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Abstract The influence of the large-scale atmospheric
circulation at several tropospheric levels on wet season
precipitation over 292 sites across the Mediterranean
area is assessed. A statistical downscaling model is
designed with an objective methodology based on
empirical orthogonal functions and canonical correla-
tion analysis (CCA) and tested by means of cross-
validation. In all 30% of the total Mediterranean
October to March precipitation variability can be
accounted for by the combination of four large-scale
geopotential height fields and sea level pressure. The
Mediterranean sea surface temperatures seem to be less
relevant to explain precipitation variability at inter-
annual time scale. It is shown that interdecadal changes
in the first CCA mode are related to variations in the
North Atlantic Oscillation index and responsible for
comparable time scale variations of the Mediterranean
precipitation throughout the twentieth century. The
analysis reveals that since the mid-nineteenth century
precipitation steadily increased with a maximum in the
1960s and decreased since then. The second half of the
twentieth century shows a general downward trend of
2.2 mmÆmonth–1Ædecade–1.

1 Introduction

The understanding and quantification of climatic chan-
ges at the continental and regional scale is an important

and uncertain issue within the global change debate. A
step towards a better understanding of impacts and re-
gional climatic changes is the assessment of the charac-
teristics of natural climate variability (e.g. Giorgi 2002a,
b). Recent studies have revealed that the twentieth cen-
tury was characterised by significant precipitation trends
that can be observed at the global and the hemispheric
scale with considerable variability on different time
scales (e.g. Nicholls et al. 1996; Easterling et al. 2000;
Folland et al. 2001; New et al. 2001).

The Mediterranean is one of the regions where the
impacts of human-induced climate change are estimated
to be high (Hulme et al. 1999). In the Mediterranean
basin, future climate change is likely to aggravate sig-
nificantly the existing problem of desertification and
critically undermine the effectiveness of efforts to com-
bat it.

Jacobeit (2000) and Giorgi (2002a) analysed the sea-
sonal precipitation variability and trends over the
Mediterranean land area for the period 1901–1998 based
on the gridded (0.5� · 0.5� latitude-longitude) dataset of
New et al. (2000). They found negative precipitation
trends for winter in agreement with the findings of the
IPCC (Folland et al. 2001). Many regional station-based
studies find a similar decrease in precipitation in the
western, central and eastern Mediterranean (e.g. Este-
ban-Parra et al. 1998; Piervitali et al. 1998; Türkes 1998;
Kadioğlu et al. 1999; Buffoni et al. 1999, 2000; Xoplaki
et al. 2000; González-Rouco et al. 2000, 2001; Tomozeiu
et al. 2002; Xoplaki 2002).

The topography of the Mediterranean basin is com-
plex with thermal and orographic forcing influencing the
observed structure of weather systems and regional cir-
culation (Fernández et al. 2003). The Mediterranean is a
small-scale coupled atmosphere-ocean system with a
rather short response time, thus regional long-term
changes may be the result of changes in the more slowly
responding global system.

One of the most critical aspects of the Mediterranean
region is the hydrologic cycle and its variability in
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relation to global climate variations and climate change.
The balance between precipitation and evaporation
influences the circulation and the quality of the waters in
the Mediterranean Sea (e.g. Mariotti and Struglia 2002).
The variability of the Mediterranean wet season pre-
cipitation influences the hydrological budget of the area
and has an essential role in the management of regional
agriculture, water resources, ecosystems, environment,
economics as well as social development and behaviour.

Xoplaki (2002) found the months from October to
March with highest precipitation amounts and high
variability to be clearly the Mediterranean wet season.
This is in agreement with Mariotti and Struglia (2002).
The same definition has also been used by Eshel and
Farrell (2000); Eshel et al. (2000); Eshel (2002) and
Dünkeloh and Jacobeit (2003). This definition is valid
for the Mediterranean region as a whole, however it is a
compromise as smaller regional areas display different
seasonality (Xoplaki 2002).

Despite the large spatio-temporal variability of pre-
cipitation, a significant fraction of its variation can be
explained by large-scale circulation changes at different
heights. Advective processes, especially during winter-
time are an important factor controlling the regional
changes of precipitation. Precipitation trends can further
be associated with shifts in general atmospheric circu-
lation features such as jet streams, storm tracks and
monsoon circulations or with changes in the thermo-
dynamic structure of the atmosphere (e.g. Eshel and
Farrell 2000; Jacobeit 2000; Giorgi 2002a).

The tremendous importance of water availability in
both ecosystems and societies underscores the necessity
of understanding how a change in large-scale climate
could affect rainfall variability as well as regional water
supplies (e.g. Xu 1993; Rodrigo 2002; Knippertz et al.
2002). Thus, it is crucial to understand the relevant
processes and physical mechanisms on different time
scales as well as their link to the large-scale climate,
which is responsible for the Mediterranean wet season
precipitation variability and trend.

Many studies have related changes in Mediterranean
precipitation regimes to the large-scale atmospheric
circulation (e.g. Xoplaki 2002; Dünkeloh and Jacobeit
2003 and references therein). Several studies investi-
gated the combined patterns of selected large-scale
atmospheric fields and precipitation variability and
aimed at explaining these connections in a physical sense
(Zorita et al. 1992; Corte-Real et al. 1995; Reddaway
and Bigg 1996; Eshel and Farrell 2000; Eshel et al. 2000;
Quadrelli et al. 2001; Eshel 2002; Dünkeloh and Jacobeit
2003). As shown by Xoplaki et al. (2003a, b) and Ma-
tulla et al. (2003) the combination of various large-scale
climate fields can account for a higher amount of ex-
plained variance of the local or regional climate fields
than a single circulation parameter alone. Determination
of the causes of the observed changes in Mediterranean
precipitation over the last decades calls for improved
understanding of the related changes which have taken
place in atmospheric circulation.

This work attempts to further understanding of inter-
annual to interdecadal Mediterranean precipitation var-
iability and trend patterns during the wet season for the
period 1950 to 1999 from the perspective of the changes in
the large-scale dynamics. Implications for trends since the
late nineteenth century are derived from this analysis as
well as the performance of the NCEP reanalysis (Kalnay
et al. 1996;Kistler et al. 2001) precipitation in reproducing
some aspects of the variability found in the instrumental
precipitation records analysed. Sea level pressure (SLP),
sea surface temperature (SST) and geopotential height
fields at several heights have been studied to assess their
simultaneous relationship with Mediterranean recording
station precipitation by means of an objective methodol-
ogy. The large-scale predictors have been selected on the
basis of previous studies (e.g. Zorita et al. 1992; Corte-
Real et al. 1995; González-Rouco et al. 2000; Eshel et al.
2000; Rimbu et al. 2001) and because these variables are
well simulated by atmosphere ocean global circulation
models (AOGCMs; von Storch et al. 1993; Busuioc et al.
1999; González-Rouco et al. 2000). This enables future
comparison work with downscaling experiments for sce-
nario simulations (e.g. Cubasch et al. 2001; Gibelin and
Déqué 2003). Moreover, this work could be of relevance
for model validation exercises since reliability of model
simulations at the regional scale is highly dependant on
the correct characterisation of the large-scale patterns and
their relation to the regional scale climate (e.g. González-
Rouco et al. 2000).

Sections 2 and 3 briefly describe the datasets and the
multivariate methods. Section 4 includes the results
relating the combined information of large-scale
anomaly fields of SLP and geopotential height to
Mediterranean wet season precipitation using canonical
correlation analysis in empirical orthogonal function
space. The discussion and the conclusions are presented
in Sect. 5 and 6, respectively.

2 Data

The following datasets have been used in this study: (1)
monthly SLP as well as geopotential heights at differ-
ent levels (850 hPa, 700 hPa, 500 hPa and 300 hPa) and
precipitation were taken from the NCEP/NCAR reanal-
ysis datasets (Kalnay et al. 1996; Kistler et al. 2001). SLP
and geopotential heights have a resolution of 2.5�· 2.5�
latitude-longitude, while precipitation is arranged in a
T62Gaussian grid (around 1.9� · 1.9� latitude-longitude).
(2) monthly SST were taken from the Global Sea Ice Sea
Surface Temperature, version 2.3b (GISST2; spatial res-
olution is 1� · 1� latitude-longitude) dataset (Rayner et al.
1996 updated). (3) monthly precipitation time series from
292 stations, distributed over the area 25�N–48�N and
10�W–45�E, including 30 countries along or close to the
Mediterranean Sea, were collected (Fig. 1a). The same
area was recently identified by Giorgi and Francisco
(2000a, b) in their studies on evaluating uncertainties in
the prediction of regional climate change. The data were
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obtained mainly from National Meteorological Services.
The stations are separated by the level quality control
applied to each series: Homogenised time series (by the
National Meteorological Services; triangles), quality
controlled (according to the guidelines of theWMO1986;
solid circles) and GHCN (Global Historical Climatology
Network; Vose et al. 1992; Peterson et al. 1998; crosses)
precipitation (version 2b) data. The latter provide detailed
assessments of data quality, with rigorous quality control
adjustments to decrease the effect of non-climatic factors
on the time series.

Our analysis is restricted to the second half of the
twentieth century (1950–1999)with good station coverage
in the Mediterranean. Figure 1a presents the location of
stations with continuousmonthly records of precipitation
for the period 1950–1999. The legend shows the type of
pre-processing the data were subjected to by the source
institutions (see Acknowledgements section).

In order to isolate the characteristics of the atmo-
spheric variability concerning the larger Mediterranean
area, a spatial window was defined, based on the highest
correlation between the first principal component (PC1;
18.7% explained variance) of the wet season Mediter-
ranean precipitation and the large-scale Northern
Hemisphere geopotential height fields (Xoplaki et al.
2003a, b). It has been found that the geographical area
spanning from 90�W to 90�E and 10�N to 80�N,
including 2117 grid points, provides the most valuable
atmospheric information connected to wet season pre-
cipitation over the larger Mediterranean area. To relate
SST to the Mediterranean wet season precipitation, a
spatial window with 1500 grid points covering the east-
ern North Atlantic, the Mediterranean and the Black
Sea (29.5�W–44.5�E, 30.5�N–49.5�N) was used.

3 Methods

We follow the same approach as presented in
Xoplaki et al. (2003a) assessing the connection between
large-scale dynamics and Mediterranean surface air

Fig. 1 Station precipitation time series and spatial and temporal
characteristics of the Mediterranean wet season (ONDJFM)
precipitation; 1950–1999. a Location of the 292 stations with
continuous monthly time series of precipitation for the period
October 1949 to March 1999. The stations are separated in to
homogenised (triangles), quality controlled (solid circles) and
GHCNv2b quality controlled (crosses) time series. b Wet season
average precipitation amounts over the 292 Mediterranean sites
(coloured squares) and the NCEP reanalysis gridded data (con-
tours). c Wet season precipitation standard deviation based on the
Mediterranean stations (coloured squares) and on the NCEP
reanalysis data (contours). d Geographical distribution of the
proportion (%) of wet season precipitation amounts to mean
annual total over the larger Mediterranean area, 1950–1999 based
on the Mediterranean stations (coloured squares) and on NCEP
reanalysis data (contours). e upper panel: wet season precipitation
anomalies averaged over the 292 sites (black line) and 4-year low
pass filter (red line); lower panel wet season precipitation anomalies
averaged over NCEP reanalysis data (black line) and 4-year low
pass filter (red line)

b
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temperature. Specifically, a downscaling model is cali-
brated using canonical correlation analysis (CCA) in the
empirical orthogonal function (EOF) space and subse-
quently this model is validated by means of cross-vali-
dation. Only a short overview of the methods used are
provided here, for a detailed description of the meth-
odology the reader is referred to Xoplaki et al. (2003a,
b); for an extended discussion about EOF, CCA and
cross-validation see Barnett and Preisendorfer (1987),
Michaelsen (1987), Wilks (1995) and von Storch and
Zwiers (1999).

Before performing the CCA, the original data were
projected onto their EOFs retaining only a limited num-
ber of them, accounting for most of the total variance in
the datasets. As a preliminary step to the calculation of
EOFs, the annual cycle was removed from all station and
grid point time series by subtracting from each monthly
value the respective month’s 1950–1999 long-term mean.
The gridded predictor data were then weighted by multi-
plying with the square root of the cosine of latitude to
account for the latitudinal variation of the grid area
(North et al. 1982; Livezey and Smith 1999).

A further step to ensure the stationarity of the variables
needed for the calculation of EOFs and CCA was to de-
trend the time series. A standard linear least square fit
method has been used as described e.g. by Edwards
(1984). After the diagonalisation of the covariance and
cross-correlation matrices during the EOF and CCA
processes, the long-term trends were recovered by pro-
jecting (regressing) the original datasets onto their EOFs
(canonical vectors) as in Busuioc and von Storch (1996),
thus, providing estimations of the principal components
and canonical serieswith long-termvariability and trends.

In order to determine the most suitable number of
EOFs to retain from each predictor field, two EOF
analyses were applied. The first one selected as many
components necessary to retain 90% of the variance of
the original field. These merged principal components
were used as input to a second EOF analysis in order to
pick up the main modes of variation common to all
predictor fields (Xoplaki et al. 2003a, b). A number of
the resulting predictor principal components were se-
lected to perform the CCA analysis in combination with
the principal components of the predictand field.

In this work, we have taken the approach to retain
the number of EOFs and canonical vectors, which leads
to a better performance of the statistical models during
cross-validation without over fitting the model. For the
calculation of the EOF-CCA experiments, different
numbers of EOFs have been considered, in both cases,
for the predictor and predictand variables. The results of
the selected single and multiple predictor models are
presented in Table 1.

Two statistics were used in order to quantify and
describe the skill of the canonical correlation model.
These are the correlation skill score (q) and the Brier
skill score (b) between the predictions (P) and the
observations (O). The correlation provides a measure of
concordance in the series and is given by:
q ¼ CovðP ;OÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðP Þ � VarðOÞ
p

as a function of the
covariance (Cov) between predictions and observations
and their respective variances (Var). The Brier score
allows for a measure of explained variance, conven-
tionally described as a relative probability score com-
pared with the probability score of a reference forecast
(see von Storch and Zwiers 1999 for a general
definition and discussion). The reference forecast was
based on climatology; b can then be defined as:
b ¼ 1� VarðP � OÞ=VarðOÞ½ � where the last term indi-
cates the ratio of the error variance relative to the
variance of the observations. Thus, the Brier skill score
with climatology as the reference is also the proportion
of explained variance. For predictions with error vari-
ances in the order of the variance of the predictand,
b will be close to zero or negative and for predictions
with a relatively smaller amount of error, b tends to 1.
Negative scores indicate that climatology is a better
forecast than that suggested by the model.

4 Results

Figure 1b–e presents the wet season (ONDJFM) spatial
and temporal distribution of precipitation over the lar-
ger Mediterranean area for 1950–1999. Precipitation
statistics corresponding to the NCEP reanalysis (Kalnay
et al. 1996; Kistler et al. 2001) are plotted along with
station estimations for comparison reasons. The wet

Table 1 Summary of CCA results. Columns Predictor, X-EOFs
and Y-EOFs: predictor variable(s), predictor(s) and predictand
EOFs. X-Cum. Var. (%): percentage of accumulated predictor(s)
EOFs variance. CCAr1,2,3,4: canonical correlations for the first four

modes. E.Var.1,2,3,4 (%): variance, each canonical mode accounts
for, in the predictand. Tot.E.Var.1–4 (%): Total explained variance
of the first four CCA pairs. q, b: correlations (q) and Brier score (b)
from the cross-validation

Predictor X-EOFs Y-EOFs X-Cum.
Var. (%)

CCA r1 CCA r2 CCAr3 CCAr4 E.Var.1
(%)

E.Var.2
(%)

E.Var.3
(%)

E.Var.4
(%)

Tot. E.
Var.1-4
(%)

q b

300 hPa 12 12 88.3 0.90 0.87 0.81 0.67 16.2 9.9 5.6 5.6 26.9 0.43 0.21
500 hPa 12 12 89.9 0.90 0.88 0.79 0.69 16.3 9.7 5.4 6.3 27.1 0.43 0.20
700 hPa 12 12 91.6 0.91 0.87 0.77 0.73 16.2 9.8 5.4 6.1 27.3 0.42 0.20
850 hPa 12 12 92.5 0.91 0.86 0.79 0.72 16.2 9.5 5.5 5.9 27.1 0.42 0.20
SLP 12 12 91.3 0.92 0.81 0.82 0.71 16.1 8.4 6.8 5.6 26.5 0.42 0.20
SST 8 12 86.2 0.51 0.47 0.43 0.28 13.4 6.4 10.0 3.7 7.1 0.17 0.04
All fields 12 12 88.2 0.92 0.90 0.85 0.78 16.4 9.3 6.4 6.9 30.2 0.44 0.22
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season precipitation map (Fig. 1b) shows a high spatial
variability. Station ONDJFM averages show the lowest
values in the desert areas of North Africa and the
highest values in the eastern Adriatic coast over the Near
East and along the western Iberian Peninsula.

Figure 1c shows the standard deviation pattern at the
292 sites (colour shading) and in the reanalysis data
(contours). The spatial pattern of precipitation standard
deviation shows a proportional relationship to the mean
state: standard deviation values tend to be higher (lower)
where the average values are also higher (lower). In
general, there is good agreement between the large-scale
structure of the spatial distribution shown in the
observations and in the reanalysis data. The NCEP data
captures the areas of maxima and minima of precipita-
tion mean and variability, however it tends to underes-
timate local station precipitation values and their
variability. The rainfall totals during the studied season
(ONDJFM) constitute a very important proportion of
the annual precipitation amounts in the area (Fig. 1d).
The wet season amount varies between 30% (northwest
Mediterranean area with continental climate) and 98%
(eastern North Africa and Near East). The importance
of the land-sea contrasts and orography is also high-
lighted by sharp gradients near the Mediterranean coast
and larger features such as the Pyrenees area.

Figure 1d shows overall agreement between the
instrumental observations and the reanalysis, both on
the spatial distribution of the winter ratio of rainfall and
in the amplitude. This plot suggests that even if the
NCEP/NCAR reanalysis data underestimate the
amplitude and variability of rainfall on the local scale,
they tend to simulate in a realistic way the wet season
proportion of rainfall.

Figure 1e shows the monthly time evolution of the
spatially averaged precipitation anomalies both for the
instrumental data (upper panel) and the reanalysis (lower
panel); their 4-year moving average low pass filtered time
series are also shown to aid comparison at longer time
scales. There is good agreement between the NCEP and
station data (correlation 0.78). The plot also highlights the
underestimation of variability by the NCEP/NCAR
reanalysis data: the ratio of variances observations versus
NCEP is 3.11. Decadal changes show good agreement
between both datasets in depicting relatively wet and dry
periods (see filtered data): relative maxima take place in
the early 1950s, 1960s, late 1970s to early 1980s and late
1990s while relative minima occur in the late 1950s, early
1970s and early 1990s. The decadal changes are
superimposed upon a long term negative trend of
2.2 mmÆmonth–1Ædecade–1(station data; 1.5 mmÆmonth–1Æ
decade–1 for the reanalysis), significant at the 0.05 level.

4.1 CCA in EOF space

The different EOF-CCA-Cross-validation experiments
are summarised in Table 1. In the columns titled Predic-
tor, X-EOFs and Y-EOFS the different predictors as well

as the number of predictor and predictand EOFs retained
for each experiment, either unicomponent or multicom-
ponent, are presented. The cumulative explained variance
of the predictor field is given in the column X-Cum.Var.
(%). The canonical correlations of the first four CCA
pairs between the circulation and the wet season precipi-
tation are contained in the columnsCCAr1,CCAr2,CCA
r3 and CCA r4, while the corresponding explained vari-
ance for the predictands is given in the columnsE.Var.1, 2,
3, 4 (%). The column Tot. E.Var.1–4 (%) reveals the total
explained variance, taking into consideration the first four
canonical pairs. The last two columns present the per-
formance of the models; in q, the correlation skill score
and the Brier skill score b.

The connection between each single large-scale pre-
dictor field and the wet season precipitation are shown in
the corresponding rows of Table 1 with the final row
showing the combined influence of all five large-scale
predictors.

4.2 Unicomponent EOF-CCA-cross-validation

The unicomponent EOF-CCA-cross-validation experi-
ments with the wet season precipitation were performed
retaining twelve EOFs for each of the single predictor
fields (Table 1, X-EOFs). They account for between
88.3% (300 hPa) and 92.5% (850 hPa) of the total
variance, whereas twelve EOFs of wet season precipi-
tation account for 73.7%.

The single atmospheric predictors explain around
27% of total wet season precipitation variance each. A
CCA model using only SST as predictor performs less
well and accounts for only 7% of the total wet season
Mediterranean precipitation variability. The models
performance is presented in columns q and b with spatial
averages of correlation and Brier skill scores obtained
over all sites. The correlation between the cross-vali-
dated wet season precipitation totals and the raw data
are significant at the 99% level (n = 50 · 6 =
300 months, r ‡ 0.15).

Cross-validation shows values of averaged spatial
correlation and Brier score that go along with the
amount of total explained variance by each large-scale
field. The performance of SST is comparatively low (0.17
and 0.04 spatial correlation and Brier score, respec-
tively). The relatively low values of q and b in Table 1, in
comparison to Mediterranean summer temperature
(Xoplaki et al. 2003a) suggest that precipitation shows
less spatial averaged predictability. There are areas with
good skill while in others the statistical model fails to
reproduce the climate variability of precipitation.

4.3 Multicomponent CCA

CCA experiments with different numbers of X-EOFs,
Y-EOFs and canonical pairs have been calculated and
the performance of the models compared. Except for the
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case of SST, results showed that the best performance of
the models was achieved including more than 10 EOFs.
Over this limit q and b tend to be stable with little
variation that owing to minor changes in predictive skill
in specific local regions. Heuristically we kept 12 X,Y-
EOFs as a parsimonious reference model for each uni-
component case and for the multicomponent model for
comparison reasons.

A clear gain in the total explained variance for the
October-March precipitation is obtained from the mul-
ticomponent EOF-CCA (Tot. E.Var.1–4). Simulta-
neously, the model indicates a relatively better
performance in cross-validation. More than 30% of the
Mediterranean wet season precipitation can be ex-
plained by the combination of the five predictor fields.
These results were not improved by including the
Mediterranean SSTs as a sixth predictor.

Higher amounts of the wet season Mediterranean
precipitation are explained by reducing the number of
station time series of lower skill (not shown). When the
southeastern most stations, where there is low model
performance, are excluded, the averaged explained var-
iance, skill and correlation are higher.

In general, the skill of the downscaling model depends
on the chosen configuration in terms of the number of
principal components and canonical modes selected (as
well as other factors such as the spatial extension of the
predictors) and on the potential predictability of local
precipitation. The model presented herein shows im-
proved skill when it is fitted using the sites that present
higher predictability. Such models can be optimised for
the regions where potential predictability is higher. In-
stead of showing the results of an approach that leads to
optimal predictive power of the statistical model for cer-
tain Mediterranean areas, the discussion will be focused
on the model which better fits the changes in precipitation
in all stations throughout the period of study. The reason
for this is to illustrate the spatial distribution of skill and
clearly depict the areas where the statistical approach
presented here gives less skilful results.

4.4 Maps of CCA results

The interannual covariability between theMediterranean
wet season precipitation and the combined large-scale
circulation at different levels during the period 1950–1999
are presented here using the canonical patterns obtained
in the multicomponent approach (All Fields Table 1).

The results will mainly focus on the first two CCA
modes, since they capture most of the Mediterranean
precipitation variability. Spatial patterns and expansion
coefficients of these modes are presented in Figs. 2 and 4.
The first CCA pair (Fig. 2) accounts for around 12% to
16% of the total wet season mean variance of each large-
scale predictor and for 16.4% of the wet season precip-
itation variability, respectively. This pair exhibits a
canonical correlation between the precipitation and the
multicomponent field coefficient time series of 0.92. The

canonical patterns of the geopotential height fields
(Fig. 2a–e) present an equivalent barotropic structure
throughout the entire troposphere with strong negative
(positive) anomalies centred over northwestern Europe.
The central and western Mediterranean lie at the
southern margin of this anomaly pattern. A positive
(negative) height anomaly centred north of the Caspian
Sea covers the Eastern Mediterranean. The correspond-
ing wet season precipitation anomaly pattern (Fig. 2f)
indicates above (below) normal values almost over the
entire basin, except for the southeastern Mediterranean.

The last graph in Fig. 2 presents the variations of the
normalised monthly time components of the first CCA
pair. The correlation between the precipitation canonical
series and the Mediterranean wet season precipitation
(Fig. 1e) is 0.72 (significant at the 0.05 level). Thus, it
seems that there is a relevant contribution from this
canonical mode to the long-term trends in wet season
Mediterranean precipitation. Wet and dry periods agree
well with those in Fig. 1e: wet half year periods in the
1960s, the end of 1970s and single years at the 1980s and
1990s; dry seasons are found during the 1950s, the first
part of the 1970s, the end of the 1980s and beginning of
the 1990s. The end of the 1980s and early 1990s in
particular are well known for general drought conditions
over large parts of the Mediterranean (Kutiel et al.
1996a; Eshel and Farrell 2000; Maheras 2000).

Figure 3 shows the regression maps between the first
canonical series of precipitation (Fig. 2g) and SST
(GISST) and precipitation (NCEP) fields for the 1950 to
1999 period. The SST regression pattern (Fig. 3a) re-
veals a configuration of anomalies largely in agreement
with the barotropic behaviour pointed out earlier: po-
sitive (negative) SST anomalies lie below positive (neg-
ative) geopotential height anomalies. The precipitation
regression pattern illustrates an expanded version of
Fig. 2f. In general, positive precipitation anomalies ap-
pear in combination with moist advection to the land;
negative precipitation anomalies occur in combination
with continental outflow.

The second pair of wet season CCA (Fig. 4) (0.90
canonical correlation) explains 6.5% (SLP) to 8.5%
(500 hPa geopotential) of the predictor variance and
9.3% of the Mediterranean wet season precipitation
variability. The relevant tripole pattern of the geopo-
tential height fields reveals a barotropic structure with a
strong positive (negative) anomaly over the North
Atlantic stretching towards the western Mediterranean.
A second negative (positive) anomaly extends from
southeastern Greenland over Scandinavia and eastern
Europe to the eastern Mediterranean and North Africa
at the upper tropospheric fields. In the positive phase,
this constellation leads to anomalous northerly flow over
the Iberian Peninsula and western North Africa and
northwesterly flow over the central basin.

Except for the Iberian Peninsula, the remaining parts
are influenced by an anomalous low-pressure system,
with above-normal precipitation. The second pair of
canonical series (Fig. 4g) shows intense negative anom-
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alies in the wet seasons of 1964, 1972 and 1990, and
positive in 1953, 1981 and 1999.

Figure 5 presents the regression patterns of SST and
NCEP precipitation with the precipitation canonical ser-

ies (Fig. 4g). The SST anomalies (Fig. 5a) underlie
barotropically the geopotential anomalies. NCEP pre-
cipitation anomalies (Fig. 5b) agree on the large-scale
with those of the station-derived pattern in Fig. 4f and are

Fig. 2 Canonical spatial patterns of the first CCA. The canonical correlation patterns depict typical anomalies in the variables, with a
300 hPa; b 500 hPa; c 700 hPa; d 850 hPa; e SLP; f wet season precipitation anomalies in mm and g normalised time components of CCA1
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suggestive of advective processes: westerly and south-
westerlywinds from theMediterranean sea induced by the
low over Europe promote advection and orographic
precipitation in the northeastern Mediterranean coasts.

Figure 6 shows the spatial distribution of skill in
terms of q and b for the model based on five large-scale
predictors. Both skill scores present a very similar spatial
structure, with higher values in the western and northern
Mediterranean where variances are higher (Fig. 1c).

5 Discussion

Regional or local climate is generally much more vari-
able than climate on a hemispheric or global scale be-
cause variations in one region are compensated for by
opposite variations elsewhere (e.g. Jones and Mann
2004). Indeed a closer inspection of the spatial structure
of climate variability, in particular on seasonal and
longer time scales, shows that it occurs predominantly in
preferred large-scale and geographically anchored spa-
tial patterns. Such patterns result from interactions be-
tween the atmospheric circulation and the land and
ocean surfaces (IPCC 2001).

5.1 Mediterranean precipitation variability
and the large-scale climate

The concurrent CCA relating the combination of five
large-scale fields to October-March Mediterranean
precipitation yielded physically meaningful pairs of

patterns that accounted for 30% of overall precipitation
variability. CCA1 in its positive phase is associated with
positive rainfall anomalies over the western, central and
northern Mediterranean area. Drier conditions prevail
over the remaining region.

The highest precipitation anomalies in the CCA1
pattern are prevalent along the western side of the Dy-
narides and Pindos. Cyclones from the Gulf of Genoa
steer southeastward through Italy, as for as to the
Albanian and Greek coasts and then beyond to the
southern coast of Turkey (Trigo et al. 1999; Karaca et al.
2000). They are reinforced as they move over the warmer
Mediterranean and together with the orographical
forcing cause high amounts of precipitation over these
areas (e.g. Türkes 1998; Fotiadi et al. 1999; Kadioğlu
2000; Xoplaki et al. 2000). Our findings support the re-
sults of Zorita et al. (1992) who investigated the inter-
action between the winter atmospheric circulation, the
SSTs in the North Atlantic area and the Iberian pre-
cipitation. In their first CCA between mean winter SLP
and Iberian rainfall low SLP in the mid-Atlantic guides
maritime air and precipitating weather systems into
Iberia connected with decreasing anomalies towards the
east.

These findings are also in agreement with the study of
Corte-Real et al. (1995) on the linkages between the non-
seasonal large-scale atmospheric circulation influence on
precipitation over the Mediterranean area. A pattern
similar to the first CCA 500 hPa anomaly field has been
found by Quadrelli et al. (2001) for the period 1979–
1995. They connect this pattern to the North Atlantic
Oscillation (NAO; Hurrell 1995; Jones et al. 1997), the
Arctic Oscillation (AO; Thompson and Wallace 1998)
and the East Atlantic/Western Russia (EA/WRUS;
EU2) pattern (Barnston and Livezey 1987).

The correlation between the coefficient time series of
the first CCA of precipitation and the NAO (Jones et al.
1997) is –0.66, while with the AO and the EA/WRUS is
–0.55 and –0.50, respectively.

Eshel and Farrell (2000) and Eshel et al. (2000) ad-
vanced a simple theory explaining winter (October-
March) eastern Mediterranean rainfall variability in
terms of subsidence anomalies associated with large-
scale North Atlantic anomalies. Their concept of
anomalous high pressure over Greenland/Iceland and an
accompanied concurrent anomalous cyclone over the
Mediterranean connected with anomalous warm south-
erlies, enhanced absent and higher precipitation
amounts in the region is very similar to the structure of
our first CCA of winter precipitation. Our 700 hPa to
300 hPa anomaly patterns indicate an increasing influ-
ence of a positive (negative) anomaly over the Near
East. This anomaly is absent in the lower troposphere
(Eshel and Farrell 2000; Eshel et al. 2000). Enhanced
subsidence at the mid- to upper troposphere might ex-
plain some of the differences in precipitation anomalies
of this study and Eshel and Farrell (2000) and Eshel
et al. (2000) over this region. Our analysis therefore
shows that it is important to include the mid- and upper

Fig. 3 Regression maps between the precipitation canonical series
shown in Fig. 2g and a SST and b NCEP reanalysis precipitation
for the same period
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level large-scale atmospheric circulation in order to ex-
plain regional differences in precipitation variability.

The spatial characteristics of the first canonical pat-
terns also agree well with those obtained by Dünkeloh
and Jacobeit (2003) for their first winter mode and their

second spring canonical component. CCA2 of wet sea-
son precipitation (Fig. 4) revealed important large-scale
geopotential height anomaly patterns for the larger
Mediterranean area. The combination of the large-scale
anomalies explains 9.3% of the total October-March

Fig. 4 Canonical spatial patterns of the second CCA. The canonical correlation patterns depict typical anomalies of the variables, with a
300 hPa; b 500 hPa; c 700 hPa; d 850 hPa; e SLP; f wet season precipitation anomalies in mm and g normalised time components of CCA2
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Mediterranean precipitation variance. It shows a dipole-
like pattern with drier conditions over the Iberian Pen-
insula and wetter conditions elsewhere (Fig. 4). This
seesaw-like oscillation between the western and eastern
Mediterranean has already been reported by Kutiel et al.
(1996b). The influence of the subtropical high (positive
geopotential height anomalies) is restricted to the Ibe-
rian Peninsula and northwestern Africa connected with
subsidence, stable conditions and reduced precipitation.
The areas of enhanced precipitation amounts are located
in the southeastern part of the anomalous trough
stretching from Greenland over Central Europe to the
northern coast of northern Africa. In this sector of the
trough, the vorticity advection is maximal connected
with strong uplift, instability, condensation and a high
chance of precipitation. It has to be pointed out, that the
various processes act and interact on different time
scales, thus on seasonal averaged charts presented here
higher frequency processes are hardly detectable. Eshel
(2002) further attributes winter precipitation variability
over the eastern Mediterranean to redistribution of heat
by the prevailing lateral and vertical air motions.

The second CCA canonical series does not show an
intense link to any of the typical large-scale circulation
modes. There is however, some significant correlation
(–0.42) with the POL (Polar/Eurasia; Barnston and
Livezey 1987) pattern.

The efficiency of the statistical model used herein
benefits mostly from the contribution of the two CCAs.
The correlation and Brier score maps in Fig. 6 show a
spatial distribution very similar to the precipitation
pattern of the first canonical mode (Fig. 2f). The skill

attained with this statistical model is higher where the
patterns of the CCA modes (mostly the first one) show
the highest loadings. This is a reasonable behaviour
since at these sites, the canonical modes explain more
variability and therefore a higher fraction of precipita-
tion variability can be predicted with this approach
(Xoplaki et al. 2003a). Figure 6 also highlights the fact
that the statistical model captures precipitation vari-
ability over the whole Mediterranean basin with a lower
skill. This limitation has been recognised in other re-
gional studies within the Mediterranean (Zorita et al.
1992; González-Rouco et al. 2000). These results suggest
that the inclusion of upper level predictors do not im-
prove the predictability in some areas such as the
southeastern Mediterranean coasts or the east coasts of
the Iberian Peninsula. We speculate that improved pre-
dictability could be achieved by including other large-
scale predictors such as moisture advection (Fernández
et al. 2003), using statistical models specifically opti-
mised for the critical regions or through other statistical
models based on alternative methodologies like ana-
logues or neural network approaches (Zorita and von
Storch 1999). Consequently, scenario downscaling using
statistical models comparable to the one presented here
could be less accurate for areas of low predictability.
Some tests have been made with the present approach
allowing for a higher number of CCA modes and trying
to optimise predictions for areas with low skill. How-
ever, results did not present any significant improve-
ment. Thus, more effort towards improving
predictability for such areas is needed.

Fig. 5 Regression maps between the second precipitation canonical
series shown in Fig. 4g and a SST and b NCEP reanalysis
precipitation for the same period

Fig. 6 Spatial distribution of a correlation and b Brier skill score
obtained from cross-validation for the model with five large-scale
predictors
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5.2 Long-term trends

Concerning decadal and long term trends, both CCA
modes seem to have contributed to the low precipitation
records in the late 1980s and early 1990s. However, the
first mode is more in agreement with changes in pre-
cipitation shown in Fig. 1e. Both the long-term
decreasing trends and the dry periods in late 1950s, early
1970s, late 1980s and 1990s as well as the wet transitions
in 1960s and late 1970s-early 1980s agree well with the
changes in the canonical series of the first mode (corre-
lation 0.72 between both time series). A natural question
to ask given the relatively short analysis period is whe-
ther the relationships are persistent before the 1950s.
Figure 7 gives some insight into this. Figure 7a presents
the starting dates of all stations. Sites in the southeast
and in general along North Africa have shorter time
series. Figure 7b shows standardised averages (4-year
moving averages) of all stations with continuous mea-
surements back to 1950 (RR 1950), to 1900 (RR 1900)
and back to 1850 (RR 1850). In order to have a com-
parable scale, standardised averages were calculated
normalising the time series by their variance during the
period October 1949–March 1999. RR 1950 was calcu-
lated using the 292 time series during the 1950–1999
period and thus represents a standardised version of

Fig. 1e. RR 1900 (RR 1850) was created using the
available records of 110 (12) sites over the period 1900–
1999 (1850–1999); it correlates 0.88 (0.65) with RR 1950
in the overlapping period. RR 1900 and RR 1850 cor-
relate 0.74 through the overlapping period (all correla-
tions significant at the 0.05 level). The three time series
agree in depicting the wet and dry intervals in the 1950–
1999 period as well as the decreasing precipitation
trends. For the first half of the twentieth century RR
1900 and RR 1850, in spite the fewer stations, agree well
indicating the relatively dry (early 1900s, early 1920s and
1940s) and wet periods (1910s and 1930s). RR 1900 and
RR 1850 suggest that the decreasing trend highlighted in
Fig. 1e and by RR 1950 is not part of a longer period
trend but a feature of the second half of the twentieth
century and that the 1960s and late 1970s were actually
the wettest intervals since the 1850s.

Some support for this reasoning can be found in the
evolution of the large-scale circulation during the
twentieth century shown in Fig. 8. Since the NCEP/
NCAR reanalysis dataset cannot provide information
before 1948, the NCAR SLP dataset (Trenberth and
Paolino 1980) was used. The time series labelled as Cs1
and Cs2 (Fig. 8) show the regressed time series (4-year
moving average filter) between the SLP dataset (1900 to
1999) and the SLP patterns in Figs. 2e and 4e,

Fig. 7 a Dates (decades) of
beginning of precipitation
records. b Spatial averages of
precipitation anomalies over all
sites with available data for the
periods 1850–1999, 1900–1999
and 1950–1999. Time series are
normalised to unit standard
deviation during the interval
1950–1999
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respectively. Prior to this step, the canonical patterns
were interpolated to the same resolution (5� · 5� lati-
tude-longitude) as the SLP dataset. The time series
shown in Fig. 8 are all normalised by their standard
deviation over the period 1950 to 1999. Cs1 and Cs2 can
be considered as an estimation with minimum error of
the intensities of the canonical series in Figs. 2g and 4g
through the entire twentieth century using the informa-
tion provided by the SLP dataset. It becomes quite
apparent that Cs1 and RR 1900 show similar decadal
changes since the beginning of the twentieth century
(correlation 0.76). For Cs2, this is not the case (corre-
lation 0.06). These results support the idea that the
model illustrated in Fig. 2 is stable in time through the
first half of the twentieth century. For comparison rea-
sons, Fig. 8 shows also the Gibraltar-Iceland NAO in-
dex (Jones et al. 1997) with reversed sign (-NAO). The
correlation of this time series with Cs1 is 0.70, suggesting
that the long-term changes experienced by the first CCA
mode are basically influenced by the NAO. After (be-
fore) 1960, both Cs1 and -NAO show negative (positive)
trends supporting the idea that the negative precipitation
trends after the 1950s are dynamically induced and a
feature of the second half of the twentieth century.
Comparison of the NAO index and RR 1850 for the
second half of the nineteenth century also shows good
agreement. These results suggest that wet season Medi-
terranean precipitation increased since the second half of
the nineteenth century and experienced a downward
trend through the second half of the twentieth century.

A relevant matter is the possible changes in intensity
and frequency of circulation modes affecting Mediter-
ranean precipitation under global climate change. Some
model results indicate that the AO and the related NAO
tend to become stronger in the future (Paeth and Hense
1999; Gillett et al. 2002; Zorita and González-Rouco
2002; Osborn 2004 and references therein). Our results
on decreasing Mediterranean precipitation trends for the
second half of the twentieth century would be consistent
with this expectation. Additionally, recent findings of
idealised SST anomaly experiments by Hoerling et al.

(2004) and Hurrell et al. (2004), indicate that SST vari-
ations have significantly controlled the North Atlantic
circulation, related to the NAO, with the warming of the
tropical Indian and western Pacific Ocean being of
particular importance. It is however premature to derive
a direct relationship of the late twentieth century pre-
cipitation trends with predictions of future scenarios
since these interdecadal changes could be related to
natural variability. In this context, an assessment of how
the relevant modes of large-scale variability are simu-
lated by AOGCMs as well as the time stability of their
relationship to regional precipitation is desirable.

5.3 NCEP/NCAR reanalysis precipitation

The NCEP/NCAR reanalysis precipitation data have a
lower spatial resolution than the station based maps in
Figs. 2f and 4f. However, the regression maps shown in
Figs. 3b and 5b can provide some information about the
spatial extension of the instrumental precipitation
canonical vectors (Figs. 2f and 4f). The NCEP precipi-
tation dataset is able to reproduce the main features of
the spatial distribution and variability of instrumental
precipitation shown in Fig. 1. There is however, a clear
underestimation also revealed by the smaller loadings in
Figs. 3b and 5b in comparison to Figs. 2f and 4f,
respectively. This underestimation can be justified by the
coarse resolution, the orography factor, as well as the
limitations in the parametrisations of sub-grid scale
processes by the models used to produce the reanalysis
(Kalnay et al. 1996). In spite of these limitations, there is
a significant amount of evidence that certifies the real-
istic performance of the reanalysis model in reproducing
the large-scale characteristics of precipitation (Mo and
Higgins 1996; Higgins et al. 1996; Gutowski et al. 1997;
Janowiak et al. 1998; Widmann and Bretherton 2000).
Widmann et al. (2003) showed that the NCEP precipi-
tation can be successfully downscaled to local precipi-
tation. Our results support the idea that the reanalysis
can reproduce large-scale features of precipitation.

5.4 The role of SSTs

It has been proposed that SST anomalies govern, at least
partly, precipitation anomalies in neighbouring conti-
nental regions (e.g. Hunt and Gordon 1988; Zorita et al.
1992; Reddaway and Bigg 1996; Rimbu et al. 2001;
Xoplaki et al. 2000, 2003b). In addition, there are strong
indications that fluctuations in SSTs, and hence fluctu-
ations of surface fluxes, are intimately involved in dec-
adal-scale climate variability (Trigo et al. 2000). The
almost enclosed Mediterranean Sea represents an
important source of energy and moisture for the atmo-
sphere since local evaporation largely exceeds precipi-
tation in all seasons and the characteristics of the local
water budget influences the amount of moisture avail-
able for the surrounding land regions, especially

Fig. 8 NAO: Gibraltar-Iceland NAO index (Jones et al. 1997) with
reversed sign. RR 1990: spatial average over all sites with available
data for the period 1900–1999. Cs1, Cs2: regressed time series (4-
years moving average filter) between the NCAR SLP dataset
(Trenberth and Paolino 1980) and the SLP patterns in Figs. 2e and
4e, respectively
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northeast Africa and the Middle East (Peixoto et al.
1982; Ward 1998). Thus, the fluctuations of surface heat
fluxes are also important for cyclone development
(Bartzokas et al. 1994; Trigo et al. 1999). In addition,
Zorita et al. (1992) found that the large-scale North
Atlantic SST anomalies and the Iberian winter precipi-
tation anomalies are related to each other only indirectly
and are both forced by the large-scale state of the
atmosphere. In agreement with this idea, the results
shown in Table 1 for the Mediterranean SST as a single
predictor for Mediterranean precipitation indicate that
only 7% of the total October-March Mediterranean
precipitation variability can be accounted for. SSTs are
influenced by SLP anomalies and in the presence of
anomalous cyclonic flow in the atmosphere, the SSTs
should respond with net cooling equatorward and
westward of the cyclone and a net heating northward
and eastward of it. Comparison of Figs. 2e and 4e with
Figs. 3a and 5a shows partial agreement with this idea.
However, comparison of the geopotential height
anomalies in Figs. 2 and 4 with the SST regression maps
reveals a direct barotropic overlapping of geopotential
height anomalies over SST anomalies. Since the tropo-
spheric structure dominates over a much larger area
than the sea anomaly pattern, it can be suggested that
the atmosphere seems to be the forcing agent. A simple
explanation for this could be the radiative forcing of
SST anomalies: increased stability and clear sky condi-
tions in the high geopotential height anomaly areas fa-
vours maximum insolation and warming of SSTs.

6 Conclusions

In this study, the relationship between the precipitation
variability during the Mediterranean wet season (Octo-
ber-March) and the state of the large-scale atmospheric
circulation was investigated for the period 1950–1999.

The CCA experiments with the combined, multi-
component large-scale predictors and precipitation
investigate the co-variability between geopotential
height at different levels and the Mediterranean
recording stations wet season precipitation. Approxi-
mately 30% of the Mediterranean wet season precipi-
tation variability can be explained linearly by the
combination of the five atmospheric predictor fields over
the second half of the twentieth century. Using SST as a
predictor did not improve the performance of the model
for the entire Mediterranean. The skill obtained with
SSTs as a single predictor was lower than that calculated
with the large-scale atmospheric variables.

The first CCA mode that correlates with the negative
NAO/AO and the negative EA/WRUS, is connected
with above normal precipitation over most of the
Mediterranean region with highest values at the western
coasts of the peninsulas and lowest at the southeastern
part of the basin. This expression of the first canonical
mode could be interpreted as southward shifts of storm
tracks from Western Europe towards the Mediterranean

and vice-versa that in combination with the local
cyclogenesis produce the dipole precipitation pattern.

The downscaling model shows good skill in the wes-
tern and northern Mediterranean areas. This skill
diminishes to the south and especially to the southeast.
Thus, more work is needed to develop the precipitation
predictability, with either a different set of predictors or
a different methodology. An implication of the low skill
is that regional scenario precipitation predictions de-
rived with downscaling methods comparable to our
approach should be treated with caution in these
regions.

The analysis of precipitation trends for the 1950 to
1999 period and back to the middle of the nineteenth
century reveals that wet season precipitation increased in
the Mediterranean since the mid- nineteenth century
with a maximum in the 1960s and decreased since then.
Single wet periods occurred in the late 1970s, early 1980s
and late 1990s. The second half of the twentieth century
shows a general downward trend of 2.2 mmÆmonth–1Æ
decade–1. In particular the end of the 1980s-early 1990s
are well known for general drought conditions over large
parts of the Mediterranean. The first canonical mode has
been found to be responsible for the decadal and long
term variations in precipitation. These decadal and long-
term trends follow those of the Gibraltar-Iceland NAO,
thus results suggest that long-term changes in Atlantic
variability govern Mediterranean precipitation.

The patterns describing the NCEP/NCAR reanalysis
precipitation mean state and variability as well as the
CCA-regression maps show that in spite of the under-
estimation of the maxima and minima the large-scale
structure of spatial patterns are well captured.

Although large-scale atmospheric features account
for a rather high amount of overall Mediterranean
variation, smaller scale processes also influence regional
rainfall variability. Land-sea effects and interactions, the
influence of the SSTs connected with latent and sensible
heat flux, orographical features and thermodynamical
aspects interact with each other on different time scales
and are superimposed on the quasi-stationary planetary
waves which control large-scale advection.
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