,
let x[1],x[2],... be elements of {1,...,k}. Define y[i] =
(x[i],...,x[2i]). According to the second claim, let i < j be
such that y[i] is a subsequence of y[j]. Then x[1],x[2],...
does not have property *.

Suppose the second claim is false. We say that y[1],y[2],...
is bad if and only if it is a counterexample to the second
claim. So there exists a bad sequence.
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We now construct what Nash-Williams calls a minimal bad
sequence as follows. Let y[1] be an element of [1,...,k}* of
minimal length that starts some bad sequence. Let y[2] be an
element of {1,...,k}* of minimal length such that y[1],y[2]
starts some bad sequence. Let y[3] be an element of
{1,...,k}* such that y[1],y[2],y[3] starts some bad sequence.
Continue in this manner, defining y[1],y[2],... . (The axiom
of choice can be eliminated in an obvious way).

Now choose an infinite subsequence of the yÕs whose first
terms are all the same (none of the yÕs can be empty). Call
this y[n] = z[1],z[2],z[3],... . Now let zÕ[1],zÕ[2],... be
the result of chopping off the first terms. Then clearly
zÕ[1],zÕ[2],... is still bad. Also obviously y[1],...,y[n-
1],zÕ[1],zÕ[2],... is also bad. But zÕ[1] is shorter than
z[1] = y[n]. This violates the definition of y[n]. Thus we

have achieved the desired contradiction. ð

THEOREM 1.2. Let k ³ 1. There is a longest finite sequence
from {1,...,k} with property *.

Proof: Let k ³ 1, and consider the tree T of all elements of
{1,...,k}* which do not have property *, under extension.
Then T is a finitely branching tree. If T has infinitely many
nodes then T has an infinite path. (This is the fundamental
KonigÕs tree lemma, or KonigÕs infinity lemma; see, e.g.,
[Le79], p. 298). But this infinite path results in an
infinite sequence from {1,...,k} without property *, contrary
to Theorem 1.1. Hence T has finitely many nodes. Any node
whose distance from the root of T (the empty sequence) is
maximum will be a longest finite sequence from {1,...,k} with

property *. I.e., the height of T is n(k). ð

We write n(k) for the length of a longest sequence from
{1,...,k} with property *. Obviously, n(1) = 3.

Consider the proof given above that n(2) exists. We first
give an extremely nonconstructive proof that no infinite
sequence from {1,2} has property * (Theorem 1.1). Then we use
the nonconstructive Konig tree lemma to conclude that n(2)
exists (Theorem 1.2).
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But we now give a very constructive proof by actually
computing n(2). First observe that the eleven term sequence
Ô12221111111Õ has property *. So n(2) ³ 11.

LEMMA 1.3. Any sequence from {1,2} beginning with Ô11Õ, with
property *, must have length at most 7.

Proof: Let 1,1,x[3]...,x[8] be from {1,2} and have property
*. Then x[3] = x[4] = 2 by using i = 1 and j = 2. We have
four cases:

i. x[5] = x[6] = 2. Then x[7] = x[8] = 1 using i = 3 and j =
4. This is a contradiction using i = 1 and j = 4.

ii. x[5] = 2, x[6] = 1. Then x[7] = x[8] = 2 using i = 1 and
j = 4. This is a contradiction using i = 2 and j = 4.

iii. x[5] = 1, x[6] = 2. Then x[7] = x[8] = 2 using i = 1 and
j = 4. This is a contradiction using i = 2 and j = 4.

iv. x[5] = x[6] = 1. This is a contradiction using i = 1 and

j = 3. ð

LEMMA 1.4. Any sequence from {1,2} beginning with Ô1211Õ or
Ô1221Õ with property * has length at most 9.

Proof: First let 1211x[5]...x[10] be from {1,2} and have
property *. Then x[5] = x[6] = 1 using i = 1 and j = 3. Also
x[7] = x[8] = 1 using i = 1 and j = 4. This is a
contradiction using i = 3 and j = 4.

Secondly let 1221x[5]...x[10] be from {1,2} and have property
*. Then x[5] = x[6] = 1 using i = 1 and j = 3. Also x[7] =
x[8] = 1 using i = 1 and j = 4. And x[9] = x[10] = 1 using i
= 1 and j = 5. This is a contradiction using i = 4 and j = 5.

ð

LEMMA 1.5. Any sequence from {1,2} beginning with Ô1222Õ with
property * has length at most 11.

Proof: Let 1222x[5]...x[12] be from {1,2} and have property
*. Then x[6] = x[7] = 1 using i = 1 and j = 3. Also x[8] =
x[9] = 1 using i = 1 and j = 4. And x[9] = x[10] using i = 1
and j = 5. Furthermore x[11] = x[12] using i = 1 and j = 6.

This is a contradiction using i = 5 and j = 6. ð
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THEOREM 1.6. n(2) = 11.

Proof: We have already remarked that Ô12221111111Õ has
property *, and so n(2) ³ 11. Let x[1],...,x[12] be a
sequence from {1,2} with property *. By Lemma 1.3, it cannot
start with Ô11Õ. By Lemmas 1.4 and 1.5, it cannot start with
Ô1211Õ, Ô1221Õ, or Ô1222Õ. It cannot start with Ô1212Õ using
i = 1 and j = 3. Hence it cannot start with 12. By symmetry,

it cannot start with Ô22Õ or Ô21Õ. Hence it does not exist. ð

Of course, we could also create a computer program to build
the tree of sequences from {1,2} with property *. The tree
would then be seen to close off at height 11 (the root is at
height 0).

Since 12 is such a small number, it is feasible to use
nothing but brute force by enumerating all sequences from
{1,2} of length 12 and verifying that none of them have
property * (preferably using a computer). But it is easy to
imagine that in related cases of different size, the tree
construction might be feasible where the brute force
construction is not. See the discussion of m(k) in section 6
for a source of unexplored related problems.

As we shall see in section 4, n(3) is quite a bit larger than
11.

2. SEQUENCES OF FIXED LENGTH SEQUENCES

We now introduce (a version of) the familiar Ackerman
hierarchy of functions. We define strictly increasing

functions Ak:Z
+ ® Z+, where k ³ 1, as follows. A1(n) = 2n.

Ak+1(n) = AkAk...Ak(1), where there are n AkÕs. This is
iterated function application, and we have omitted
parentheses.

Thus A2(n) = 2
n. Also A3(n) is an exponential tower of 2Õs of

height n.

The function A(n) = An(n) is often called the Ackerman
function. There are various minor modifications of this
construction in the literature, including starting with +1
instead of doubling; or using a hierarchy of binary functions
as Ackerman did originally, instead of a hierachy of unary
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functions as we have done.  These differences are inessential
for our purposes and will not concern us here.

We perform a few illustrative calculations.

A3(1) = 2. A3(2) = 4. A3(3) = 16. A3(4) = 2
16 = 65,536. A3(4) =

265,536.

A4(1) = 2. A4(2) = A3A3(1) = A3(2) = 4. A4(3) = A3A4(2) = A3(4)
= 216 = 65,536. A4(4) = A3A4(3) = A3(65,536), which is an
exponential tower of 2Õs of height 65,536.

I submit that A4(4) is a ridiculously large number, but it is
not an incomprehensibly large number. One can imagine a tower
of 2Õs of a large height, where that height is 65,536, and
65,536 is not ridiculously large.

However, if we go much further, then a profound level of
incomprehensibility emerges. The definitions are not
incomprehensible, but the largeness is incomprehensible.
These higher levels of largeness blur, where one is unable to
sense one level of largeness from another.

For instance, A4(5) is an exponential tower of 2Õs of height
A4(4).

It seems safe to assert that, say, A5(5) is incomprehensibly
large. We propose this number as a sort of benchmark. In
section 4 we prove that n(3) > A7(184), which is considerably
larger.

The following Theorem provides some useful background
concerning the Ackerman hierarchy.

THEOREM 2.1. For all k,n ³ 1, n < Ak(n) < Ak(n+1). For all k ³
1 and n ³ 3, Ak(n) < Ak+1(n). For all k,n ³ 1, Ak(n) £ Ak+1(n).
For all k ³ 1, Ak(1) = 2, Ak(2) = 4, and Ak(3) ³ 2

k+1. For all
k ³ 3, Ak(3) ³ Ak-2(2

k) > Ak-2(k-2). As a function of k, Ak(3)
eventually strictly dominates each An, n ³ 1.

Proof: We prove by induction on k that for all n, n < Ak(n) <
Ak(n+1). This is clearly true if k = 1. Suppose this is true
of k ³ 1.
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First note that Ak+1(n) = AkAk...Ak(1), where there are n AkÕs.
By induction hypothesis, each application of Ak raises the
argument. Hence Ak+1(n) > n.

Now Ak+1(n+1) = Ak(Ak+1(n)). Since Ak is strictly increasing and
n < Ak+1(n), we have Ak+1(n) < Ak+1(n+1). This completes the
induction.

For the second claim, we need to show that Ak(n) < Ak+1(n),
where n ³ 3. This is true for k = 1. Suppose this is true for
all k < m, where m ³ 2. It suffices to show that Am+1(n) >
Am(n) for all n ³ 3. Fix n ³ 3.

Am+1(n) = Am...Am(AmAm(1)) = Am...Am(4), and Am(n) = Am-1...Am-
1(4), where there are n-2 AmÕs and n-2 Am-1Õs. By the induction
hypothesis and the first claim, we have Am+1(n) > Am(n) as
required.

The third claim follows from the second claim by the first
two parts of the fourth claim.

For the fourth claim, Ak(1) = 2 is immediate, and Ak(2) = 4 is
immediate by induction on k. We prove Ak(3) ³ 2

k+1 by
induction on k. The cases k = 1,2 are immediate. Suppose this
is true for all k < m, where m ³ 3. Am(3) = Am-1Am-1Am-1(1) = Am-
1(4) = Am-2Am-1(3) ³ Am-2(2

m) ³ A1(2
m) = 2m+1 as required.

For the fifth claim, let k ³ 3. Then Ak(3) = Ak-1(4) = Ak-2Ak-
1(3) ³ Ak-2(2

k) > Ak-2(k-2).

The final claim follows from the fifth claim; in fact, the
function Ak(3) strictly dominates the function An at arguments

³ n+2. ð

Fix k ³ 1. We use the sum norm on Nk given by |x| = x[1] + ...
+ x[k]. We also use the partial ordering on Nk given by x £* y
if and only if for all 1 £ i £ k, x[i] £ y[i].

We define the function fk:Z
+ ® Z+ as follows. fk(p) is the

length of the longest sequence u[1],...,u[n] from Nk such that

i) each |u[i]| £ i+p-1;
ii) for no i < j is u[i] £* u[j].
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We now prove the existence of each fk(p); i.e., that fk does
in fact have domain Z+. We begin with the following infinitary
theorem from wqo theory.

THEOREM 2.2. Let k ³ 1 and u[1],u[2],... be elements of Nk.
There exists i < j such that u[i] £* u[j].

Proof: Choose a subsequence whose first terms are increasing
(£). Then choose a subsequence of that subsequence whose
second terms are increasing (£). Continue in this way for k
steps. In the last subsequence, every term is £* every later

term. ð

THEOREM 2.3. For all k,p ³ 1, fk(p) exists.

Proof: Fix k,p ³ 1 and form the tree T of all finite
sequences from Nk obeying i) and ii) above such that no term
is £* any later term. This is a finitely branching tree,
where any infinite branch violates Theorem 2.2. Hence T has
finitely many nodes. (See, e.g., [Le79], p. 298). The height

of the tree is fk(p). ð

LEMMA 2.4. Let p ³ 1. f2(p) ³ 2
p+2-p-3.

Proof: Consider the sequence (p,0);(p-1,2),...,(p-1,0);(p-
2,6),...,(p-2,0);(p-3,15),...,(p-3,0);...;(0,2p+1-2),...,
(0,0). We have subdivded the sequence by semicolons, and the
lengths of these sections are 1,3,7,15,...,2p+1-1. So i) and
ii) are satisfied with k = 2. The length of the sequence is

2p+2-p-3. ð

LEMMA 2.5. Let k,p ³ 1. fk+1(p) > fk...fk(2), where there are p
fkÕs.

Proof: To obtain this lower bound on fk+1(p), we construct a
sequence from Nk+1 obeying i) and ii) with k+1,p, which is of
length at least fk....fk(2), where there are p fkÕs.

Start the sequence with (p,0,0,...,0) in Nk+1. Now let

x[1],...,x[n] Î Nk have properties i) and ii) for p = 2,
where n = f(k,2) = fk(2). The next n terms are (p-1,x[1]),(p-
1,x[2]),...,(p-1,x[n]).
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Now let y[1],...,y[m] in Nk have properties i) and ii) for p =
n = fk(1), where m = f(k,n) = fk(n) = fkfk(2). Continue the
sequence of elements of Nk+1 with (p-2,y[1]),...,(p-2,y[m]).

We can continue this process p times, where the last round of
k+1-tuples is of the form (0,z1),...,(0,zr), where r =

fk...fk(2), and there are p fkÕs. ð

THEOREM 2.6. Let k ³ 2 and p ³ 1. fk(p) ³ Ak(p+1). fk(1) > Ak-
1(3). For k ³ 3, fk(1) > Ak-2(k-2). The function f eventually
strictly dominates every An.

Proof: f2(p) = 2
p+2-p-3 ³ 2p+1, which verifies the case k = 2.

Suppose that for all p ³ 1, fk(p) ³ Ak(p+1), where k ³ 2. Let
p ³ 1. Then fk+1(p) > fk...fk(2) ³ Ak...Ak(2) = Ak...Ak(Ak(1)) =
Ak+1(p+1), where there are p fkÕs and AkÕs.

For the second claim, fk(1) > fk-1(2) ³ Ak-1(3) by Lemma 2.5
and the first claim. The third and fourth claims follow

immediately from the second claim and Theorem 2.1. ð

3. THE MAIN LEMMA

In this section we prove a Main Lemma concerning finite
sequences from {2,3} which is used in section 4 to obtain a
lower bound for n(3). Recall that n(3) involves finite
sequences from {1,2,3}.

Let n,m,i be positive integers, where n < m. We define
F(n,m,i) as follows. F(n,m,1) = n, F(n,m,2) = m, F(n,m,2i+1)
= 2F(n,m,2i-1)+1, F(n,m,2i+2) = 2F(n,m,2i)+1.

Let n,m,b,k,d be positive integers such that n < m. We say
that x is an n,m,b,k,d-sequence if and only if

i) x is a sequence from {2,3} indexed from n through
F(n,m,d+1)-1;

ii) for all 1 £ i £ d, x[F(n,m,i)],...,x[F(n,m,i)+b-1] =
3;

iii) for all 1 £ i £ d, x[F(n,m,i)+b] = 2;
iv) for all 2 £ i £ d+1, x[F(n,m,i)-1] = 2;
v) for all 1 £ i £ d, x[F(n,m,i)+b],...,x[F(n,m,i+1)-1]

has exactly k 3Õs;
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The letter ÒbÓ indicates the length of the blocks of 3Õs
indicated in cluase ii). The letter ÒkÓ will eventually play
the role of the ÒkÓ in the fk(p) of section 2.

We introduce some useful terminology. For 1 £ i £ d, we let
Bi(x) be the block x[F(n,m,i)],...,x[F(n,m,i)+b-1]; this is a
block of 3Õs. For i ³ 1, we let Ci(x) be the block
x[F(n,m,i)+b],...,x[F(n,m,i+1)-1]. Each Ci(x) starts and ends
with 2, and has exactly k 3Õs. Note that the Bi(x) all have
the same length, but the Ci(x) will have differing lengths.

It is understood that a block Bi(x) or Ci(x) consists not only
of the sequence of 2Õs and 3Õs, but also its position in x,
which is of course determined by the position in x of its
first and last terms. We will often leave off the x when we
write Bi(x) or Ci(x).

Note that x is made up of the consecutive blocks
B1,C1,B2,C2,..., Bd,Cd.

LEMMA 3.1. Let x be an n,m,b,k,d-sequence. Suppose m lies in
the interval ((4n+1)/3,(3n+1)/2). Then for all 1 £ i £ d-1,
lth(Ci+1(x)) > lth(Ci(x)) ³ b+k+2. I.e., F(n,m,i+2)-F(n,m,i+1)
> F(n,m,i+1)-F(n,m,i) ³ b+k+2. Also, for all 3 £ i £ d-1,
F(n,m,i+1)-F(n,m,i) ³ 2b+2k+4.

Proof: Let 1 £ i £ d. There are exactly b+k 3Õs in the block
x[F(n,m,i)],...,x[F(n,m,i)+b-1],x[F(n,m,i)+b],...,
x[F(n,m,i+1)-1], according to clauses ii) and v). According
to clauses iii) and iv, x[F(n,m,i)+b] = x[F(n,m,i+1)-1] = 2.
Also F(n,m,i)+b = F(n,m,i+1)-1 is impossible by clause v) and
k ³ 1. Hence at least two of the terms are 0. Therefore the
number of terms is at least b+k+2. Hence F(n,m,i+1)-F(n,m,i)
³ b+k+2.

It remains to show that F(n,m,i+2)-F(n,m,i+1) > F(n,m,i+1)-
F(n,m,i). We first show this for i = 1. This reads: 2n+1-m >
m-n. I.e., 3n+1 > 2m, or m < (3n+1)/2.

Next we show that F(n,m,i+2)-F(n,m,i+1) > F(n,m,i+1)-F(n,m,i)
for i = 2. This reads: 2m+1-(2n+1) > 2n+1-m. I.e., 2m-2n >
2n+1-m, which is 3m > 4n+1, or m > (4n+1)/3.

We now argue by induction. Suppose this is true strictly
below i ³ 3. Now F(n,m,i+2)-F(n,m,i+1) = 2(F(n,m,i)-F(n,m,i-
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1)). Also, F(n,m,i+1)-F(n,m,i) = 2(F(n,m,i-1)-F(n,m,i-2)).
The former is greater than the latter by the induction
hypothesis.

The last claim follows since F(n,m,i+1) = 2F(n,m,i-1)+1 and

F(n,m,i) = 2F(n,m,i-2)+1. ð

Until Lemma 3.8, we fix x to be an n,m,b,k,d-sequence, where
m lies in the interval ((4n+1)/3,(3n+1)/2). We will also
assume that k < b/3.

A consecutive subsequence a of x is a sequence of the form
x[i],x[i+1],...,x[j], i £ j. We include the indices i and j
as part of the consecutive subsequence. Here i is the initial

index of a and j is the final index of a.

We wish to consider two classes of consecutive subsequences
of x.

The type 1 subsequences of x are the consecutive subsequences
of x of the form yBpCpBp+1z, where p ³ 1, y is a proper tail of
Cp-1, and z is an initial segment of Cp+1. Thus we allow one or
both of y,z to be empty; also z can be Cp+1 but y cannot be Cp-
1. Of course, if p = 1 then y must be empty.

The type 2 subsequences of x are the consecutive subsequences
of x of the form 3rCpBp+1Cp+13

sw, where
i) 0 £ r < b;
ii) s = min(b,2(b-r));
iii) if s < b then w is empty;
iv) if s = b then w is an initial segment of Cp+2.

LEMMA 3.2. No type 1 subsequence is a type 2 subsequence. Let
n £ i £ F(n,m,d-1). Then x[i],...,x[2i] is a type 1 or type 2
subsequence.

Proof: For the first claim, let yBpCpBp+1z = 3
rCqBq+1Cq+13

sw. Now
Bp and Bp+1 consist of b 3Õs. Sinc k < b/3, the only block of
b consecutive 3Õs are Bq+1 and (perhaps) 3

s. Hence p = q+1 and
s = b. Therefore y is a tail of Cq = Cp-1. Hence y = Cq and r =
0. But this contradicts that y is a proper tail of Cp-1.

Now let n £ i £ F(n,m,d-1). Then 2i £ F(n,m,d+1)-1, and so
x[i],...,x[2i] is a consecutive subsequence of x.
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First suppose that i is at the beginning of Bp, p £ d-1. I.e.,
i = F(n,m,p). Then F(n,m,p+2) = 2i+1. Hence x[i],...,x[2i] =
BpCpBp+1Cp+1.

Next suppose that i is in Cp, but not at the beginning of Cp,
p £ d-2. Then F(n,m,p)+b < i < F(n,m,p+1). Hence 2F(n,m,p)+2b
< 2i < 2F(n,m,p+1). So F(n,m,p+2)+b < 2i < F(n,m,p+3).
Therefore 2i lies in Cp+2. Hence x[i],...,x[2i] is of the form
yBp+1Cp+1Bp+2z, where y is a proper tail of Cp, and z is an
initial segment of Cp+2.

Now suppose that i is at the beginning of Cp, p £ d-2. Then i
= F(n,m,p)+b. Hence F(n,m,p+2)+b < 2i = 2F(n,m,p)+2b =
F(n,m,p+2)+2b-1 < F(n,m,p+3), using Lemma 3.1. Therefore
x[i],...,x[2i] is of the form CpBp+1Cp+1Bp+2w, where w is an
initial segment of Cp+2. Also note that Bp+2 = 3

b, and b =
min(b,2(b-0)), and so x[i],...,x[2i] is a type 2 subsequence.

Finally suppose that i is in Bp, but not at the beginning of
Bp, p £ d-2. Then F(n,m,p)+1 £ i £ F(n,m,p)+b-1. Then
F(n,m,p+2) £ 2i £ 2F(n,m,p)+2b-2 = F(n,m,p+2)+2b-3 <
F(n,m,p+3), using Lemma 3.1. Hence 2i lies in Bp+2 or Cp+2.

Let r = F(n,m,p)+b-i. Then 0 £ r < b. First suppose that r ³
b/2. Then F(n,m,p)+b-i ³ b/2, and so i £ F(n,m,p)+b/2. Hence
2i £ 2F(n,m,p)+b = F(n,m,p+2)+b-1, and so 2i lies in Bp+2.
Hence x[i],...,x[2i] is of the form 3rCpBp+1Cp+13

s, where 0 £ s
£ b. Now the position at the end of this sequence is the
posiiton of the front of Bp+2 plus s-1, which is F(n,m,p+2)+s-
1 = 2F(n,m,p)+s = 2i. Also i = F(n,m,p)+b-r. Hence
2F(n,m,p)+s = 2F(n,m,p)+2b-2r. So s = 2(b-r). I.e., s =
min(b,2(b-r)), using r ³ b/2.

Now suppose that r < b/2. Then F(n,m,p)+b-i < b/2, and so i >
F(n,m,p)+b/2. Hence 2i > 2F(n,m,p)+b = F(n,m,p+2)+b-1.
Therefore 2i lies in Cp+2. Hence x[i],...,x[2i] is of the form
3rCpBp+1Cp+1Bp+2w, where w is an initial segment of Cp+2. And

clearly min(b,2(b-r)) = b. ð

Let a,b be two consecutive subsequences of x, where a =

x[i],...,x[j] and b = x[iÕ],...,x[jÕ]. A lifting of a into b

is a strictly increasing map h:{i,...,j} ® {iÕ,...,jÕ} such
that h(i) > i and each x[i] = x[h(i)]. Thus h is a mapping

from indices to indices. We say that the term x[i] in a is

sent to the term x[h(i)] in b.
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LEMMA 3.3. Let h be a lifting from the consecutive

subsequence a into the consecutive subsequence b. Then for

all m Î dom(h), h(m) > m. If h sends Cp into Cq, then p < q
and Cp is a proper subsequence of Cq. (Here Cp and Cq are
viewed as sequences in the usual sense, with the usual
subsequence relation).

Proof: Clearly by induction on m, we see that for all i £ p £
j, h(m) > m. Now suppose that h sends Cp into Cq. I.e., h
sends the indices of the terms of Cp in x into the indices of
the terms of Cq in x. Then the index in x of the first term of
Cp is sent to a greater index in x, which must be the index of
some term of Cq. Hence the index in x of the first term of Cp
is smaller than the index in x of the first term of Cq.
Therefore p < q. Since the lengths of the Cp are strictly
increasing, we see that Cp is a proper subsequence of Cq in

the usual sense. ð

LEMMA 3.4. Let h be a lifting from the type 1 subsequence
yBpCpBp+1z into the type 1 subsequence yÕBqCqBq+1zÕ. Then Cp is
a proper subsequence of Cq.

Proof: Each term of Cp is not sent into yÕ since it has at
least b 3Õs to its left, and b > k. Each term of Cp is not
sent into zÕ, since it has at least b 3Õs to its right, and b

> k. Hence Cp is sent into Cq. Apply Lemma 3.3. ð

LEMMA 3.5. Let h be a lifting from the type 1 subsequence
yBpCpBp+1z into the type 2 subsequence 3

rCqBq+1Cq+13
sw. Then Cp is

a proper subsequence of Cq or Cq+1.

Proof: We divide the argument into cases.

case 1. r < b-k. Each term of Cp is not sent into Cq since
there are at least b 3Õs to its left, and b > r+k. Each term
of Cp is not sent into w, since it has at least b 3Õs to its
right, and b > k. Hence Cp is sent into Cq+1.

case 2. r ³ b-k. Then s = min(b,2(b-r)) £ 2k, and w is empty.
Each term of Cp is not sent into Cq+1, since it has at least b
3Õs to its right, and b > 3k ³ k+s. Hence the last term of Cp
is sent into Cq. Hence Cp is sent into Cq. ð
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LEMMA 3.6. Let h be a lifting from the type 2 subsequence
3rCqBq+1Cq+13

sw into the type 2 subsequence yBpCpBp+1z. Then Cq+1
or Cq is a proper subsequence of Cp.

Proof: We divide the argument into cases.

case 1. s > k. Each term of Cq+1 is not sent into z, since
there are at least s 3Õs to its right, and s > k. Each term
of Cq+1 is not sent into y since there are at least b 3Õs to
its left, and b > k. Hence Cq+1 is sent into Cp.

case 2. s £ k. I.e., min(b,2(b-r)) £ k. Hence 2(b-r) £ k. So
2r ³ 2b-k, and hence r ³ b-(k/2) > 3k/2 - k/2 = k. Also since
s < b, w must be empty.

Each term of Cq is not sent into y, since it has r 3Õs to its
left, and r > k. Each term of Cq is not sent into z, since it
has at least b 3Õs to its right and b > k. Hence Cq is sent

into Cp. ð

LEMMA 3.7. Let h be a lifting from the type 2 subsequence
3rCpBp+1Cp+13

sw into the type 2 subsequence 3rÕCqBq+1Cq+13
sÕwÕ.

Then either Cp is a proper subsequence of Cq, or Cp is a
proper subsequence of Cq+1, or Cp+1 is a proper subsequence of
Cq+1.

Proof: We divide the argument into cases.

case 1. s > k. Each term of Cp+1 is not sent into wÕ since
there are at least s 3Õs to its right, and s > k. Each term
of Cp+1 is not sent into Cq, since there are at least r+k+b
3Õs to its left, and r+k+b > rÕ+k (since b > rÕ). Hence Cp+1
is sent into Cq+1.

case 2. sÕ < b. Then wÕ is empty. Each term of Cp is not sent
into Cq+1, since there are at least b+k+s 3Õs to its right,
and b+k+s > sÕ+k. Hence Cp is sent into Cq.

case 3. s £ k and sÕ = b. Thus min(b,2(b-r)) £ k, and so 2(b-
r) £ k. Hence 2b-k £ 2r, and so r ³ (2b-k)/2.

Also min(b,2(b-rÕ)) = b. Hence 2(b-rÕ) ³ b. So b ³ 2rÕ.
Therefore rÕ £ b/2.

Note that r ³ (2b-k)/2 ³ b/2 - k/2 + b/2 ³ rÕ+(b-k)/2 > rÕ +
(3k-k)/2 = rÕ+k.
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Each term of Cp is not sent into Cq, since there are at least
r 3Õs to its left, and r > rÕ+k. Each term of Cp is not sent
into wÕ, since there are at least b+k+s 3Õs to its right, and

b+k+s > k. Hence Cp is sent into Cq+1. ð

LEMMA 3.8. Let n,m,b,k,d be positive integers such that m
lies in the interval ((4n+1)/3,(3n+1)/2), and k < b/3. Let
x be an n,m,b,k,d-sequence. Suppose there exists n £ i < j £
F(n,m,d-1) such that x[i],...,x[2i] is a subsequence of
x[j],...,x[2j]. Then there exists i < j £ d such that Ci is a
proper subsequence of Cj.

Proof: Let n,m,b,k,d,x,i,j be as given. By Lemma 3.2, we see

that a = x[i],...,x[2i] and b = x[j],...,x[2j] are both
consecutive subsequences of type 1 or 2. Also, let

h:{i,...,2i} ® {j,...,2j} be given by the subsequence
relation.

We claim that h is a lifting from a into b. To see this, we
argue by induction on t = i,...,2i, that h(t) > t. Clearly
h(i) > i. Suppose h(t) > t, i £ t < 2i. Then h(t+1) > h(t) ³
t+1, and so h(t+1) > t+1 as required.

We now see that exactly one of Lemmas 3.4 - 3.7 applies to

h,a,b. Therefore we obtain i,j such that Ci is a proper
subsequence of Cj. Since the lengths of the CÕs are strictly

increasing, we also have i < j. ð

We now put Lemma 3.8 in a more convenient form, eliminating
the variable m.

LEMMA 3.9. Let n,b,k,d be positive integers, where k < b/3.
Let x be a 2n,3n,b,k,d-sequence. Suppose there exists 2n £ i
< j £ F(2n,3n,d-1) such that x[i],...,x[2i] is a subsequence
of x[j],...,x[2j]. Then there exists i < j £ d such that Ci is
a proper subsequence of Cj.

Proof: Immediate from Lemma 3.8. ð

We now refine Lemma 3.9, where we place 3n-12 in front of the
2n,3n,b,k,d-sequence.
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A strong 2n,3n,b,k,d-sequence is a 2n,3n,b,k,d-sequence x
such that

i) 2 £ k < b/3;
ii) n ³ 3b+4k+2;
iii) C1 ends with 3

k22;
iv) C2 ends with 3

k2.

MAIN LEMMA. Let n,b,k,d be positive integers, and let x be a
strong 2n,3n,b,k,d-sequence. Let xÕ = 3n-12x, where we view xÕ
as being indexed from n. Suppose there exists n £ i < j £
F(2n,3n,d-1) such that xÕ[i],...,xÕ[2i] is a subsequence of
xÕ[j],...,xÕ[2j]. Then there exists i < j £ d such that Ci(x)
is a proper subsequence of Cj(x).

We will prove the Main Lemma according to the forms of
xÕ[i],...,xÕ[2i] and xÕ[j],...,xÕ[2j], just as we proved
Lemma 3.8. Obviously Lemma 3.9 takes care of 2n £ i < j £
F(2n,3n,d-1). We need to do some extra related work in order
to handle the case n £ i < 2n, which arises because of the
prefix 3n-12.

We fix n,b,k,d,x,xÕ according to the hypotheses of the Main
Lemma.

LEMMA 3.10. Let n £ i < 2n. Then the consecutive subsequence
xÕ[i],...,xÕ[2i] of xÕ is of exactly one of the following
forms:

I) 3t2B1C1B2z, where 0 £ t £ n-1, and z is a proper
initial segment of C2;

II) 3t2B1C13
s, where 0 £ t £ n-1, 0 £ s < b;

III) 3t2B1z, where 0 £ t £ n-1, and z is a proper initial
segment of C1;

IV) 3t23s, where 0 £ t £ n-1, and 1 £ s < b.

Proof: The relevant initial segment of xÕ is 3n-12B1C1B2C2,
where 3n-1 starts at position n and ends at position 2n-2, B1
starts at position 2n, C1 starts at position 2n+b, B2 starts
at position 3n, C2 starts at position 3n+b, and C2 ends at
position 4n.

Clearly xÕ[i],...,xÕ[2i] starts somewhere in the displayed 3n-
12, and must end somewhere from the beginning of B1 to (even
before) the next to last position in C2. Thus xÕ[i],...,xÕ[2i]
starts with 3t, where 0 £ t £ n-1. And it either ends
somewhere in B1 (case IV), or ends somewhere in C1 but not at
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the end of C1 (case III), or ends at the end of C1 (case II),
or ends somewhere in B2 but not at the end of B2 (case II), or
ends at the end of B2 (case I), or ends somewhere in C2 but

not at the end of C2 (case I). ð

We refer to these as the type I,II,III,IV subsequences of xÕ.
Here n £ i < 2n is required.

LEMMA 3.11. Let n £ i < j < 2n and h be a lifting from the
type I subsequence xÕ[i],...,xÕ[2i] = 3t2B1C1B2z into the type
I subsequence xÕ[j],...,xÕ[j] = 3tÕ2B1C1B2zÕ. Then we obtain a
contradiction.

Proof: Since i < j, we have t > tÕ. The displayed 2 is sent
into C1B2zÕ since it has t 3Õs to its left and t > tÕ. But it
also has b+k+b 3Õs to its right and b+k+b > k+b+k. This is

the desired contradiction. ð

LEMMA 3.12. Let n £ i < j < 2n and h be a lifting from the
type II subsequence xÕ[i],...,xÕ[2i] = 3t2B1C13

s into the type
I subsequence xÕ[j],...,xÕ[2j] = 3tÕ2B1C1B2zÕ. Assume s > k.
Then we obtain a contradiction.

Proof: Each term of C1 is not sent into zÕ, since there are at
least s 3Õs to its right, and s > k. Each term of C1 is not
sent to the displayed 2, since there are at least b+t 3Õs to
its left, and b+t > tÕ. Hence C1 is sent into C1. This is a

contradiction. ð

LEMMA 3.13. Let n £ i < j < 2n and h be a lifting from the
type II subsequence xÕ[i],...,xÕ[2i] = 3t2B1C13

s into the type
I subsequence xÕ[j],...,xÕ[2j] = 3tÕ2B1C1B2zÕ. Assume s £ k.
Then C1 is a proper subsequence of C2.

Proof: Note that 2i = 3n+s-1 £ 3n+k-1. Also note that 2j ³ 3n
+b-1. And t = 2n-i-1, tÕ = 2n-j-1. Therefore t-tÕ = j-i ³ (b-
k)/2 > b/3 > k.

Each term of C1 is not sent into C1, since there are at least
t+1+b 3Õs to its left and t+1+b > tÕ+1+b+k. Hence each term

of C1 is sent into zÕ. Thus C1 is a subsequence of zÕ. ð

LEMMA 3.14. Let n £ i < j < 2n and h be a lifting from the
type II subsequence xÕ[i],...,xÕ[2i] = 3t2B1C13

s into the type
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II subsequence xÕ[j],...,xÕ[2j] =  3tÕ2B1C13
sÕ. Then we obtain

a contradiction.

Proof: Obviously the first and last terms of C1 are sent into
C1 since t > tÕ. Hence C1 is sent into C1, which is a

contradiction. ð

LEMMA 3.15. Let n £ i < j < 2n and h be a lifting from the
type III subsequence xÕ[i],...,xÕ[2i] = 3t2B1y into the type I
subsequence xÕ[j],...,xÕ[2j] = 3tÕ2B1C1B2z. Then we obtain a
contradiction.

Proof: Since t > tÕ, the displayed 2 is sent to C1 or z. The
displayed 2 is not sent into z, since it has at least b 3Õs
to its right, and b > k. Hence the displayed 2 is sent into
C1. Each term of y is not sent into C1, since it has b 3Õs to
its left after the displayed 2, and b > k. Hence the first
term of y (if it exists) is sent into z. So y is sent into z.

Note that t = 2n-i-1 and tÕ = 2n-j-1. Also 2i = 2n+b-
1+lth(y), and 2j ³ 3n+b-1+lth(z). Hence 2j-2i ³ n+lth(z)-
lth(y). So t-tÕ ³ (n+lth(z)-lth(y))/2.

There are t 3Õs to the left of the displayed 2 in 3t2B1y, and
at most tÕ+b+k 3Õs to the left of the displayed 2 in
3tÕ2B1C1B2

z. Hence t £ tÕ+b+k, and so t-tÕ £ b+k. Hence
(n+lth(z)-lth(y))/2 £ b+k. Therefore n+lth(z)-lth(y) £ 2b+2k.
Since n > 2b+2k, we see that lth(z) < lth(y), contradicting

that y is sent into z. ð

LEMMA 3.16. Let n £ i < j < 2n and h be a lifting from the
type III subsequence xÕ[i],...,xÕ[2i] = 3t2B1y into the type
II subsequence xÕ[j],...,xÕ[2j] = 3tÕ2B1C13

s. Then we obtain a
contradiction.

Proof: The displayed 2 is sent to C1 since i < j. Since b > k,
some term in B1 is sent into 3

s. Hence y is sent into 3s.
Therefore y is empty.

Also, since the displayed 2 is sent to C1, we see that b £
k+s, by looking to the right of the displayed 2. And by
looking to the left of the displayed 2, we see that t+b £
tÕ+b+k+s, and so t £ tÕ+b+k.
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We have 2i = 2n+b-1 and t = 2n-1-i. Also 2j = 3n+s-1 and tÕ =
2n-1-j. Hence t-tÕ = j-i = (3n+s-1)/2 - (2n+b-1)/2 = (n+s-
b)/2. Since t-tÕ £ b+k, we have (n+s-b)/2 £ b+k, and so n+s-b
£ 2b+2k. Hence n £ 3b+2k-s. Since s ³ b-k, we have n £ 3b+2k-

b+k = 2b+3k, which is a contradiction. ð

LEMMA 3.17. Let n £ i < j < 2n and h be a lifting from the
type III subsequence xÕ[i],...,xÕ[2i] = 3t2B1y into the type
III subsequence xÕ[j],...,xÕ[2j] = 3tÕ2B1yÕ. Then we obtain a
contradiction.

Proof: The displayed 2 is sent to yÕ since i < j. But there
are at least b 3Õs to the right of the displayed 2,

contradicting b > k. ð

LEMMA 3.18. Let n £ i < j < 2n and h be a lifting from the
type IV subsequence xÕ[i],...,xÕ[2i] = 3t23s into the type I
subsequence xÕ[j],...,xÕ[2j] = 3tÕ2B1C1B2z. Then we obtain a
contradiction.

Proof: Note that 2i = 2n+s-1 and 2j ³ 3n+b-1. Also t = 2n-i-1
and tÕ = 2n-j-1. Hence t-tÕ = j-i ³ (3n+b-1-2n-s+1)/2 = (n+b-
s)/2.

Suppose 2 is sent into C1. Then t £ tÕ+b+k. Hence (n+b-s)/2 £
b+k. So n+b-s £ 2b+2k. Therefore n £ b+2k+s < 2b+2k, which is
a contradiction.

Suppose 2 is sent into z. By condition iv) on x, the first 3
in C2 occurs at position 4n-1-k. Since s ³ 1, we see that
lth(z) ³ 4n-1-k-(3n+b)+1 = n-b-k.

Note that 2j = 3n+b-1+lth(z) ³ 3n+b-1+n-b-k = 4n-k-1. So t-tÕ
= j-i ³ (4n-k-1-2n-s+1)/2 = (2n-k-s)/2.

The number of 3Õs in 3t23s is t+s, and the number of 3Õs in
3tÕ2B1C1B2z is at most tÕ+b+k+b+k = tÕ+2b+2k. Hence t+s £
tÕ+2b+2k, or t-tÕ £ 2b+2k-s. But t-tÕ = j-i ³ (2n-k-s)/2.
Hence 2n-k-s £ 4b+4k-2s, and so 2n £ 3b+5k-s £ 3b+5k-1. Hence

n £ (3b+5k-1)/2, which is the desired contradiction. ð

LEMMA 3.19. Let n £ i < j < 2n and h be a lifting from the
type IV subsequence xÕ[i],...,xÕ[2i] = 3t23s into the type II
subsequence xÕ[j],...,xÕ[2j] = 3tÕ2B1C13

sÕ. Then we obtain a
contradiction.
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Proof: Since t > tÕ, the displayed 2 is sent into C1. Hence s
£ k+sÕ, and t £ tÕ+b+k. So t-tÕ £ b+k, and s-sÕ £ k.

Note that 2i = 2n+s-1 and 2j = 3n+sÕ. Also t = 2n-1-i and tÕ
= 2n-1-j. Now 2j-2i = n+sÕ-s+1 ³ n-k+1. But 2j-2i = 2(t-tÕ) £
2b+2k. Hence n-k+1 £ 2b+2k, and so n £ 2b+3k-1, which is the

desired contradiction. ð

LEMMA 3.20. Let n £ i < j < 2n and h be a lifting from the
type IV subsequence xÕ[i],...,xÕ[2i] = 3t23s into the type III
subsequence xÕ[j],...,xÕ[2j] = 3tÕ2B1z. Then we obtain a
contradiction.

Proof: The displayed 2 is sent into z. By condition iii) on
x, the first 3 in C1 occurs at position 3n-2-k. Since s ³ 1,
we see that lth(z) ³ 3n-2-k -(2n+b)+1 = n-k-b-1.

Note that 2i = 2n+s-1 and 2j = 2n+b-1+lth(z) ³ 2n+b-1+n-k-b-1
= 3n-k-2. Also t = 2n-i-1 and tÕ = 2n-j-1. The number of 3Õs
in 3t23s is t+s, and the number of 3Õs in 3tÕ2B1z is at most
tÕ+b+k. Hence t+s £ tÕ+b+k, or t-tÕ £ b+k-s. But t-tÕ = j-i ³
(3n-k-2-2n-s+1)/2 = (n-k-s-1)/2. Hence (n-k-s-1)/2 £ b+k-s.
Therefore n-k-s-1 £ 2b+2k-2s, and so n £ 2b+3k-s+1 £ 2b+3k,

which is the desired contradiction. ð

LEMMA 3.21. Let n £ i < j < 2n and h be a lifting from the
type IV subsequence xÕ[i],...,xÕ[2i] = 3t23s into the type IV
subsequence xÕ[j],...,xÕ[2j] = 3tÕ23sÕ. Then we obtain a
contradiction.

Proof: Clearly t £ tÕ and s £ sÕ. But this contradicts i < j.

ð

Lemmas 3.11 - 3.21 establish the required information
concerning the case n £ i < j < 2n. We now take up the case n
£ i < 2n £ j. The first sequences will be type I-IV
subsequences of xÕ, and the second sequences will be type 1,2
subsequences of x.

LEMMA 3.22. Let n £ i < 2n and h be a lifting from the type I
subsequence xÕ[1],...,xÕ[2i] = 3t2B1C1B2z into the type 1
subsequence yÕBqCqBq+1zÕ. Then C1 is a proper subsequence of
Cq.
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Proof: Note that B1C1B2z is a type 1 subsequence of x.
Applying Lemma 3.4, we see that C1 is a proper subsequence of

Cq. ð

LEMMA 3.23. Let n £ i < 2n and h be a lifting from the type I
subsequence xÕ[1],...,xÕ[2i] = 3t2B1C1B2z into the type 2
subsequence 3rCqBq+1Cq+13

sw. Then C1 is a proper subsequence of
Cq or Cq+1.

Proof: Note that B1C1B2z is a type 1 subsequence of x.
Applying Lemma 3.5, we see that C1 is a proper subsequence of

Cq or Cq+1. ð

LEMMA 3.24. Let n £ i < 2n £ j £ F(2n,3n,d-1) and h be a
lifting from the type II subsequence xÕ[1],...,xÕ[2i] =
3t2B1C13

s into the type 1 subsequence xÕ[j],...,xÕ[2j] =
yBpCpBp+1z. Then C1 is a proper subsequence of Cp+1.

Proof: Note that 2i < 3n+b-1 and t = 2n-1-i. Hence t >
2n-1 - (3n+b-1)/2 = (n-b-1)/2 ³ 2k, since n ³ b+4k+1.
Therefore each term of C1 is not sent into yBpCp, since there
are at least t+b 3Õs to its left, and t+b > k+b+k. Hence C1 is

sent into z. ð

LEMMA 3.25. Let n £ i < 2n £ j £ F(2n,3n,d-1) and h be a
lifting from the type II subsequence xÕ[1],...,xÕ[2i] =
3t2B1C13

s into the type 2 subsequence xÕ[j],...,xÕ[2j] =
3rÕCqBq+1Cq+13

sÕw. Then C1 is a proper subsequence of Cq+2.

Proof: As in the proof of Lemma 3.24, t > (n-b-1)/2 ³ 2k.

First suppose rÕ £ b/2. Assume that some term of C1 is sent
into 3rÕCqBq+1Cq+1. Each term of C1 has at least t+b 3Õs to its
left in 3t2B1C13

s, and at most b/2 + k+b+k 3Õs to its left in
3rÕCqBq+1Cq+13

sÕw. Hence t+b £ 3b/2 + 2k, or t £ b/2 + 2k. Hence
(n-b-1)/2 < b/2 + 2k. So n-b-1 < b+4k, and hence n < 2b+4k+1,
which is a contradiction.

So each term of C1 is not sent into 3
rÕCqBq+1Cq+1. Hence the

first term of C1 is sent into w. Therefore C1 is sent into w.

Now suppoe rÕ > b/2. Then sÕ < b and w is empty. Each term of
C1 is not sent into Cq, since there are at least t+b 3Õs to
its left, and t+b > b+k-1. Similarly, each term of C1 is not
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sent into Cq+1, using n ³ 2b+3k-1. We have a contradiction,

since the first term of C1 has nowhere to go. ð

LEMMA 3.26. Let n £ i < 2n £ j £ F(2n,3n,d-1) and h be a
lifting from the type III subsequence xÕ[1],...,xÕ[2i] =
3t2B1z into the type 1 subsequence xÕ[j],...,xÕ[2j] =
yBpCpBp+1zÕ. Then we obtain a contradiction.

Proof: Note that 2i < 3n and t = 2n-1-i. Hence t > 2n-1 -
3n/2 = n/2 - 1. The displayed 2 is not sent into yBpCp, since
there are t 3Õs to its left, and t > n/2 -1 ³ k+b+k = b+2k.
This uses n ³ 2b+4k+2. Hence the displayed 2 is sent into zÕ.
But this contradicts that there are at least b 3Õs to its

right. ð

LEMMA 3.27. Let n £ i < 2n £ j £ F(2n,3n,d-1) and h be a
lifting from the type III subsequence xÕ[1],...,xÕ[2i] =
3t2B1z into the type 2 subsequence xÕ[j],...,xÕ[2j] =
3rÕCqBq+1Cq+13

sÕw. Then we obtain a contradiction.

Proof: As in Lemma 3.26, t > n/2 - 1. First suppose that rÕ £
b/2. The displayed 2 is not sent into 3rÕCqBq+1Cq+1, since there
are t 3Õs to its left, and t > n/2 - 1 ³ b/2 +k+b+k = 3b/2
+2k. This uses n ³ 3b+4k+2. Hence the displayed 2 is sent
into w. But this contradicts that there are at least b 3Õs to
its right.

Now suppose that rÕ > b/2. Then sÕ < b and w is empty. The
displayed 2 is not sent into Cq, since t > b+k. Hence the
displayed 2 is sent into Cq+1. Therefore some term of B1 is
sent into 3sÕ. Hence z is empty.

We can now compute t = 2n-1-i = 2n-1- (2n+b-1)/2 = (2n-b-
1)/2. Thus there are exactly (2n-b-1)/2 + b = (2n+b-1)/2 3Õs
in 3t2B1. But there are at most rÕ+k+b+k+2(b-rÕ) 3Õs in
3rÕCqBq+1Cq+13

sÕ. Hence (2n+b-1)/2 £ 2k+3b-rÕ £ 2k+3b- b/2 =
(4k+5b)/2, and so 2n+b-1 £ 4k+5b, or n £ 2b+2k + 1/2, which

is a contradiction. ð

LEMMA 3.28. Let n £ i < 2n £ j £ F(2n,3n,d-1) and h be a
lifting from the type IV subsequence xÕ[1],...,xÕ[2i] = 3t23s

into the type 1 subsequence xÕ[j],...,xÕ[2j] = yBpCpBp+1z. Then
we obtain a contradiction.
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Proof: Note that 2i < 2n+b-1 and t = 2n-1-i. Hence t > 2n-1 -
(2n+b-1)/2 = (2n-b-1)/2. Note that (2n-b-1)/2 ³ b+2k because
2n-b-1 ³ 2b+4k follows from n ³ (3b+4k+1)/2.

The displayed 2 is not sent into y, since there are t 3Õs to
its left, and t > k. The displayed 2 is not sent into Cp,
since there are t 3Õs to its left, and t > k+b+k = b+2k.
Hence the displayed 2 is sent into z, and so s £ k.

Hence 2i £ 2n+k. Therefore t = 2n-1-i ³ 2n - (2n+k)/2 -1 =
(2n-k-2)/2.

The number of 3Õs in yBpCpB1z is at most k+b+k+b+k = 3k+2b.
Hence (2n-k-2)/2 £ 3k+2b, or 2n-k-2 £ 4b+6k, and hence n £

(2b+7k+2)/2, which is a contradiction. ð

LEMMA 3.29. Let n £ i < 2n £ j £ F(2n,3n,d-1) and h be a
lifting from the type IV subsequence xÕ[1],...,xÕ[2i] = 3t23s

into the type 2 subsequence xÕ[j],...,xÕ[2j] =
3rÕCqBq+1Cq+13

sÕw. Then we obtain a contradiction.

Proof: As in Lemma 3.28, t > (2n-b-1)/2, which follows from n
³ (3b+4k+1)/2.

First suppose rÕ £ b/2. The displayed 2 is not sent into
3rÕCqBq+1Cq+1, since it has t 3Õs to its left, and t > b/2
+k+b+k = (3b+2k)/2. This uses n ³ (2b+k+1)/2. Hence the
displayed 2 is sent into w. Therefore s £ k.

Hence 2i £ 2n+s £ 2n+k. Now t = 2n-1-i £ 2n-1- (2n+k)/2 =
(2n+k-2)/2. The number of 3Õs in 3rÕCqBq+1Cq+13

sÕw is at most
b/2 +k+b+k+b+k = (5b+6k)/2. Hence 2n+k-2 £ 5b+6k, or n £
(5b+5k+2)/2, which is a contradiction.

Now suppose rÕ > b/2. Then sÕ = 2(b-rÕ) < b, and w is empty.
The displayed 2 is not sent into Cq. Hence the displayed 2 is
sent into Cq+1. Therefore s £ k+sÕ £ k+b-1.

So 2i £ 2n+k+b-1. Hence t = 2n-1-i ³ 2n-1 - (2n+k+b-1)/2 =
(2n-k-b-1)/2. Now the number of 3Õs in 3rÕCqBq+1Cq+13

sÕw is at
most rÕ+k+b+k+2(b-rÕ) = 3b+2k-rÕ £ 3b+2k- (b/2)-1 = (5b+4k-
2)/2. Therefore 2n-k-b-1 £ 5b+4k-2, and so 2n £ 6b+5k-1, or n

£ (6b+5k-1)/2, which is a contradiction. ð

We are now ready to complete the proof of of the Main Lemma.
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MAIN LEMMA. Let n,b,k,d be positive integers, and let x be a
strong 2n,3n,b,k,d-sequence. Let xÕ = 3n-12x, where we view xÕ
as being indexed from n. Let n £ i < j £ F(2n,3n,d-1) be such
that xÕ[i],...,xÕ[2i] is a subsequence of xÕ[j],...,xÕ[2j].
Then there exists i < j £ d such that Ci(x) is a proper
subsequence of Cj(x).

Proof: Let n £ i < j be such that xÕ[i],...,xÕ[2i] is a
subsequence of xÕ[j],...,xÕ[2j]. Then there is a lifting from
xÕ[i],...,xÕ[2i] into xÕ[j],...,xÕ[2j]. Lemmas 3.12 - 3.30
take care of the case i < 2n. The remaining case where 2n £ i

is handled by Lemma 3.9. ð

4. LOWER BOUND FOR n(3)

We use the Main Lemma from section 3 in order to produce a
very long sequence from {1,2,3} with property *.

There is a particular kind of sequence from {1,2,3} that
plays an important role in the lower bound for n(3). We call
a sequence x special if and only if

i) a is a finite sequence from {1,2,3} with property *;

ii) a is of the form u13n-1, n ³ 1, where a is of length
2n-2;

iii) for all i £ n-1, a[i],...,a[2i] has at least one 1;

The following Lemma shows how to use special sequences.

LEMMA 4.1. Let n ³ 1 and a = u13n-1 be special. Let b,k,d be
positive integers and x be a strong 2n,3n,b,k,d-sequence.
Suppose that there does not exist i < j £ d such that Ci(x) is

a subsequence of Cj(x). Then a2x has property * and is of
length ³ 2d/2.

Proof: Assume n,a,u,b,k,d,x are as given. Since the lengths
of the CÕs are strictly increasing, we can apply the Main
Lemma from section 3 to see that 3n-12x has property *, where
3n-12x is indexed from n.

To show that u13n-12x[1],...,u3n-12x[2t+1] has property *, let i
< j £ 2t. We must show that u13n-12x[i],...,u13n-12x[2i] is not
a subsequence of u13n-12x[j],...,u13n-12x[2j].
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case 1. i £ n-1. Then u13n-1x[i],...,u13n-1x[2i] has at least
one 1. Note that there are no 1Õs in u13n-1x past the
displayed 1, which is the n-1-st term. Hence if j ³ n then we
are done. Also if j £ n-1 then we are done since u13n-1 has
property *.

case 2. i > n-1. This case is clear since u13n-1 has property
*.

Note that u13n-12x has length F(2n,3n,d+1)-1 ³ 2d/2. ð

LEMMA 4.2. Let n ³ 13k+5, k ³ 2. There is a strong
2n,3n,3k+1,k,Ak-1(2n-4k-2)-sequence x, where there does not
exist i < j £ Ak-1(2n-4k-2) such that Ci(x) is a subsequence
of Cj(x).

Proof: A simple calculation shows that B1 = [2n,2n+3k], C1 =
[2n+3k+1,3n-1], B2 = [3n,3n+3k], C2 = [3n+3k+1,4n], B3 =
[4n+1,4n+3k+1], C3 = [4n+3k+2,6n], B4 = [6n+1,6n+3k]. Also the
lengths of the CÕs strictly increase.

By Theorem 2.6, let y1,y2,...,yd Î N
k-1, where d = Ak-1(2n-4k-

2), |yi| = lth(C3)+i-k-3 = 2n-3k-1+i-k-3 = 2n-4k-4+i, and for
no i < j £ d is yi £* yj.

We define a map h:Zk-1 ® {2,3}* as follows. Let z =
(z1,...,zk-1) be given. Set h(z) = 232

z_132z_2...32z_k-132. Note
that z £* zÕ if and only if h(z) is a subsequence of h(zÕ).
Also observe that lth(h(z)) = |z|+k+2. So lth(h(y1)) =
|y1|+k+2 = lth(C3) = 2n-3k-1.

For each 1 £ i £ d, let yiÕ be the result of appending 2Õs at
the end of yi so that the length of yiÕ is lth(Ci+2). Observe
that for no i < j £ d is yiÕ £* yjÕ. Also y1Õ = y1.

We are now prepared to build the desired strong
2n,3n,3k+1,k,Ak-2(2n-4k-1)-seqeunce.  Note that n ³
3(3k+1)+4k+2 = 13k+5.

Set C1(x) = 2
n-4k-33k22 and C2(2) = 2

n-4k-13k2. For 3 £ i £ d, we
set Ci(x) = yi-2Õ. For 1 £ i £ d, take Bi(x) to be all 3Õs in

the required position. ð
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LEMMA 4.3. Suppose there exists a special sequence of length
³ 26k+8, k ³ 2. Then n(3) > Ak-1(22k+8).

Proof: Let a be a special sequence of length ³ 26k+8, and set

n ³ 13k+5, a = u13n-1. By Lemma 4.2, let x be a strong
2n,3n,3k+1,k,Ak-1(2n-4k-2)-sequence such that there does not
exist 1 < j £ Ak-1(2n-4k-2) such that Ci(x) is a subsequence

of Cj(x). By Lemma 4.1, a2x has property * and is of length >

Ak-1(2n-4k-2). Hence n(3) > Ak-1(2n-4k-2) ³ Ak-1(22k+8). ð

In order to productively apply Lemma 4.3, we need to find a
long special sequence.

We do not know how to find such sequences via theoretical
considerations. We have been able to construct one by hand of
length 216, and verify its specialness by hand.

After this work was completed, R. Dougherty began a series of
computer explorations at our suggestion. These explorations
have yielded some very much longer special sequences. We
report on this work in section 6.

A nontrivial task is to verify without computer that our
special sequence with property * is indeed special. Sole
brute force would require looking at (108)(107)/2 = 5778
pairs of sequences, where the lengths of the sequences range
from 2 through 108, and verifying that the first of the pair
is not a subsequence of the second of the pair. This is a
most unpleasant task by hand.

But this task is quite manageable with the help of some
simple theory which we develop now.

It is useful to work with tables associated with a sequence.
Let x[1],x[2],...,x[2t] or x[1],x[2],...,x[2t+1] be a given
sequence. Its associated table has the following list of
lines:

1. x[1],x[2]
2. x[2],x[3],x[4]
3. x[3],x[5],x[5],x[6]
4. x[4],x[5],x[6],x[7],x[8]
...
t. x[t],x[t+1],...,x[2t].
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We can now restate our condition. It is that all x[i] are
from {1,2,3}; that each line have at least one 1 (among the
x[i]Õs); and that no line be a subsequence of any later line.

It is convenient to collect blocks of like terms and write
them in exponential form. Thus the entry Ô233331211Õ would be
written Ô2341212.Ó Of course, the exponents are to be written
in numerical notation. Each line in the table is to be given
in this form.

It is easy to describe an efficient algorithm for determining
whether one sequence put in this form is a subsequence of
another sequence put in this form. This algorithm is useful
both for computer implementations and for eyeballing.

Specifically, let a1
i_1a2

i_2...ar
i_r and b1

j_1b2
j_2...bs

j_s be
given, where the aÕs and bÕs are arbitrary, adjacent aÕs are
distinct, and adjacent bÕs are distinct, the iÕs, jÕs, r,s
are positive integers. We start by finding the first powers
of a1 that sum to i1. Then we find the first i2 powers of a2
that occur starting at a later power. And so on, until we
find the first ir powers of ar. If this process is completed,
then a1

i_1a2
i_2...ar

i_r is a subsequence of b1
j_1b2

j_2...bs
j_s. If

this process is not completed, then a1
i_1a2

i_2...ar
i_r is not a

subsequence of b1
j_1b2

j_2...bs
j_s. It is immediate that if this

process is completed, then a1
i_1a2

i_2...ar
i_r is a subsequence of

b1
j_1b2

j_2...bs
j_s. Now assume a1

i_1a2
i_2...ar

i_r is a subsequence
of b1

j_1b2
j_2...bs

j_s. We can show by induction that at any stage
in this process, the remaining tail of a1

i_1a2
i_2...ar

i_r is a
subsequence of the remaining tail of b1

j_1b2
j_2...bs

j_s.

It turns out to be most convenient for our immediate
purposes, to give some necessary conditions for one sequence
presented in this form to be a subsequence of another. We
need only do this here in the case of sequences from {1,3}*.

Accordingly, let a1
i_1a2

i_2...ar
i_r be given, where the iÕs and r

are positive integers, and the aÕs lie in {1,3}. We define
the type to be the pair (r,d), where r is the number of
powers (as indicated) and d is the sum of the exponents of 1.
Thus the type of, say, 341332134 is (5,4).

LEMMA 4.4. Let x,y be nonempty finite sequences from {1,3} of
types (a,b) and (c,d). Suppose x is a subsequence of y. Then
a £ c and b £ d. Furthermore,
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i) if a = c then x,y have the same first terms (perhaps
with different powers), and any way of sending x into y must
send each power in x into the corresponding power in y. As a
consequence, each of the exponents in x are respectively £
the exponents in y (which we refer to as the exponent raising
condition);

ii) if a = c and b = d, then each power of 1 in x is the
same as the corresponding power of 1 in y.

Proof: Let x,y,a,b,c,d be as given. For i), assume a = c. Any
two successive powers in x must be sent to distinct powers in
y. Hence each power in x must be sent wholly into a power in
y, for otherwise a power in y will forever be skipped over,
violating a = c. Hence by a = c, each power in x is sent into
the corresponding power in y. It then follows that the first
terms must be the same.

Note that ii) immediately follows from i). ð

Many more necessary conditions like those in Lemma 4.4 can be
proved, and are generally useful. However, we will be content
with using Lemma 4.4 in order to verity that our sequence of
length 216 is special. When Lemma 4.4 does not apply, we
bring in related considerations on an ad hoc basis. These
essentially amount to a consideration of the algorithm
presented above.

We will start with a list of finite sequences rather than
with the required sequence itself . But we need to know a
necessary condition for a list of finite sequences to be the
table of a single sequence:

LEMMA 4.5. Let r be a positive integer and L be a list of
finite sequences. Then L is the table of a finite sequence of
length 2r if and only if

i) the first sequence of L is of length 2;
ii) the last sequence of L is of length r+1;
iii) each sequence of L is obtained from the previous

sequence of L by deleting the first term and appending two
additional terms.
Furthermore, different finite sequences have different
tables.

Proof: Left to the reader. ð
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We now present the table of our special sequence of length
216.

1. 12
2. 221
3. 2131
4. 1313  (3,4)
5. 315 (2,5)
6. 17 (1,7)
7. 1632 (2,6)
8. 153213 (4,6)
9. 14321313 (6,6)
10. 133213133 (6,5)
11. 123213135 (6,4)
12. 13213137 (6,3)
13. 32131381 (6,3)
14. 313138132 (7,3)
15. 13138134 (6,3)
16. 31381351 (6,3)
17. 138135132 (6,3)
18. 38135134 (5,2)
19. 37135136 (5,2)
20. 36135138 (5,2)
21. 351351310 (5,2)
22. 341351312 (5,2)
23. 331351314 (5,2)
24. 321351316 (5,2)
25. 31351318 (5,2)
26. 1351320 (4,2)
27. 35132012 (4,3)
28. 3413201232 (5,3)
29. 3313201234 (5,3)
30. 3213201236 (5,3)
31. 313201238 (5,3)
32. 132012310 (4,3)
33. 32012312 (3,2)
... ...(3,2)
53. 12352 (2,2)
54. 13531 (3,2)
55. 353132 (3,1)
... ...(3,1)
108. 13108 (2,1)

Note that we have also presented the types of the sequences
numbered 4 - 108. Our goal is to prove that no sequence on
this list is a subsequence of any later sequence on this
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list. Observe by inspection that each sequence on this list
has a 1.

It will be convenient to refer to the i-th numbered sequence
in this list as #i. We say that #i is verified if and only if
we have shown that #i is not a subsequence of any #j, j > i.
More specifically, in each case we assume that #i is a
subsequence of #j and derive a contradiction. We must verify
#i for all 1 £ i £ 107.

Note that #1,#2,#3 each have a 2, and that #1 is not a
subsequence of #2,#3, and #2 is not a subsequence of #3. Also
note that #i, 4 £ i £ 108, have no 2Õs. Hence #1,#2 and #3
have been verified.

We now verify #4 - #107.

#4. According to types, (first claim in Lemma 4.4), we have
only to look at #8 - #11. For #8, if the 1 in #4 is sent into
15 in #8 then the 13 in #4 is sent into the 1 in #8, which is
a contradiction. Hence the 1 in #4 is sent into the 1 in #8,
and there is no room for the 13 in #4. For #9, if the 1 in #4
is sent into the 14 in #9, then the 13 in #4 is sent into the
1313 in #9, which is a contradiction. If the 1 in #4 is sent
into the first 1 in #9 then the 13 in #4 is sent into the
second 1 in #9, which is a contradiction. If the 1 in #4 is
sent into the second 1 in #9 then there is no room for the 13.
For #10, if the 1 in #4 is sent into the 13 in #10 then the 13

in #4 is sent into the 13133 in #10, which is a contradiction.
Then we argue as for #9. For #11, if the 1 in #4 is sent into
the 12 in #11, then the 13 in #4 is sent into the 13135 in
#11, which is a contradiction. Otherwise, we argue as for #9
and #10.

#5. According to types, we have only to look at #7 - #10. For
#7, the 3 in #5 is sent into the 32 in #7, with no room for
the 15 in #5. For #8, the 15 in #5 is sent into the 13 in #8,
which is a contradiction. For #9, the 15 in #5 is sent into
the 1313 in #9, which is a contradiction. For #10, the 15 in
#5 is sent into the 13133 in #10, which is a contradiction.

#6. According to types, we have nothing to look at.

#7. According to types, we look at #8, #9. The last 1 in #7
is sent to the last 1 in #8 or #9. But then there is no room
for the 32.
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#8. According to types, we look at #9. The last 1 in the 15 in
#8 is sent into the 1313 of #9. Hence the last 3 in 32 in #8
is sent into the last 3 in #9. But then there is no room for
the 13 in #8.

#9. According to types, we have nothing to look at.

#10. According to types, we have nothing to look at.

#11. According to types, we have nothing to look at.

#12. According to types, we look at #13 - #17. For #13 and
#15 - #17, the types are the same as the type of #12. In the
case of #13, #15, #16, the first term is different from the
first term of #12, violating Lemma 4.4i. In the case of #17,
the exponent raising condition in Lemma 4.4i is violated for
the last terms. For #14, #12 is sent into a tail of: #14 with
the first term deleted. By comparing the type of #12 with the
type of this tail, we see that this tail is simply #14 with
the first term deleted. Now #12 and #14 with the first term
deleted have the same type; whereas the exponent raising
condition is violated for the last terms.

#13. According to types, we look at #14 - #17. For #15 - #17,
the types are the same as the type of #12. In the case of
#15, #17, the first term differs from that of #13. For #16,
the exponent raising condition fails. For #14, the result of
deleting the first term in #13 is sent into the result of
delleting the first two terms in #13. But the number of
powers in the former is greater than the number of powers in
the latter.

#14. According to types, we have nothing to look at.

#15. According to types, we look at #16, #17. For #16, the
type of #16 is the same as the type of #15, and the first
term of #16 is not the same as the first term of #15. For
#17, the type of #17 is the same as the type of #15, but the
exponent raising condition is violated at the last term.

#16. According to types, we look at #17. The type of #17 is
the same as the type of #16, but the first terms are not the
same.

#17. According to types, we have nothing to look at.
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#18 - #25. According to types, we look #19 - #25 (going
forward), and #28 - #31. All of these sequences have the same
number of powers. For the former group, the exponent raising
condition is violated at the first terms. For #18 - #21 and
the latter group, the exponent raising condition is violated
at the first terms. For #22 - #25, the exponent raising
condition is violated at the last terms.

#26. According to types, we look at #27 - #32. For #27, the
number of powers in #26 and #27 are the same, but they do not
have the same first term. For #32, the number of powers in
#26 and #32 are the same, but the exponent raising condition
is violated at the last terms. For #28 - #31, #26 is sent
into the result of deleting the first term of #28 - #31. Note
that the latter has the same number of powers as #26. But the
exponent raising condition fails at the last terms.

#27. According to types, we look at #28 - #32. For #32, the
number of powers in #27 and #32 are the same, but they do not
have the same first term. For numbers #28 - #31, #27 is sent
into #28 - #31 without the last power. But the latter have
the same type as #27. However, the exponenent raising
condition is violated at the first term.

#28 - #31. According to types, we look at #29 - #31 (going
forward). The types are all the same, but the exponent
raising condition is violated at the first term.

#32. According to types, we have nothing to look at.

#33 - #52. According to types, we look at #26 - #51 (going
forward). The types are all the same, but the exponent
raising condition is violated at the first terms.

#53. According to types, we look at #54. The second 1 in #53
is sent to the final term in #54, leaving no room for the
first 3 in #53.

#54. According to types, there is nothing to look at.

#55 - #107. According to types, we look at #56 - #107 (going
forward). The types are the same, but the exponenent raising
condition is violated at the first term.
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LEMMA 4.6. The sequence a = Ô1221317321313813513201235313108Õ is
a special sequence of length 216.

THEOREM 4.7. n(3) > A7(184).

Proof: By Lemmas 4.3 and 4.6, setting k = 8. ð

According to the discussion at the beginning of section 2, we
can regard n(3) as incomprehensibly large. Recent computer
explorations by R. Dougherty have demonstrated the existence
of much longer special sequences. We use their existence to
strengthen this lower bound for n(3). See section 6.

5. THE FUNCTION n(k)

In this section we give some asymptotic upper and lower
bounds for the function n(k). In this paper we do not
consider the individual numbers n(k), k ³ 4.

We also consider the related function F:Z+ ® Z+ defined as
follows. F(k) is the length of the longest sequence
x[1],...,x[n] such that

i) each x[i] is a sequence from {1,...,k} of length £
i+1;

ii) for no i < j is x[i] a subsequence of x[j].

LEMMA 5.1. For all k ³ 1, n(k) £ 2F(k).

Proof: Let x[1],...,x[p] be of longest length from {1,...,k}
according to the definition of n(k). Then (x[1],x[2]),...,
(x[[p/2]],...,x[2[p/2]]) have lengths 2,...,[p/2]+1. Hence
[p/2]+1 £ F(k). So p £ 2F(k). ÿ

Let a1 < a2 < a3 ... be defined by a1 = 6, a2 = 9, ai+2 = 2ai+1.

LEMMA 5.2. For all i ³ 1, ai+1-ai ³ i+1. For all m ³ 6, there

is a unique i such that ai,ai+1 Î {m,...,2m}.

Proof: The first claim is true of i = 1, and since a3 = 13, it
is also true of i = 2. Now suppose ai+1-ai ³ i+1, i ³ 2. Then
ai+2-ai+1 = 2(ai-ai-1) ³ 2i ³ i+2.
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For the second claim, let m ³ 6. Let i be smallest such that

ai ³ m. Since ai+2 = 2ai+1, we see that every aj Î {m,...,2m}
is either ai or ai+1.

If i = 1 then m = 6 and by inspection the claim holds. We now
assume that i ³ 2.

Now ai-1 < m £ ai. Hence ai+1 = 2ai-1+1 £ 2(m-1)+1 = 2m-1, and

so ai+1 Î {m,...,2m}. ð

The following result is very crude, but suffices for our
purposes.

LEMMA 5.3. For all k ³ 1, n(k+7) ³ F(k) ³ n(k)/2.

Proof: Let x[1],...,x[n] obey i) and ii) above with n = F(k).
Let xÕ[1],...,xÕ[n] be sequences from {1,...,k+1} of lengths
a2-a1-1,a3-a2-1,...,an+1-an-1, where xÕ[i] is obtained from x[i]
by appending the requisite number of k+1Õs. Then for no i < j
is xÕ[i] a subsequence of xÕ[j].

Now define y[6],...,y[an+1] Î {1,...,k+2} as follows. Set
y[ai], 1 £ i £ n+1, to be k+2. Set each y[ai+1],...,y[ai+1-1]
to be xÕ[i].

Finally, define y[1],...,y[5] to be k+3,...,k+7.

We have to check that y[1],...,y[an+1] has property *. Let i <
j £ an+1/2.

case 1. i ³ 6. By Lemma 5.2, let p,q be unique such that

ap,ap+1 Î {ai,...,a2i} and aq,aq+1 Î {aj,...,a2j}. Then
y[i],...,y[2i] and y[j],...,y[2j] both have exactly two
k+2Õs. If the former is a subsequence of the latter then ap is
sent to aq and ap+1 is sent to aq+1. Therefore y[ap
+1],...,y[ap+1-1] is a subsequence of y[aq+1],...,y[aq+1-1].
I.e., xÕ[p] is a subsequence of xÕ[q], which is a
contradiction.

case 2. i £ 5. Then y[i] does not even appear in

y[j],...,y[2j]. ð

For each k ³ 1, we define Gk:Z
+ ® Z+ as follows. Gk(n) is the

length of the longest sequence x[1],...,x[p] such that
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i) each x[i] is a sequence from {1,...,k} of length £
i+n;

ii) for no i < j is x[i] a subsequence of x[j].

Let f1,f2:Z
+ ® Z+. We say that f1 dominates f2 if and only if

for all n Î Z+, f1(n) > f2(n). We say that f1 eventually
dominates f2 if and only if for all sufficiently large n,
f1(n) > f2(n).

LEMMA 5.4. F is strictly increasing. Gk(n) is strictly
increasing in each argument. F eventually dominates each Gk.

Proof: For the first claim, let k ³ 1 and x[1],...,x[n] be of
longest length according to the definition of F(k). Then
x[1],...,x[n],(k+1) demonstrates that n = F(k) < F(k+1).

Let x[1],...,x[p] be of longest length according to the
definition of Gk(n). Then x[1]k,...,x[p]k,(k) demonstrates
that p = Gk(n) < Gk(n+1). Also x[1],...,x[p],(k+1)
demonstrates that p = Gk(n) < Gk+1(n).

For the last claim, it suffices to prove that for all n > k ³
1, Gk(n) < F(n). To see this, let x[1],...,x[p] be of longest
length according to the definition of Gk(n). Then
(n,1),(n,2),...,(n,n),x[1],...,x[p] demonstrates that p =

Gk(n) < F(n). ð

We now place a norm on the ordinals < Î0 (actually, we will

only use the norm on ordinals < ww^w). Every a < Î0 is

uniquely in the form wb_1 + ... + wb_n, n ³ 0, where a > b1 ³

... ³ bn. So define |a| = |b1| + ... + |bn| + n. Also take |0|

= 0. Note that |wb| = |b| + 1, |w| = 2, and for k ³ 0, |k| =
k. Clearly there are only finitely many ordinals of a given
norm.

For each k ³ 1 we define a map hk:{1,...,k}* ® ww^k-1, where
{1,...,k}* is the set of all finite sequences from {1,...,k}.

h1:{1}* ® w is simply the length function. Suppose

hk:{1,...,k}* ® ww^k-1 has been defined. We now define

hk+1:{1,...,k+1}* ® ww^k.
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We make use of a common lexicogrphic well ordering of finite

sequences from ww^k-1. Here finite sequences are ordered first

by their length, and secondly lexicographically. Let gk:(w
w^k-

1)* ® ww^k be the unique order preserving bijection. For n ³

1, the sequences of length n are mapped onto [(ww^k-1)n-1,(ww^k-

1)n) = [ww^k-1 x n-1,ww^k-1 x n).

To define hk+1, let x Î {1,...,k+1}*. Then x can be uniquely

written as y1 k+1 y2 ... k+1 yn, where n ³ 1 and y1,...,yn Î
{1,...,k}*. (Some of the yÕs may be the empty sequence).
Define hk+1(x) = gk(hk(y1),...,hk(yn)). Note that hk+1 extends
hk.

LEMMA 5.5. For all k ³ 1 and x,y Î {1,...,k}*, if x is a
subsequence of y then hk(x) £ hk(y). Each hk is a bijection

from {1,...,k}* onto ww^k-1.

Proof: By induction on k. The case k = 1 is obvious. Suppose

this is true for k. Let x,y Î {1,...,k+1}*, where x is a
subsequence of y. Write x as z1 k+1 z2 ... k+1 zn, and y as w1
k+1 w2 ... k+1 wm, where the zÕs and wÕs are from {1,...,k}*.
Then the number of k+1Õs in x is £ the number of k+1Õs in y;
i.e., n £ m. If n < m, then obviously hk+1(x) < hk+1(y).
Suppose equality holds. Note that each zi is a subsequence of
wi. Hence for all i, hk(zi) £ hk(wi). Therefore
(hk(z1),...,hk(zn)) £lex (hk(w1),...,hk(wn)). Hence hk+1(x) £
hk+1(y).

The second claim is obvious by induction on k. ð

LEMMA 5.6. For all k,n ³ 2, and a1,...,an < w
w^k-1,

gk(a1,...,an) = w
w^k-1 xn-1 + ww^k-1 xn-1xa1 + w

w^k-1 xn-2xa2 + ... +

an.

Proof: ww^k-1 xn-1xa1 + w
w^k-1 xn-2xa2 + ... + an is in Cantor

normal form to the base ww^k-1, which is a unique

representation of the ordinals < ww^k-1 x n which is strictly

increasing in the lexicographic position of (a1,...,an).
Therefore the expression maps the n-th Cartesian power of

ww^k-1 onto [ww^k-1 xn-1,ww^k-1 xn), strictly increasing in the

lexicographic ordering. ð
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LEMMA 5.7. For k,n ³ 2, |ww^k-1 xn-1| = kn-k+1. For a < ww^k-1,

|ww^k-1 x n-1xa| ³ |a|+1.

Proof: For the first claim, |wk-1 xn-1| = k(n-1) = kn-k. Hence

|ww^k-1 xn-1| = kn-k+1.

For the second claim, write a = wb_1 + ... + wb_p, where ww^k-1

> b1 ³ ... ³ bp. So |w
w^k-1 x n-1xa| = |ww^k-1 x n-1 +b_1 + ... ww^k-1

x n-1 +b_p| = p + |wk-1 xn-1 + b1| + ... + |w
k-1 xn-1 + bp| = p +

p(n-1)(1+k-1) + |b1|+...+|bp| = p(kn-k+1)+|a|-p = pk(n-1)+|a|

³ |a|+1. The special case a = 0 is no problem. ð

LEMMA 5.8. For all k,n ³ 2, and a1,...,an < w
w^k-1,

|gk(a1,...,an)| ³ n + |a1| + ... + |an|.

Proof: By Lemmas 5.6 and 5.7. ð

LEMMA 5.9. For all k ³ 1 and x Î {1,...,k}*, |hk(x)| ³
lth(x).

Proof: By induction on k. For k = 1, h1(x) = lth(x). Suppose

for all x Î {1,...,k}*, hk(x) ³ lth(x). Let x Î {1,...,k+1}*.

Write x = y1 k+1 ... k+1 yn, where y1,...,yn Î {1,...,k}*, n ³
1. Then |hk+1(x)| = |gk(hk(y1),...,hk(yn))| ³ n+|hk(y1)|+...+

|hk(yn)| ³ n+lth(y1)+...+lth(yn) ³ lth(x). ð

For each k ³ 1, we define Hk:Z
+ ® Z+ as follows. Hk(n) is the

length of the longest sequence a1 > ... > an such that each ai
is an ordinal < ww^k-1 and each |ai| £ i+n.

LEMMA 5.10. For all k,n ³ 1, Gk(n) ³ Hk(n).

Proof: Let k,n ³ 1. Let a1 > ... > ap be longest as in the

definition of Hk(n). Consider hk
-1(a1),...,hk

-1(an). No term is
a subsequence of any later term because of Lemma 5.5. Also

|ai| ³ lth(hk
-1(ai)) by Lemma 5.9. Hence lth(hk

-1(ai)) £ n+i.

Therefore Gk(n) ³ p = Hk(n). ð

Ik(n) be the length of the longest sequence a1 > ... > ap such
that
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i) a1 < w
k;

ii) each |ai+1| £ i+n.

LEMMA 5.11. For all n ³ 1, I2(n) ³ 2^n = A2(n).

Proof: I2(1) ³ 2 by w > 0. I2(x) ³ 4 by w > 2 > 1 > 0. Let a1
> ... > ap be as in the definition of I2(n). Then w+a1 > ... >

w+ap > p > p-1 > ... > 0 demonstrates that I2(n+2) ³ 2I2(n).

Thus the result follows inductively. ð

We prove by induction on n ³ 1 that I2(n) ³ 2
n via a sequence

which starts with wx(n+1), which has norm 1+n. Note that

I2(1) ³ 2 by w,1. Suppose this true for n by wx(n+1) = a1 >

... > ap. Then I2(n+1) ³ 2
n+1 by w+a1,...,w+ap,n+p,...,1. ÿ

LEMMA 5.12. For all p ³ 1 and n ³ 2p+4, Ip(n) ³ Ap(n), where
Ap(n) is the Ackerman hierarchy as defined in section 2.

Proof: We prove the following induction on k ³ 1. For all n ³
2p+4, Ip(n) ³ Ap(n). The basis case p = 2 is by Lemma 5.11.
Suppose true for p, and let n ³ 2p+6. We now show that Ip+1(n)
³ Ap+1(n).

We start with the descending sequence wp+1+w2+n-k-4, wp+1+w2+

n-p-5,...,wp+1+w2,wp+1+a1, w
p+1+a2,...,w

p+1+aq, where q = I2(2n-
p-3). Since 2n-p-3 ³ 1, we have q ³ 22n-p-3 ³ 2n+p+1 ³ n(p+1).

So we can continue with wpxn, wpxn + b1, w
pxn + b2, ...,w

pxn +

bt, where t = Ik(1); and then w
pxn-1 + g1, w

pxn-1 + g2,

...,wpxn-1 + gs, where s = IpIp(1), etcetera. Here the bÔs and

gÔs, etcetera, are from the definition of Ip. Continue in this
way for n steps, obtaining a sequence of length ³ ApAp...Ap(1)

= Ap+1(n). ð

For k,m,p ³ 1, let Jk,m,p:Z
+ ® Z+ be defined as follows.

Jk,m,p(n) is the length of the longest sequence a1 > ... > aq
such that a1 is an ordinal < w

w^k-1 xm and each |ai| £
Ap(i+k+m).

LEMMA 5.13. For all k,m,p ³ 1, Jk,m,p is eventually dominated
by Hk+1.
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Proof: Without loss of generality, we may assume that m > 4p
³ 12. Assume n ³ 5+k+m.

Consider the sequence wp+1xa1, w
p+1xa2,..., w

p+1xaq. The norms
are bounded, respectively, by Ap+1(4+k+m), Ap+1(5+k+m),...,

Ap+1(3+q+k+m). According to Lemma 5.12, we can find w
p+1 > b1 >

... > br > 0, where each |bi| £ i+4+k+m, and r = |w
p+1xa1|. We

put wp+1xa1 + b1 > ... > w
p+1xa1 + br ahead of w

p+1xa1. We then

put a second sequence between wp+1xa1 and w
p+1xa2, with the

same construction, except i+5+2p+k+m is used instead of

i+4+k+m, and |wp+1xa2| is used instead of |w
p+1xa1|. This

process continues until i+3+q+k+m and |wp+1xaq| are used. The

resulting sequence demonstrates that q = Jk,m,p(n) < Hk(n). ð

We want to use [Ro84], which does not use a norm on the

ordinals < Î0, but rather a standard arithmetization of the

ordinals < Î0 via sequence numbers; i.e., ordinal notations.
This is also standard in the literature.

Let k,n ³ 1. We write 2[k](n) for a stack of k 2Õs with n on
top. Thus 2[1](n) = 2n.

We say that f:Nk ® N is elementary (or elementary recursive)
if and only if for some k, it can be computed in time
complexity 2[k].

We take the approach to ordinal recursion in [FS95], which is

equivalent to that in [Ro84]. Let a < Î0, and g,h:N
2 ® N. We

define C(a,h):N ® N to be the Òcount functionÓ given by

C(a,h)(n) = 0 if h(n,0) is not (the notation of) an ordinal <

a; the least i such that h(n,i) £ h(n,i+1), where £ is the
ordering on notations, otherwise.

Finally, define D(a,g,h) as the function f:N ® N given by

f(n) = g(n,C(a,h)(n)). Following [FS95], the functions

D(a,g,h), where g,h are elementary, are called the a-descent

recursive functions. We also let the <a-descent recursive

functions be the union of the b-descent recursive functions

for b < a.
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This definition can be immediately extended to functions of
several variables by either adding parameters to the
definition or by using an elementary pairing function on N.

The a-descent recursive functions correspond to a single step

ordinal recursion on a in the sense of, say, [Ro84], p.89.

Full ordinal recursion on a in [Ro84], p.89, results from

iterating single step ordinal recursion on a. I.e., one is
allowed to use functions derived by single step recursion on

a, in the recursion scheme, thereby obtaining new functions,
and then use these new functions, etcetera.

This corresponds to looking at autonomous a-descent recursion
as defined in [FS95], where we close off using the binary

operation D(a,g,h), starting with elementary g,h. (Here the
unary functions produced are fed back as binary functions
using an elementary pairing function). We thus have defined

what we will call here the iterated a-descent recursive

functions. The iterated <a-descent recursive functions are

the union of the iterated b-descent recursive functions, for

b < a.

In [FS95], it is essentially shown that if a > w is closed

under multiplication, then the <a-descent recursive functions

are the same as the iterated <a-descent recursive functions,
and are closed under composition. We say ÒessentiallyÓ
because in the iteration, [FS95] allows only elementary g,
thus iterating the hÕs only. However, by various simple
devices, including Lemma 1.7 of [FS95], one easily sees that
this does not make any difference.

The upshot is the following lemma.

LEMMA 5.14. For each k ³ 1, the <ww^k recursive functions in

the sense of [Ro84] are the same as the <ww^k descent
recursive fucntions in the sense of [FS95].

Proof: The details, as sketched above, are left to the

reader. ð

We now relate this to the Jk,m,p.
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LEMMA 5.15. Let k ³ 1. Every <ww^k recursive function is
dominated by some Jk,m,p at all n ³ 1.

Proof: Let g,h:N2 ® N be elementary and m ³ 1. By Lemma 5.14,

it suffices to show that D(ww^k-1 x m,g,h) is dominated by some
Jk,m,p at all n ³ 1.

Choose p such that

i) g(n,0) < Ap(1+n+m) for all n ³ 1;
ii) 2(h(n,i)+1) < Ap(i+n+1) for all n,i ³ 1;
iii) g(n,q) < Ap(q+n+2) for all n ³ 1 and q ³ 0.

The existence of p depends only on the primitive recursivity
of g,h, and that every primitive recursive function is
dominated by Ap(n+2), for some p.

Let n ³ 1. If h(n,0) < ww^k-1 x m is false then D(ww^k-1 x

m,g,h)(n) = g(n,0) < Ap(n).

Assume h(n,0) < ww^k-1 x m, and let ww^k-1 x m > h(n,0) > h(n,1) >

... > h(n,q) be such that q = C(ww^k-1 x m,h). Now consider ww^k-

1 xm > wx(h(n,0)+1) > wx(h(n,1)+1) > ... > wx(h(n,q)+1) >
g(n,q) > g(n,q)-1 > ... > 0. (The last terms from g(n,q) are
all finite). Using ii) and iii), we see that this sequence
satisfies the conditions in the definition of Jk,m,p(n). Hence

D(ww^k-1 x m,g,h)(n) = g(n,q) < Jk,m,p(n) as required. ð

THEOREM 5.16. The functions n(k) and F eventually dominate

every <ww^w recursive function. For all k ³ 1, Gk+1 eventually

dominates every <ww^k recursive function. For all k ³ 1, Gk+2
eventually dominates every ww^k recursive function.

Proof: Let g be a <ww^k recursive function. By Lemma 5.15, g
is dominated by some Jk,m,p. By Lemma 5.13, Jk,m,p is eventually
dominated by Hk+1. By Lemma 5.10, Gk+1 ³ Hk+1. By Lemma 5.4, F
eventually dominates Gk+1. Hence F eventually dominates g, and
Gk+1 eventually dominates g.

Since every ww^k recursive function is <ww^k+1 recursive, the
last claim follows.
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Finally, to see that n(k) also eventually dominates every

<ww^w function, let g be <ww^w recursive. Then for all
sufficiently large k, F(k) > g(k+7). Hence for all
sufficiently large k, F(k-7) > g(k). By Lemma 5.3, for all

sufficiently large k, n(k) > g(k). ð

We now use [Si88] to locate the functions F and Gk in terms of
ordinal recursion.

Let k ³ 1. The tree Tk consists of all finite sequences of
elements of {1,...,k}* such that no term is a subsequence of
any later term. Note that by Theorem 1.1 (second claim) Tk is
a well founded tree, and hence has an ordinal assignment.

[Si88] investigates primitive recursive ordinal assignments
for Tk.

LEMMA 5.17. There is a binary primitive recursive function B
such that the following holds. For all k ³ 1, Bk is a function

from the tree Tk into w
w^k-1 such that if s extends t in Tk

then Bk(s) < Bk(t).

Proof: See [Si88], page 971. ð

THEOREM 5.18. The functions n(k) and F are ww^w recursive

functions. For each k ³ 1, Gk+1 is an w
w^k recursive function.

The functions n(k) and F are strictly increasing. Gk(n) is
strictly increasing in each argument.

Proof: Let k ³ 1. We use function Bk+1 of Lemma 5.17 to give

an ww^k recursive definition of Gk+1 by working up the tree
Tk+1. Specifically, to compute Gk+1(n), we do the following.

For each q ³ 1, let a(q) be the maximum of the value of Bk+1
at nodes in Tk+1 of length q obeying i) in the definition of

Gk+1. We then find q such that a(q) = a(q+1). Then we know
that q = Gk+1(n).

The function B provides an ww^w recursive definition of F by
uniformly working up the trees Tk, as in the previous
paragraph. By Lemma 5.2, n(k) can be defined from F by
composition with an elementary function using search. Hence

the function n(k) is also ww^w recursive.
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By Lemma 5.4, F is strictly increasing and Gk(n) is strictly
increasing in each argument. It remains to show that for all
k ³ 1, n(k) < n(k+1). Let x[1],...,x[p] be according to the
definition of n(k). Then x[1],...,x[p],k+1 is according to

the definition of n(k+1). ð

[Ro84] introduces the Hardy hierarchy (on ordinals < Î0) on
page 80 as follows.

h0(x) = x, ha+1(x) = ha(x+1), hl(x) = hl(x)(x),

where l(x) is the x-th term of the standard fundamental

sequence associated with the limit ordinal l < Î0.

Also [Ro84] defines Ha(x) = hw^a(x). And [Ro84], page 81,
proves the following about H:

H1(x) = 2x+1, Hb+1(x) = Hb
x+1(x), Hl(x) = Hl(x)(x).

Here Hx+1 is the composition of H with itself x+1 times.

Thus the finite levels of the H-hierarchy are (essentially)
the same as the Ackerman hierarchy. This is called the Òfast
growing hierarchy.Ó

From [Ro84], pages 93 and 94 (credited to ÒTait, Lob, Wainer
et alÓ), we can read off the following information about the

functions n(k),F, and Gk. In the following, we obtain Hw^w +1
and Hw^k +1 instead of Hw^w+1 and Hw^k+1 becuase these functions

are defined by one step ordinal recursions on ww and wk.

THEOREM 5.19. The functions n(k) and F eventually dominate

all Hb, b < w
w. For all k ³ 1, Gk+1 eventually dominates all

Hb, b < w
k. The functions n(k) and F are eventually dominated

by Hw^w +1. For all k ³ 1, Gk+1 is eventually dominated by

Hw^k +1.

We will not attempt to obtain more precise information here.

[Ro84] also discusses forms of nested multiple recursion on
the integers, following [Ta61].
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Our favorite way of presenting nested multiple recursion on
the integers is by the scheme

f(x1,...,xk,y1,...,ym) = t(f<x_1,...,x_k(y1,...,ym)),

where

i) f<x_1,...,x_k is the function given by
f<x_1,...,x_k(z1,...,zk,y1,...,ym) = f(z1,...,zk,y1,...,ym) if
(z1,...,zk) <lex (x1,...,xk); 0 otherwise;

ii) t is any term involving f<x_1,...,x_k, variables
x1,...,xk,y1,...,ym, the successor function, constants for
integers, previously defined functions, IF THEN ELSE, and <,=
used in connection with IF THEN ELSE.

The functions generated in this way are called the nested
multiply recursive functions (on the integers). This is a
rather robust collection of functions on the integers, whose
definition does not involve ordinal notations. It coincides

with the <ww^w recursive functions, and the <ww nested
recursive functions; see [Ro84], pages 93,94, going back to
[Ta61].

COROLLARY 5.20. The functions n(k) and F eventually dominate
all nested multiply recursive functions on the integers. The
functions Gk are nested multiply recursive functions.

6. RELATED PROBLEMS

In section 2, we introduced the functions fk, k ³ 1, based on
the partial order £* on Nk. We gave some lower bounds in
Theorem 2.6 involving the Ackerman hierarchy. We now prove
that each fk is primitive recursive. We use [Si88].

Let Sk be the tree of all sequences from N
k, where no term is

£* any later term.

LEMMA 6.1. For each k ³ 1 there is a primitive recursive
function Dk such that the following holds. Dk is a function

from the tree Sk into w
k such that if s extends t in Sk then

Dk(s) < Dk(t).

Proof: By [Si88], page 970. ð
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THEOREM 6.2. Each fk is primitive recursive. fk(n) is strictly
increasing in each argument.

Proof: Let k ³ 1. Then fk can be defined by w
k recursion using

the tree Sk as follows. To compute fk(n), do the following.

For each q ³ 1, let a(q) be the maximum value of Dk at nodes
in Sk of length q representing sequences obeying i) in the

definition of fk. Find the least q such that a(q) = a(q+1).

Then q = fk(n). As in, e.g., [Ro84], every w
k recursive

function is primitive recursive.

For the last claim, let u[1],...,u[n] Î Nk be as in the
definition of fk(p). Then u[1]k,...,u[n]k,(k) is as in the
definition of fk(p+1), and u[1],...,u[n],(k+1) is as in the

definition of fk+1(p). ð

We now introduce functions Mk:Z
+ ® Z+ as follows. Let k ³ 1.

Mk(n) is the length of the longest sequence x[1],...,x[p] from
{1,...,k} such that for no n £ i < j £ p/2, is x[i],...,x[2i]
a subsequence of x[j],...,x[2j].

Recall the functions Gk:Z
+ ® Z+ defined in section 5.

LEMMA 6.3. For all k,n ³ 1, Mk(n) £ 2Gk(n).

Proof: Let x[1],...,x[p] be of longest length from {1,...,k}
according to the definition of Mk(n). Then
(x[n],...,x[2n]),(x[n+1],...,x[2n+2]),...,(x[[p/2]],...,x[2[p
/2]]) have lengths n+1,...,[p/2]+1. Hence [p/2]+1 £ Gk(n). So

p £ 2Gk(n). ð

We obtain the following crude result akin to Lemma 5.3.

LEMMA 6.4. For all k ³ 1 and n ³ 6, Mk+2(n) ³ Gk(n) ³ Mk(n)/2.

Proof: We use Lemma 5.2 as in the proof of Lemma 5.3. Let
x[1],...,x[p] obey i) and ii) in the definition of Gk(n). Let
xÕ[n],...,xÕ[p] be sequences from {1,...,k+1} of lengths an+1-
an-1,an+2-an+1-1,...,ap+1-ap-1, where xÕ[i] is obtained from
x[i] by appending the requisite number of k+1Õs. Then for no
i < j is xÕ[i] a subsequence of xÕ[j].

Now define y[n],...,y[ap+1] Î {1,...,k+2} as follows. Set
y[ai], 1 £ i £ p+1, to be k+2. Set each y[ai+1],...,y[ai+1-1]
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to be xÕ[i]. Define y[1] = ... = y[n-1] = 1. Then for no n £
i < j £ ap+1/2, is y[i],...,y[2i] a subsequence of

y[j],...,y[2j]. This uses Lemma 5.2. ð

THEOREM 6.5. Let k ³ 1. Mk+1 is an w
w^k recursive function. Mk+3

eventually domiantes every <ww^k recursive function. Mk+4
eventually dominates every ww^k recursive function. Mk+3
eventually dominates all Hb, b < w

k. Mk+1 is eventually

dominated by Hw^k +1. The binary function Mk(n) is strictly
increasing in each argument.

Proof: By Theorems 5.16, 5.18, 5.19, and Lemma 6.4.

For the final claim, let x[1],...,x[p] be as in the
definition of Mk(n), where p = Mk(n). Then p is odd. We now
show that x[1],...,x[p-1],k+1,k+1 is as in the definition of
Mk+1(n). Note that p ³ 3.

So see this, let n £ i < j £ (p+1)/2. Without loss of
generality, we may assume j = (p+1)/2 ³ 2. I.e., we need to
verify that x[i],...,x[2i] is not a subsequence of
x[j],...,x[p-1],k+1. Suppose this is false. Then
x[i],...,x[2i] is a subsequence of x[j],...,x[p-1], and hence
of x[j-1],...,x[p-1]. Therefore i = j-1. I.e., x[j-
1],...,x[p-1] is a subsequence of x[j],...,x[p-1],k+1, which
is impossible. Thus Mk+1(n) > Mk(n).

Finally, to see that Mk(n) < Mk(n+1), we show that
1,x[1],...,x[p] is as in the definition of Mk(n+1). Let n+1 £
i < j £ (p+1)/2. We need to verify that x[i-1],...,x[2i-1] is
not a subsequence of x[j-1],...,x[2j-1]. Suppose this is
false. Then x[i-1],...,x[2i-2] is a subsequence of x[j-
1],...,x[2j-2], and n £ i-1 < j-1 £ p/2. This is a

contradiction. ð

The function M2, involving two letters 1,2, assumes special
importance. In fact, we write m(k) = M2(k). By Theorem 6.5,
the function m is strictly increasing.

Note that by Theorem 1.6, m(1) = n(2) = 11.

LEMMA 6.6. Let n ³ 13k+5, k ³ 2. There is a sequence 3n-12y
from {2,3} with property * indexed from n through Ak-1(2n-4k-
2)+1.
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Proof: Let n,k be as given. By Lemma 4.2, let x be a strong
2n,3n,3k+1,k,Ak-1(2n-4k-2)-sequence, where there does not
exist i < j £ Ak-1(2n-4k-2) such that Ci(x) is a subsequence
of Cj(x). By the Main Lemma of section 3, and the fact that
the lengths of the CiÕs are strictly increasing, we see that
3n-12y has property *, where 3n-12y is indexed from n, and y
is the first F(2n,3n,Ak-1(2n-4k-2)) terms of x. The result

follows since F(2n,3n,Ak-1(2n-4k-2)) > Ak-1(2n-4k-2). ð

THEOREM 6.7. For all k ³ 2, m(13k+5) > Ak-1(22k+8). m(83) >
A5(118). The function m eventually dominates any given
primitive recursive function.

Proof: Immediate from Lemma 6.6. ð

Recently, R. Dougherty has written and implemented software
to investigate the function m. [Do98] reports the following
results, where 0 and 1 is used rather than 1 and 2:

m(1) = 11:  01110000000

m(2) = 31:
0001101111110100000000000000000,

0001101111111100000000000000000

m(3) = 199:
0001011100011000000000010000000000000000000000011111111111111
1111111111111111111111111111111111100000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000
0000000000110000,

0001011110011000000000010000000000000000000000011111111111111
1111111111111111111111111111111111100000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000
0000000000110000

[Do98] reports that the above are all of the longest
sequences of the required kind, except for reversing the
bits, and then changing the first k = 0,1,2 bits,
respectively, and the last bit. Thus there are 4 longest
sequences for m(1), 16 longest sequences for m(2), and 32
longest sequences for m(3).
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OPEN PROBLEMS: What is the least k such that m(k) is
incomprehensibly large? E.g., m(k) ³ A5(5)? How large is m(4)?
How many longest sequences for m(k) are there? For m(4)? For
n(k)? For n(3)? Give upper and lower bounds for m(k+1) in
terms of m(k). Give an upper bound for m(k) in terms of the
Ackerman hierarchy and k.

[Do98] also reports that m(4) ³ 187205, indicating that this
result used man (woman) machine interaction. The far smaller
sequences that were generated by the computer for m(4) by
brute force, were examined. The observed patterns were used
to obtain an appropriate sequence of length 187205.

[Do98] also considers the lengths of special sequences, which
were used to obtain our lower bound for n(3); see the
beginning of section 4, and Lemma 4.3. Let L be the longest
length of a special sequence. By Lemma 4.3, L is of course
much smaller than n(3).

[Do98] claims that L £ m(4), with the help of output from the
computer implementation. In addition, [Do98] reports that
certain sequences for m(4) can be easily modified to yield a
special sequence of slightly smaller length.

In this way, [Do98] claims that L ³ 187196, using the
particular sequence constructed for the result m(4) ³ 187205.
Now 187188 = 26(7199)+14. Thus by Lemma 4.3 and L ³ 187196,
we have the following improved lower bound for n(3):

THEOREM 6.8. n(3) > A7198(158386).
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