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Abstract

This paper discusses the use of certain integer valued functions of
two real variables, named size funclions, for shape representation and
recognition. The recognition of the signing alphabet is described as a
study case. A number of size functions are computed from the edge
map of the viewed sign and a feature vector based on the obtained size
functions is formed. A training set of feature vectors built from real im-
ages and the k-nearest-neighbor rule are employed for the classification
of unpreviously seen signs. The proposed system performs recognition
at about 2H z with feature vectors of small dimension. The reported
experiments indicate that size functions can be effectively used for the
recognition of nonrigid shapes.

1 Introduction

Recognition is a fundamental aspect of vision. Most of the existing recognition
systems (see [1, 2, 3, 4, 5, 6], for example) are based on rather strong geometric
assumptions that might not be suitable for the analysis of natural shapes. Recently,
a theory for shape representation and recognition based on the notion of size
function, an integer valued function of two real variables, has been proposed [7, 8].
This theory seems to be adequate for the analysis of shapes for which a geometric
model can be difficult to obtain [9].

In previous works [9, 10] an implementation of the theory based on the extrac-
tion of the outline of the viewed shapes was proposed, and the properties of size
functions in the framework of computer vision were discussed. A main limitation of
the proposed implementation was the fragility with respect to edge fragmentation.
This paper presents a new interpretation of the theory in which no assumption
about the topological connections of the extracted edge points is needed. This
interpretation lead to an improved version of a system recently proposed for the
recognition of the alphabet of the sign language [10].

The paper is organized as follows. First, a new interpretation of the theory
of size functions is presented. Then, the representation of shape which can be
obtained by means of families of size functions is described. Finally, the proposed
recognition system and the experimental results are illustrated.
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2 The theory of size functions revisited

The theory of size functions provides a geometric and topological framework in
which the similarity between different functions can be assessed. Let us illustrate
the main idea of the theory through the example of Fig.1.
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Figure 1: The concept of size function. (A). Graph of some measuring function
¢. (B) and (C). The shaded regions identify the points with ¢ < & and ¢ < y
respectively. (D). The darker shading identify the regions with both ¢ < z and
¢ < y. (£). The same construction of (C') for a different value of & and y. (F).
Graph of the size function £,(z,y). Each label denotes the value of £, within the
underlying region. Throughout the paper the graph of a size function is always
reproduced in the triangular region between the minimum and maximum value of
the measuring function with & < y.

Let us assume that Fig.1(A) reproduces the graph of a function ¢, named
measuring function, obtained as the result of some measurement. The goal of the
theory is to represent both the qualitative and quantitative aspects of the behavior
of . This is done by means of an integer valued function of two real variables
t, = L, (z,y) named size function. Let us evaluate the size function £, at a specific
point (z,y) (with < y) of the real plane. The shaded regions of Fig.1(B) and
(C) identify the parts of the graph with ¢ < 2 and ¢ < y respectively. The
superposition of Fig.1(B) and (C) is displayed in Fig.1(D). The darker regions
of Fig.1(D) clearly correspond to the intersection between the parts of the graph
with ¢ < z and ¢ < y.

The size function £,(x,y) (see Fig.1(D)) can be computed as the number of
distinct regions in light gray which have a segment in common with at least one
region in dark gray. In mathematical terms, £,(z,y) equals the number of con-
nected components of the set ¢~!((—o0,y]) which contain at least a point of the
set ¢~ 1{(—o0, z]). Hence, in the specific example of Fig.1(D), £, = 2 since only
the leftmost and rightmost regions in light gray confribute to £,,.

Figure 1(E) shows the same construction of Fig.1(D) for a different choice
of (z,y). For (z,y) ranging over the real plane (with < y) an integer valued
function £ = £,(z,y) is obtained. The graph of £, with = and y which range in
the horizontal and vertical axis respectively is reproduced in Fig.1(F").
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Let us briefly recall the main results of the theory. A first fundamental result
of the theory ensures the finiteness of a size function within the triangular region

max}
]

T, ={(z,9): ™" <z<y<p
with ™" and ¢™** the minimum and maximum of the measuring function ¢
respectively. Moreover, the normalization

('O P ‘,oirill'l
{pmax s [Pmin

ensures that the size function {3, computed within the triangular region

p =

Ty = {(2,9):0< 2 <y <1},

is invariant for scale transformation.

Second, it can easily be proved that a size function £,(z,y) is nondecreas-
ing with #, nonincreasing with y, and continuous on the left in both z and y.
Consequently, the restriction of a size function along a line of constant z or y is
always monotonic (see Fig.1(F), for example) and the entire function piecewise
constant. Furthermore, the pointwise computation of a size function in the region
T, is usually redundant and unnecessary. All the information about a size function
{, resides in the location and value of the jumps of £, along the horizontal and
vertical direction of the real plane.

Third, let us describe the extension of the theory to the discrete case. Let us
sample the measuring function ¢ of Fig.2(A) at a finite number of points p* <

. < p' < ... < p". Furthermore, let G be the graph whose vertices are the
points p* and whose edges connect adjacent points (see Fig.2(B)), and G,<, the
subgraph of G naturally induced by the measuring function ¢ (see Fig.2(C')). In
this discrete setting, the size function £, induced by the measuring function ¢ is
defined as the number of connected components of the graph G, <, which contain
at least a vertex with ¢ < z (see Fig.2(C)).
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Figure 2: Discrete size function. (A). The graph of a measuring function ¢ in
the continuous case. (B). The graph G discrete approximation of . For better
visualization, only a few vertices of the graph are displayed. (C'). The subgraph
Gy<y. The open circles mark the vertices with ¢ < 2. (D). The gray value
encoded size function £, with the corresponding white bands (see text for details).
The gray code 1s shown below.

It can be shown that the estimates of a size function £, can be divided into
two groups [8]. The estimates of the first group are known to be equal to the
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exact values of the continuous case. For the size function £, induced by the
measuring function of Fig.2(A), these estimates are reproduced in Fig.2(D). The
monotonicity properties of a size function ¢, make it possible to interpolate the
values of £, between the points of the mesh.

The white bands within the triangular region T,, of Fig.2(D) identify the loca-
tions of the estimates of the second group. Intuitively, the white bands account for
the possible difference between the size functions of two measuring functions which
happen to have identical sampling. Interestingly, these differences are localized in
the neighborhood of the lines of discontinuity of the size function computed from
the sampling points only. Hence the white bands can be thought of as regions of
uncertainty for the “true” size function. Due to the monotonicity properties the
uncertainty on £, is more on the location of the discontinuities than on the actual
values.

The actual extension of these regions of uncertainty can be determined in terms
of the modulus of continuity of the measuring function €,(6) [8]. If a size function
is computed at a sufficiently high resolution, the white bands can be obtained by
thickening each line of discontinuity in the diagram of the discrete size function of
an amount equal to €,(6), with & equal to the maximum sampling distance. This
is the procedure employed to generate the uncertainty bands of Fig.2(D). An
algorithm for the computation of a size function was described in [11]. In essence
the algorithm computes £, on a mesh of equally spaced points (z,y) within the
triangle T,.

Finally, let us comment on the previous presentation of the theory. The theory
of size functions was developed for the description of shape by means of topological
tools [7]. In particular, in the original interpretation, the edges of the graph G
were induced by the topological properties of the underlying continuous shape. In
essence, the graph (G was a discrete approximation of the viewed shape. Since size
functions depend critically on the topological structure of the graph @, it is evident
that the implementation of the theory proposed in previous papers [9, 10] was not
stable with respect to changes of the topological connections of & due to edge
fragmentation. In the next section a one parameter family of measuring functions
which can be computed directly from the edge map of the viewed shape, with no
assumption about the topological connections of the edge points, is described.

3 Shape representation

According to the proposed framework the representation of shape is based on the
definition of certain functions, named measuring functions. Unfortunately, the
theory does not provide formal tools to determine measuring functions, nor to
compare the representations of the same shape that can be obtained by means
of different measuring functions. Therefore, the search for measuring functions
must be carried out heuristically. Let us illustrate the empirical principles that
were employed in the search for measuring functions on a specific problem: the
representation of the alphabet of the sign language.

Figure 3 illustrates the edge maps of the signs of the alphabet of the sign
Janguage performed by the same subject from “a” to “y” (the “z” sign requires

the temporal dimension and has not been considered). Visual inspection of Fig.3
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suggests that an adequate measuring function should not be invariant for rotation
over the image plane (see the “k—v" and “d-p” sign pairs for example).

Figure 3: The alphabet of the sign language. The edge maps were extracted by
means of standard edge detection techniques from real images. All the signs were
performed by the same subject.

Let us describe a measuring function not invariant for rotation which was found
to be adequate. The edge map of the sign of Fig.4(A) is extracted and enclosed
with the rectangular box shown in Fig.4(B). For each point p of the horizontal
segment through the center of the rectangular box, let h(p) be the distance between
p and the furthest edge point which lies in the vertical strip centered in p shown
in Fig.4(B). Then, the function

h(p) if the strip is nonempty

Ho(p) =
0 otherwise

can be thought of as a measuring function. The graph of Hy = Hy(p) for the
edge map of Fig.4(B) is displayed in Fig.4(C). The induced size function £y, is
reproduced in Fig.4(D). Notice that the ad hoc definition of 7y at the points
below the horizontal segment ensures that £, looks only at the portion of shape
lying above the horizontal segment through the center of the rectangular box.

The measuring function Hy was used to generate the size functions of the
different signs. It was found that the size function {g, is (a) usually tolerant
to small changes of the apparent orientation of the viewed signs, and (b) largely
insufficient to distinguish between all the different signs.

On the other hand, it is clear that the size function £y, is tuned to a particular
direction of the image plane. In order to produce size functions able to distinguish
between the different signs, it was found convenient to regard Hy as a particular
case (the case f = 0) of a family of measuring functions indexed by the angle #
with 0 < 8 < 360°. A generic measuring function of the family, Hy, is tuned to the
direction # and was computed in two steps. In the first step, the edge points were
rotated clockwise of an angle 8 about the center of the rectangular box enclosing
the sign. In the second step, the function H, was computed on the rotated edge
points. An example of ¢y computed for § = 0°,30° and 120° for an “I” sign is
shown in Fig.5.
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Figure 4: A measuring function not invariant to rotation. (A). An image of a “k”
sign. (B). The edge map of the sign of (A) obtained by means of standard edge
detection techniques and the geometric construction for the computation of the
measuring function Hy. (C'). The graph of the measuring function Hy relative to
the edge map of (B). (D). The induced size function (g, .

Since for each choice of @ the measuring function Hy conveys little informa-
tion about the viewed sign, it is legitimate to ask whether the shape information
encoded by the collection of measuring functions Hy is sufficient to discriminate
between the different signs. Empirical evidence of the “completeness” of the fam-
ily Hy for a particular sign is shown in Fig.6. Figure 6(A) displays the original
edge map of a “p” sign. Figure 6(B) reproduces the set of “furthest edge points”
for # = 0 and associated strips relative to the edge map of Fig.6(A). Figure 6(C')
shows the set of “furthest edge points” for all the used angles. The fact that the
edge map of Fig.6(C) appears to be a good approximation of the outer contour
of the edge map of Fig.6(A4) indicates that the family of measuring functions Hy
takes into account the relevant shape information contained in the viewed sign.

Let us now discuss the construction of the devised recognition scheme and the
obtained experimental results.

4 Shape recognition

The devised recognition system, similar to the system described in [10], consists
of four stages. In the first stage, the image is acquired and an edge map of the
viewed sign is produced. Since size functions can be computed independently of
the topological structure of the obtained edge map, this step is considerably less
critical than in the previously proposed implementation [10].

In the second stage the obtained edge map is given as input to the algorithm for
the computation of the size functions £5, with # = 0°,15°,...,330°. At the adopted
resolution, each of the 24 obtained size functions £y, consists of 120 integer values
computed on a mesh of equally spaced points within the triangular region T, .

In the third stage the information contained in the computed size functions is
used to produce a feature vector v. For the sake of simplicity and in the attempt
to reduce the dimensionality of the computed data, it has been decided to encode
the the information contained in the size function ¢g,, with 8 = 7-15° in the j-th
component v; of a 24-dimensional feature vector, with j = 0,1,...,23. Empirical
evidence suggested that the number of 1s in each of the computed size functions was
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Figure 5: A family of size functions for sign language recognition. (A). An image
of an “1” sign. (B). The edge map of the sign of (A4) obtained by means of standard
edge detection techniques and the geometric construction for the computation of
the measuring function Hy. (C') and (D). The subset of the edge points used for
the computation of Hg with # = 0° and the induced size function. (E) and (F).
Same as (C') and (D) with ¢ = 30°. (G) and (H). Same as (C') and (D) with
& = 120°.
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Figure 6: Empirical evidence of the “completeness” of the family of measuring
functions Hy. (A) Edge map of a “p” sign. (B) and (C') See text.

sufficient to characterize each component. The effectiveness of this considerable
data reduction is mainly due to the redundancy of the produced representations.
Clearly other choices are possible and no claim of optimality is made about this
particular choice. Ultimately, the validity of this choice was assessed a posteriori.

In order to smooth out the effects of the coarse angular sampling, it was found
convenient to compute the family of size functions £y, at a finer angular resolution,
# = 0°,5°,...,355° Consequently, the j-th vector component, j = 0,1, ...,23, was
actually obtained as the average number of 1s in £, with § = j-15°, j - 15° 4+ 5°,
4-16%4 10°,

In the fourth and last stage the feature vectors are used to classify the viewed
signs. A number of images were processed offline and the obtained feature vectors
grouped to form the training set. The k-nearest-neighbor rule was employed for the
classification stage. Let us now discuss the results of the performed experiments.
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5 Experiments

Five series of experiments were performed. In each series a different training set
was tested by means of 20 sequences of unpreviously seen signs performed by two
different subjects S1 and S2 (10 sequences each). The first three training sets,
T1,7T2, and T3, consisted of 10 sequences of signs from “a” to “y” (i.e. 250 signs
for each training set). The training set T'l consisted of 10 sequences performed
by the subject S1, T2 of 10 sequences performed by the subject S2, and T'3 of 5
sequences from 7'1 and 5 from 7'2 respectively. Finally, the training sets 74 and
T5 consisted of 6 sequences from T'1 and T2 respectively. The k-nearest neighbor
classification rule was applied with k& = 3.

The recognition errors relative to each of the five training sets are displayed
from left to right in Tab.1. For each of the signs displayed in the leftmost column,
the number of errors relative to T'1,...,T5, each tested by means of the sequences
performed by S1 and S2 respectively, is reported. The letter in parentheses refers
to the most common erroneous classification. It can easily be seen that if the
training and test set consist of signs performed by the same subjeet (T'1 — S1,
T2 — S2) the average recognition rate is 98% for both S1 and S2. The percentage
drops to about 82%, if the system must recognize signs performed by unpreviously
seen subjects (T'1 — 52 and 72— S1), but is again well above 90% for both 51 and
S2 if the training set 1s 73 (that is, a mixture of signs performed by S1 and S2).

Notice the overall graceful degradation of the recognition rates when smaller
training sets are used, namely T4 and T5, (about 90% and 70% if the training and
test sets are from the same subject and different subjects respectively).

A few comments are in order. First, it is interesting to note that, when larger
training sets were used in the experiments, namely T'1, 72, and T3, 9 signs (“c”,
“7, 97,5k, “o, tpT, VT, w7, “y7) were always classified correctly in all the
performed experiments. If the training and test set refer to the same subject, 20
of the 25 signs were always classified correctly in all the performed experiments.
Second, the vast majority of the errors involves signs for which the encoding of
information about the internal edges appears to be important. Third, the style of
signing seemed to be critical for a few signs only (the “I” and “m” for S1 and the
“d” and “I” for 52).

The entire process (image acquisition, size function computation, and classifi-
cation) takes less than 1 second on a SPARC Station 10 when a training set made
of 250 feature vectors is used. The image acquisition requires more than 50% of
the total time.

6 Conclusions

Finally, let us summarize the obtained results. This paper presented a scheme for
the representation and recognition of static hand gestures. The scheme is based
on the concept of size function, an integer valued function of two real variables
which encodes information about the qualitative and quantitative properties of
the viewed shape. Unlike a previously proposed version, the presented scheme can
handle shapes described by fragmented edge maps. The scheme has been tested
on the problem of the recognition of the signing alphabet.
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Table 1: Sign recognition from the training sets 7'1, T'2, T'3, T4, and T'5 (see text).

T1 T2 T3 T4 T5
S1 52 S1 52 S1 52 51 S2 S1 S2

a | 1(s) 9s) | - 2t) | - 2As) | - 9t | - 2s)

b | - 16| - < - oam | - | - 1

c - - - —~ 3(1) - -

dl - a4 - - | - ) | s6) 1)

e = 1) - 1260 - [2m) - [20§) -

e e e N E O R

g - 4(h) S = = 1(h) | 1(h) 2(h) - -

h | - - | Mg - | 2Ae) - [ Ue) | 3(e) -

i 30) - |30 - |3 1G) | 3G) -

] - - - — 7(a) 5(m) | - -

k = = = |4y = | = <

L= 8(k) | 9(c) = - 2(k) | (k)

m | I(n) 5(n) | 9(n) = I(n) - I(n) 7(n) | 9(n) -

n | 1(m) I(m) 2(m) | 1(m) 5(m) | I(m) 5(m) | 2(m) 5(m)

S e e O 2(h)

Pl - - | - . " = = = =

q| - Mh)y|[2p) - |Up) - |2g) Ub) [ Ux) -

r | 1(u) 4(u) | 1(u) = 1(u) 4(u) | L(u) 5B(u) [ L(u) 2(u)
= = 3(a) 1(a) 2(a) = - 6(a) 1(3)
= — 3(s) = 4(s)  2(e) | 3(s) = 4(s)  1(e)

u | I(r) 4(b) | 3(r) 1(r) | 1(xr) 1(b) = 3(b) | 7(x)  2(x)

v - : - - - 4(w) - 2(w)

w - - - - - - 1(v) 2(v) B

€l = = |8 = =18 | 2k) -

v| - - | = - - - | - -

The obtained experimental results indicate that the system is able to perform
recognition of the viewed sign from single images with very good percentages of
success and reliability at the rate of 2H z, and 1s almost insensitive to the apparent
shape changes induced by edge fragmentation and differences in edge localization,
hand pose, and style of signing. Preliminary results indicate that the choice of the
family of measuring functions is not critical [12].

It is concluded that size functions can be very useful for the analysis of natural
shapes for which a geometric model can be difficult to obtain.

This research has been partially supported by the B.R.A. Project VIVA.

Laura Giovanelli checked the English.
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