
Perspective Alignment Back-Projection
for Monocular Tracking of Solid Objects

Gilbert Verghese
Department of Computer Science

University of Toronto
6 King's College Road

Toronto, Ontario, Canada M5S 1A5
email: verghese@vis.toronto.edu

Abstract

A major issue in computer vision is the interpretation of three-dimensional
(3D) motion of moving objects from a stream of two-dimensional (2D) im-
ages. In this paper we consider the problem in which the 3D motion of an
object corresponding to a known 3D model is to be tracked using only the
displacements of 2D features in the stream of images. There are three main
components in any solution to this problem: 2D feature computations, 2D
to 3D back-projection, and filtering for noise removal and prediction. In
the past five years, most of the research in this area has dealt with filter-
ing and prediction, and some has dealt with 2D feature computations. In
this paper, we identify sources of tracking error in the back-projection meth-
ods and present a new approach which improves tracking confidence. This
new back-projection approach, called Perspective Alignment, has been im-
plemented, tested, and compared to the conventional locally-linear approx-
imation method. The new algorithm and the results are briefly discussed.
Perspective Alignment may also have implications for recognition systems
which employ back-project ion.

1 Deficiencies in Current Motion-from-Structure
Algorithms

A major problem in vision is the computation of a real world object's motion from
a stream of images. It is often assumed that fixed structural properties are used to
identify an object, and changing state properties are used to determine its motion.
The problem of maintaining an accurate representation of a known object's chang-
ing state using features found in a stream of images is called motion-from-structure
[Ullman 79]. In his famous thesis, Ullman noted that the theory of structure from
motion fails to explain many psychological apparent motion phenomena, and that
the motion-from-structure process must be included in any complete theory of
motion understanding. Any system for monocular tracking of known 3D objects
must solve the motion-from-structure problem.

As the name suggests, tnolion-from-structure assumes that object shape is
known and that relative object motion in space is to be computed. Features
denote localizable spatial patterns in 2D images whose frame-to-frame image dis-
placements are assumed computable. Objects denote rigid bodies with six degrees

BMVC 1993 doi:10.5244/C.7.22

218

of freedom. There is a complex non-linear relationship between projected image
feature displacements and 3D object degrees of freedom (motion parameters).

At any instant, the features in an image are formed by the perspective projec-
tion of real-world object features. However, there is a loss of depth information in
the perspective projection process. Therefore the reverse process, back-projection
[Lowe 85], is difficult to perform. Nevertheless, under certain conditions, the spa-
tial configuration of a set of image features can fully determine the pose of a model
of the object. This is the key to motion-froin-structure.

Several motion-from-slructure methods use some form of 3D pose hypothe-
sis or voting algorithm whereby best-fitting solutions are chosen (e.g. Normal-
ized Fourier Descriptor Method of [Wallace and Mitchell 80], Clustering Method
of [Thompson and Mundy 88], etc.). These methods currently have prohibitive
hardware requirements. The imago comparisons and Hough transforms used for
match measurement are computationally expensive, and hardware requirements
depend directly on object complexity. These methods generally have false neg-
atives: The search granularity can cause solutions to be overlooked, as can the
subspace projections used in Hough transforms. Results of coarse matching, when
used, can be incorrect and therefore a source of false positives. The main prob-
lem with all these hit-or-miss algorithms is that they fail to define any measure of
model "closeness" to the imaged poses that could serve to direct the search toward
the solution.

Other methods use all-or-nonc back-projection processes based on locally lin-
ear systems (e.g. Dynamic Extended Kalman Filter Method of [Wu et al 89], Pre-
diction Error Feedback of [Dickmanns 90], etc.). There must be enough feature
information to compute all six degrees of object motion; otherwise the systems
soon lose track. They ultimately depend on the success of the Jacobian matrix
solution, which is underdetermined when there are not enough features. These
methods generally have false positives since locally linear approximations are in-
correct when rotations are large. See the following section for results of a stability
analysis of the standard iterative back-projection operation.

2 The Perspective Alignment Approach

The existing 3D visual tracking methods lose track of objects unnecessarily. They
lose track if some global match method (e.g., image correlation, clustering, matrix
solution) fails. However, it may be possible to keep the model's correspondence
with one or more local features despite the lack of a global match. The method
we propose can drastically improve model-based tracking ability.

We have developed an iterative perspective alignment algorithm which deter-
mines as many degrees of freedom of object pose as possible using whatever image-
model point and line correspondences tire available. Point and line correspondences
are considered in sequence (e.g., in order of reliability and saliency). Analytic re-
lationships between real-world features and their perspective projections are used
to allow each point or line in the sequence to contribute the maximal additional
geometric constraint to the previous constraints on object pose. Thus, as many de-
grees of freedom as possible are determined given the available feature information.
We know of no other tracking system that employs this strategy.

Orthographic alignment of three points [lluttenlocher and Ullman 87] has been
used for pruning tree-search in recognition. Orthographic alignment is less com-

219

plex than perspective alignment: [Iluttenlocher and Ullman 90] show that the or-
thographic back-projection problem can be posed as the solution of a quadratic
polynomial. However, [Fischler and Bolles 81] showed that the solution of a quar-
tic is required for perspective 3-point back-projection. [Haralick et al 91] compare
the various known methods for perspective 3-point back-projection. Their stabil-
ity analysis turns up singularities and instabilities attributable to the solution of
high degree polynomials.

Our perspective alignment solution method does not use a general quartic
solver. It directly solves the perspective back-projection problem by a series of
restrictions of object pose to a sequence of feature alignment constraints. The
perspective alignment algorithms for the special case of edge features are described
in this paper. Following that description is a discussion of the results of an im-
plementation of perspective alignment for edge features and a comparison with
the results of previous back-projection methods. The local perspective constraints
used to develop the alignment algorithms are described first below.

2.1 Local Perspective Constraints from Image Points and
Line-segments

Let the camera coordinate frame be (X,Y,Z), with image plane Z = 1. A given
point feature in the image plane and the camera origin define a 3D ray from the
origin in the direction of the image point. In order for the associated model point
to align with the image point, the model point must lie along this ray.

See Figure la. In order for model point v\ to align with image point t'i, Vi
must lie on line /j formed by the camera origin and ?i. This is the perspective
alignment point constraint.

See Figure lb. A given image line-segment feature, if correctly paired with a
model edge, arises from the projection of a sub-segment of an object edge. We
should align the model in such a way that the model edge's projection covers this
image segment. This simple observation gives rise to three useful constraints.

The line-segment in the image plane and the camera origin define a plane in
space. The model edge should lie in this plane. If the model edge is parallel to
this plane, then the model edge satisfies the parallelism constraint. If the model
edge intersects this plane, then the model satisfies the proximity constraint. The
model should also lie in the Z > 0 half-space since the object is in front of the
camera. Furthermore, if the origin is a general viewpoint, then any ray from the
origin through a point of the image line-segment should intersect the model edge.
The set of all such rays forms a planar sector which must be crossed by the model
edge. By this we mean that every point of the image line-segment should back-
project to a point of the model edge. This covering constraint may be violated
by accidental viewpoints and must therefore be used with care. In practice it is
usually subsumed by constraints from other features.

Above are the basic geometric constraints used in the perspective alignment
algorithm. The algorithm is a decision tree with no backtracking. As we step
through the decision tree, we add constraints which further instantiate the model's
degrees of freedom. If all the model's remaining degrees of freedom become instan-
tiated at some depth, then the pose of the model is fully determined. If this does
not occur before we finish processing a leaf node, then we are left at a partial solu-
tion which maximally constrains the model. This is preferable to back-projection

220

(a)

camera origin

imagepoinli'i

image plane

* • model point V]

(b)

camera origin

image edge

image plane

planar sector w\
in plane P

Figure 1: (a) Point constraint, (b) Line constraint.

failure. Previous back-projection methods are incapable of producing such partial
solutions.

We will not exhaustively explore the perspective alignment decision tree in this
paper. For purposes of comparison to other algorithms it is sufficient to explore
the path associated with edges only.

2.2 Perspective Alignment Algorithms

In this section we give perspective alignment algorithms for edge features. There
are four cases along the edge-only pal li of the decision tree. In each case, a new edge
is considered, and its constraints are added to the previously satisfied constraints
on object pose. Pose is overconstrained in the final case; hence its purpose is to
incorporate all additional edges.

One Edge

See Figure lb. The plane P is defined by an image edge (i.e. line-segment)
and the camera origin. In order for this image edge to align with the model edge
Ci, ei must lie in the plane P and should cross the planar sector. That is, every
point of the image edge should back-project to a point of the model edge if the
camera origin is a general viewpoint. We define the coordinate frame $ such that
the following are true: $ r _ y = P; the perpendicular projection of model edge ei

221

(a)

plane Q

(b)

cone of
rotation

/ • • "V.
/<t> \ •-••.. origin di-

normal n 2

Figure 2: (a) Two Edges proximity constraint, (b) Two Edges parallelism con-
straint.

on P lies along the axis <&y (if necessary we move the model so that t\ is not
normal to P); and an endpoint p\ of ej lies along $ 2 .

In order to move e\ into P, we first translate the model by the vector from p\
to $(0, 0, 0). We then rotate the model about the axis <frx such that p2 lies on $ y .
The model can now be rotated and translated in order for e\ to cross the planar
sector. By restricting these model translations to be within P and these rotations
to be about axes perpendicular to P, we guarantee that the solution maintains
the constraint that e\ lies in P.

Two Edges

In this case there are two model edges ei and 62, which we must align with
their respective image segments. These image segments and the camera origin
define planes P and Q. The line / is the intersection of planes P and Q.

We begin by applying the first line-segment's local perspective constraint on
the first model edge as described in the single edge case. This places ei into P. See
Figure 2a. In that case, one rotational and two translational degrees of freedom
still exist for this edge, (0, ux, <*>,,). Two constraints will now be used to align e-x
with its image segment: parallelism and proximity.

The parallelism constraint is applied first. For a given value of 0, we determine,
as follows, whether it is possible to rotate the model about ej to make c?. || Q.
Let /i and I2 be the direction vectors of e\ and en, respectively. As shown in
Figure 2b, we define a to be the smallest angle formed by l\ and plane Q (a is the
complement of the acute (or right) angle between /1 and 113, and though Q passes
through the origin, it is shown to the right for clarity). Define /? to be the acute

222

(or right) angle formed by ly and U- Note that /? is fixed by the model's rigidity,
while a is determined by 0. It should also be clear by visualizing plane Q at the
origin £2, that a < (3 ifT the model can be rotated about ei to make e? parallel to
Q. More specifically, if a < 0, then there are two such rotation solutions, <j>\ and
<j>2, and if a = /?, then there is a single such rotation solution, <j>y — 4>2- Thus we
determine for which values of 0 the parallelism constraint is satisfiable.

There are always at least two values of 0 for which the parallelism constraint
is satisfiable, namely the values for which a — 0, i.e., for which ei is parallel to Q.
The constraint is also satisfiable in two symmetric ranges of values about these two
trivial 6 solutions. We simply choose the solution which is closest to the model's
previous pose.

Now let us consider the proximity constraint for e-> (Figure 2a). To satisfy this
constraint without violating any previous constraints, we must translate ei in a
direction parallel to plane P. Since the goal is to place e^ into Q, we choose a
direction perpendicular to line /, the intersection of P and Q. If the parallelism
constraint for t-, was satisfiable, then the proximity constraint is also satisfiable.

Thus far, parallelism and proximity constraints were used to align two model
edges with their respective image edges. That is, ey and e^ have been placed into
planes P and Q. At least two degrees of freedom of model pose remain, leaving us
at one of an infinity of satisfactory solutions. For example, translating the model
by any vector parallel to line / would not violate any of the constraints used thus
far. We could use such a translation to ensure that the model is in front of the
camera. We could also use translation to satisfy the covering constraint at this
time if we can verify that the origin is at a general viewpoint.

Th ree Edges

See Figure 3. In this case there are three model edges ey, e-x, e^, which must
be aligned with 3 image segments that define 3 respective planes with the camera
origin, py, pi, P3- Our alignment, algorithm will be: 1) place ey into py\ 2) find
model rotations that will make eo parallel to p-> and e^ parallel to p^; 3) translate
the model so that the edges lie in their respective planes, and measure the goodness
of fit; and 4) choose the best fitting solution.

We begin by applying the first line-segment's local perspective constraint on
the first model edge as described in the single edge case. This places ey into py.
If we subsequently restrict ey to py, then the model has two rotational degrees
of freedom, 9 and <j>, where 9 represents rotation about ny (pi's normal), and <j>
represents rotation about ei, as shown in Figure 3.

We use these two rotational model degrees of freedom, 9 and <j>, to rotate the
model in the second step of our alignment algorithm. For a given value of 9, we
can determine as follows whether there are values of 4> for which eo || pi- Let a be
the complement of the acute (or right) angle formed by the normals, ny and 712,
of the two planes py and p^. Let /? be the acute (or right) angle formed by ny and
the direction vector of the model edge e2. If a < /?, then there are two values of
<f> (which coincide if a = /?) for which e-> || p-j. We obtain e'3 and e3' by rotating e$
by 9 and then by each value of 4>. If e^ || p^ or e'£ || P3, then a solution for step
2 has been found. However, due to modelling error and noise, there is not likely
to be an exact solution. Thus, we search for local minima of the two functions
le3 • "3! ar)d le3 • "3! a s functions of 9 in the range for which a < /?. All these
local minima are considered in the next step of the algorithm.

223

plane p 3 and
normal n 3

line/

Figure 3: Three Edges

The next step of the algorithm translates the model poses associated with
the local minima obtained in the previous step in the two remaining degrees of
freedom to attempt to place e2 in p? and e3 in p3. These remaining degrees of
freedom are translations in the plane pi. The first translation vector, to place t2
in P2, is perpendicular to the line /, while the second translation vector is parallel
to the line /. The pose associated with each local minimum from the rotational
alignment step is thus translated in two directions to produce a candidate pose
solution. These candidate solutions are compared according to the proximity of
the projected model endpoints to the image segment endpoints, and finally the
best solution is chosen.

More than Three Edges

Three edges are usually sufficient to solve for all six degrees of freedom. How-
ever, constraints from additional edges may be "averaged into" the 3-Edge com-
putation as follows. Assume there are N edges, N > 3. In the rotational
alignment step of the algorithm, rather than using the local minima of the two
functions |e3 • n3| and |e3' • na\, we use the local minima of the functions

£ i l 3 \e'i • ni\ I (N ~ 2) a n d Ei la Wi • nA / (N - 2) - I n t h e translational align-
ment step of the algorithm, rather than translating the model parallel to / by the
displacement c/3 that places ey in py, we translate the model parallel to / by the
average displacement JZi=3 c'> / (^ ~ ̂)-

Use of more than three edges adds slightly to the computation time of the
algorithm but adds precision and therefore smoothes the model's tracking motion.

Some special case processing is required when the model edges used are parallel

224

Figure 4: Shown here are two image frames, among thousands used, from the
target simulation of each object.

or perpendicular to one another. These anomalies can cause degrees of freedom
to appear or collapse and therefore require additional solution processes to those
described. A decision sub-tree is used to identify and process all these special
cases. They will not be discussed here.

The Perspective Alignment algorithm has proven to be very fast and robust.
It is also free of singularities and instabilities. The following section compares it
to the conventional iterative back-projection procedure.

2.3 Simulations and Analysis
This section contains results of empirical tests done on the conventional iterative
back-projection procedure and on the perspective alignment algorithm. It was as-
sumed that an initial correspondence between the model and the object coordinate
systems was known and that any object motion could then occur.

The conventional technique requires computation of the partial derivatives of
the 2D line-segment parameters with respect to all viewpoint parameters [Lowe 85].
The technique uses Newton's method to decide how to update model parameters.
First the partial derivatives with respect to each of the six model parameters are
evaluated at a given projected model endpoint. The sum of each partial deriva-
tive times the respective unknown model parameter error correction value is set
equal to the point's perpendicular distance to the image line. Each image-model
segment pair thus provides two equations (one for each endpoint). This procedure
is repeated for three or more image-model segment pairs. Gaussian elimination
with row pivoting is used to solve for all six model parameter adjustments. Least
squares techniques are used if more than three segments are available. After this
system of equations is solved, the model parameters are all updated. This consti-
tutes one iteration of Newton-Raphson convergence.

In order to simulate 2D feature-detected images, wire-frame models were pro-
jected and clipped. Typical examples are the two views of a Blocks World S, an
umbrella, and a stapler shown in Figure 4.

A random smooth motion sequence was used to simulate the six degree-of-
freedom motion of the target object, which was easily trackable by human ob-
servers.

A SUN SPARC station 1+ was used to implement and run the simulation and
back-projection loops. The loops were synchronized so that one iteration of simu-
lation was followed by one iteration of back-projection for model pose adjustment

225

by the tracking algorithm. Back-projection was considered unsuccessful only if the
iteration diverged. In this case, a counter was incremented to measure tracking
errors, the model was immediately reset to correspond with the target, and the
simulation continued.

To simulate partial occlusion, we varied the number of features used for back-
projection from 7 to 3, and to simulate noise and spatial aliasing, we varied the
number of feature coordinate mantissa digits from 5 to 1. The longest projected
segments were always selected in order to avoid the instability resulting from short
features. The mantissas of the selected image segments' endpoints' coordinates
were truncated to the allowed precision, and all other numbers and calculations
used double precision. For each of the 25 cases, we recorded the number of tracking
errors that occurred over a period of 10 real-time seconds. The results for three
objects, the Blocks World S, the umbrella, and the stapler, are shown in the table
below:

dig-
its
5
4
3
2
1

II
Number of Tracking Errors in a 10-second period IIII

Blocks World S
features

7

0
2
3
3
6

6

4
3
5
9
9

5

8
18
12
24
23

4

49
99
107
100
111

3

101
114
131
174
172

Umbrella
features

i

0
0
0
2
2

6

0
1
2
2
4

5

0
3
4
8
8

4

20
28
50
34
52

3

23
51
69
72
91

Stapler
features

7

1
2
7
9
11

6

3
11
12
25
27

5

21
27
31
46
45

4

101
149
157
192
198

3

142
182
244
279
298

The variation between objects is due to their varying complexities. Some ob-
jects took longer to project, and there were more features for the tracker to choose
from. Hence the simulation was slower for these objects, and they had fewer er-
rors overall. The error frequency, i.e., the percentage of back-projection attempts
that ended in failure, varied from 0% for the 7-feature-5-digit case to 34% for
the 3-feature-l-digit case. The error frequency was largely object independent.
Therefore the error count variation across objects is not important.

The variation due to number of features and feature precision is more interest-
ing. For all objects, tracking is reliable only when there are 6 or 7 features and 3
to 5 digits of precision. The most remarkable instability is due to reduction in the
number of features. The linear system of equations is underdetermined for any
number of features below 3, and although the given numbers of features suffice
for pose solution, the results are unreliable for 3, 4 and 5 features, regardless of
the features' coordinates' precision. Qualitatively, the model leaps away from the
smoothly moving target, more often when there are fewer features, but it follows
very smoothly when there are 7 features.

We ran the same simulation for the perspective alignment algorithm. Since the
algorithm cannot diverge, we used a more stringent tracking criterion. Failure to
align at least 2 features was considered tracking error. Note that alignment of 3
features is often precluded by the simulated spatial aliasing. The current version

226

of the alignment algorithm produces 0 tracking errors in all 75 of the 10-second
tracking periods. Qualitatively, the model jitters slightly as it follows the target,
more so with less precision, but it never loses track.

The above results clearly indicate that the perspective alignment algorithm
is more reliable than the conventional method for tracking 3, 4 or 5 features.
The conventional method can produce smoother results when 6 or 7 features are
available.

We conducted two additional simulations to compare the algorithms in situa-
tions of large inter-frame rotation. Following that, we conducted two more simu-
lations to test the hypothesis that underdetermination may be the main cause of
the conventional algorithm's tracking failures.

To compare the algorithms in situations of large inter-frame rotation, we per-
formed essentially the same simulation as above, but each rotation of the target
was 30°. The perspective alignment algorithm had no trouble with large rotations,
producing no tracking errors whatsoever. The Newton-Raphson iteration, on the
other hand, had an average error frequency of 81% when 3 features were used
and 64% otherwise. This might have been expected as a result of the local linear
approximation used by the conventional algorithm.

Two more simulations were done to test the hypothesis that underdetermina-
tion may be the main cause of the conventional algorithm's failures. Even when
3 or more features are used, it is possible that they do not provide independent
constraints on pose. This situation would manifest itself in vanishing pivot ele-
ments during the Gaussian elimination. We added code to detect these events and
to correlate them with tracking error events. Then we re-ran both the small and
large rotation simulations with the conventional algorithm. Underdetermination
occurred between 0 and 5 times in each 10-second interval, whereas tracking errors
occurred hundreds of times1. Therefore most of these errors were not caused by
underdetermination. Conventional methods have been combined with filtering to
smooth over underdetermination events. However, they occur for extended peri-
ods when there is persistent occlusion, or when the image-model feature pairing is
incorrect. Filtering is not useful in these situations.

In summary, the conventional Newton method fails for extended periods when
few (1-5) features are available or when rotations are large. The perspective align-
ment method does not fail in these situations. Rather, it produces a maximally-
aligned result in case of underdetermination, and it finds a complete pose solution
when possible.

3 Conclusions
This paper motivates and introduces the perspective alignment algorithm for back-
projection. It was designed primarily to address a shortcoming of all other back-
projection methods: They do not provide partially complete solutions in under-
constrained situations. Partial solutions are essential in order to avoid the compu-
tational complexity of re-recognition when attempting to track real-world objects.

'Graphical output from this test showed that tracking errors occurred over contiguous inter-
vals of time during the small inter-frame rotation simulation. The conventional method thus has
systematic difficulty with certain feature configuration geometries. This phenomenon is a topic
of future examination.

227

Several simulations were run which clearly demonstrate that the perspective align-
ment algorithm is more robust than the conventional local-linear approximation
method for back-projection. In summary, the conventional method systematically
fails for certain ranges of orientations when there are few features available, while
the perspective alignment method succeeds for all orientations and numbers of
features.

The perspective alignment method maintains model correspondence with as
few as 1 or 2 image features. The inability to recover lost features is a short-
coming of the current algorithm. When additional features become visible, then
their pairings with the correct corresponding model features should be recovered.
This ability is expected to raise confidence in perspective alignment tracking sys-
tems to a level which was unattainable with previous (all-or-none) back-projection
methods.

The implications of perspective alignment for recognition are also under inves-
tigation. The usefulness of orthographic alignment for interpretation tree search
in recognition has been proven by [Iluttenlocher and Ullman 87, 90]. Similar ar-
guments apply to the perspective alignment algorithm. Therefore our work may
be viewed as the perspective counterpart to Huttenlocher and Ullman's.

The raison d'etre for tracking is to maintain a representation of objects in the
world while avoiding the computational complexity of re-recognition. Image-model
feature pairing is a combinatorial problem, and each correct image-model feature
pair greatly reduces the complexity of the pairing problem. Therefore a tracking
system ought to maintain as many pairings as possible if it cannot solve for model
pose. Perspective alignment is the first method to achieve this.

Acknowledgements
I would like to thank Veronika Doma for her support and invaluable assistance

in typesetting this document, Trinity College Toronto for financial and logistical
assistance during the term of my Donship there, and John K. Tsotsos for feedback
on previous versions of this paper.

References
[Bray 90] A.J. Bray. Tracking objects using image disparities. Image and Vision

Computing, 290(l):4-9, 1990.

[Burt et al 89] P. Burt, J. Bergen, R. Hingorani, R. Kolczynski, W.A. Lee, A. Le-
ung, J. Lubin, and II. Shvaytser. Object tracking with a moving
camera. In Proc. Workshop on Visual Motion, pages 2-12, 1989.

[Crowley et al 88] J. Crowley, P. Stelmaszyk, and C. Discours. Measuring image
flow by tracking edge-lines. In Proc. 2nd Int. Conf. Computer Vision,
pages 658-664, 1988.

[Dickmanns 90] E.D. Dickmanns. Visual dynamic scene understanding exploiting
high-level spatio-temporal models. In Proc. ICPR, pages 373-378,
1990.

228

[Fischler and BoIIes 81] M.A. Fischler and R.C. Bolles. Random sample consen-
sus: a paradigm for model fitting with applications to image analysis
and automated cartography. Graphics and Image Processing, 24:381-
395, 1981.

[Gennery 92] D. Gennery. Visual tracking of known three-dimensional objects.
Int. J. Computer Vision, 7(3):243-270, 1992.

[Haralicket al 91] R.M. Haralick, C. Lee, K. Ottenberg, and M. Nolle. Analysis
and solutions of the three-point perspective pose estimation problem.
In Proc. CVPIl, pages 592-598, 1991.

[Iluttenlocher and Ullman 87] D.P. Iluttenlocher and S. Ullman. Object recogni-
tion using alignment. In Proc. ICCV, pages 102-111, 1987.

[Iluttenlocher and Ullman 90] D.P. Iluttenlocher and S. Ullman. Recognizing
solid objects by alignment with an image. Int. J. Computer Vision,
5(2):195-212, 1990.

[Lowe 85] D. G. Lowe. Perceptual Organization and Visual Recognition. Kluwer,
Boston, 1985.

[Lowe 90] D. G. Lowe. Integrated treatment of matching and measurement errors
for robust model-based motion tracking. In Proc. ICCV, pages 436-
440,1990.

[Thompson and Mundy 88] D. Thompson and J. Mundy. Motion-based motion
analysis: Motion from motion. In R. Bolles and B. Roth, editors,
Robotics research: The Fourth International Symposium, pages 299-
309. MIT Press, Cambridge, Mass., 1988.

[Ullman 79] S. Ullman. The Interpretation of Visual Motion. MIT Press, Cam-
bridge, Mass., 1979.

[Verghese et al 90B] G. Verghese, K.L. Gale, and C.R. Dyer. Real-time motion
tracking of three-dimensional objects. In Proc. Robotics and Automa-
tion, pages 1998-2003, 1990.

[Verghese et al 90A] G. Verghese, K.L. Gale, and C.R. Dyer. Real-time, parallel
tracking of three-dimensional objects from spatiotemporal sequences.
In V. Kumar, P.S. Gopalakrishnan, and L.N. Kanal, editors, Parallel
Algorithms for Machine Intelligence and Vision. Springer-Verlag, New
York, 1990.

[Wallace and Mitchell 80] T.P. Wallace and O.R. Mitchell. Analysis of three-
dimensional movement using fourier descriptors. IEEE Trans. Pattern
Anal. Mach. Intell. PA MI, 2(4):583-588, 1980.

[Wu et al 89] J. Wu, R. Rink, T. Caelli, and V. Gourishankar. Recovery of the
3D location and motion of a rigid object through camera image (an
extended Kalman filter approach). In Int. J. Computer Vision, vol-
ume 3, pages 373-391, 1989.

