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Abstract

This paper presents a means of segmenting planar regions from two views
of a scene using point correspondences. The initial selection of groups of
coplanar points is performed on the basis of conservation of two five point pro-
tective invariants (groups for which this invariant is conserved are assumed
to be coplanar). The correspondences for four of the five points are used to
define a projectivity which is used to predict the change in position of other
points assuming they lie on the same plane as the original four. A distance
threshold between actual and predicted position is used to find extended pla-
nar regions. If two distinct planar regions can be found then a novel motion
direction estimator suggests itself.

1 Introduction
Classically the structure from motion problem has been seen as obtaining the dis-
tance from the camera optical center to points in the world from their motions in
a sequence of images. This approach stems from the fact that if the position of a
point within the field of view is known then the only piece of information left to
recover is the point's 'depth'. Individual depth estimates are noisy and sparse. This
makes looking for qualitative scene structure difficult or impossible.

The problems of recovering camera motion and scene structure are inextricably
linked [6], [4], [7] . If the motion of the camera (or equivalently stereo geometry) is
accurately known then it is straight forward to recover scene depth, once the corre-
spondence problem has been solved. Alternatively if the depths of scene points are
known then motion direction recovery is easy. Longuet-Higgins [5] derived a scheme
for recovering camera motion if the scene was planar or points within it were copla-
nar. The solution suffered from a two fold ambiguity and was not demonstrated on
real data. No a priori method was presented for determining whether or not points
were coplanar. A mathematically equivalent scheme was independently derived by
Tsai [14] with equivalence being shown by Faugeras in [2]. Most general methods,
though, return the depths of a series of points. By themselves these depths con-
vey little useful qualitative information about the scene. Authors have performed
Delaurnay triangulation on the points to provide a kind of surface. The surface
does not reflect the underlying surface of the scene and for the most part any depth
estimate derived from it will be wrong.

It is well known that the mapping between two projected views of a plane is
completely specified by a 3 by 3 transformation matrix [ll], [12]. The group of these
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matrices is called the projective group PGL(2). Members of this group have 8 rather
than 9 degrees of freedom. This means that a projectivity is completely specified
by four point correspondences if no three of the projected points are co-linear. If
a fifth point correspondence is available then 2 projectively invariant quantities are
defined. If these two quantities are not conserved between the two views then the
five points do not lie on a plane. Conic invariants have been used in a similar manner
in [3].

In this paper a simple test for planarity of sets of five points is derived. Implicit
in the test is an estimate of the variance in the position of points in an image.
This variance is used to provide an estimate of the variance in the values of two
'projective invariants'. Conservation of the values of the two invariants is taken to
mean that a set of five points lies in a plane. The accepted difference in the values of
the invariant between views is the linearised variance of the invariants themselves.

The above process provides groups of five points lying on possibly different
planes. Four of the five points are used to generate the projectivity associated
with the transformation of any point on the same plane as the set of five points be-
tween views. This transformation allows the new position of any point on the plane
to be predicted. The predicted position and the actual new position are compared.
A simple distance threshold, based on an assumed variance in the position of the
point undergoing prediction, is used to decide whether or not a given point lies on
the plane of the five points. This allows planar regions to be grown.

If two or more distinct planar regions have been found in an image then the
two projectivities associated with them may be used to recover unambiguously the
motion direction and the line of intersection of the planes in the image. Once the
motion direction has been recovered it is then possible to solve for the camera's
rotation and the normal of the planes. This does however require a calibrated
camera.

Section 2 defines the notation to be used in this paper. Section 3 details the
projective invariants used and the method of selecting groups of five points. Section
5 shows how the projectivity associated with the motion of one of the planes may
be derived and section 6 how it may be used to look for other points on the same
plane. Section 7 covers the recovery of camera motion.

2 Notation

In this chapter the following notation is adopted, x a vector in the projective plane,
X; the ith vector of a set of vectors, x' a transformed vector, V any invertible 3 by
3 projective transformation matrix. In projective space the following identification
is made;

x = Ax, (1)

where A is any constant, hence 3 dimensional vectors in the projective plane only
have 2 degrees of freedom, x', is therefore given by

x', = A;7>x,. (2)

The vectors x are then the homogeneous co-ordinates of the image positions of
corners. The matrix whose columns are the vectors Xj,Xj and x* is wrritten

M,-jt = (xi,Xj,xk). (3)
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3 The Two Five Point Planar Invariants

Projective invariants are quantities which do not change under projective transfor-
mations. A full review of the uses of invariants is given in [10]. There are two
convenient invariants that may be defined for groups of five points. They corre-
spond to the two degrees of freedom of the projective position of the fifth point with
respect to the first four. The two invariants may conveniently be written as the
ratios of determinants of matrices of the form M;^.

T _ |M124| |M13.| , >
1 K1| M 1 3 4 | | M 1 2 S | K1

T = |M24i|[M235[
2 |M234||M215|- W

these two quantities may be seen to be conserved under a projective transformation
if x' is substituted for x,

|M'124| [M'ml _ \*{Pxu A2"Px2, A4Pxd lAt^Xt, A3"Px3, A5-px5|
U|M'134 | |M'125 |

which gives,
| | |M' 1 3 5 | Af A2A3A4A5

|M'134| |M'12S| A?A2A3A4A5|^||M134|[M125r U

From a combinatorial point of view it might be thought that there were 10
independent invariants. The determinant |Mtj*| does not change under cyclic per-
mutations of the indices and only changes sign under acyclic permutations. However
there are only two. Generally four points have eight degrees of freedom all of which
are required to define the transformation into the canonical frame. The fifth point
has two degrees of freedom which form the values of the two invariants [10].

In selecting the groups of five points it is important that they be sufficiently far
apart that image measurement noise does not swamp the invariant. To this end the
nearest four points outside a circle of radius 25 pixels are selected for the invariant.
Other selection strategies are under investigation as the invariants degenerate when
any three of the five points are collinear.

4 Covariance Matrices of the 2 Invariants

There is a measurement uncertainty associated with the estimated position of corner
features in any image. These errors are assumed to be normally distributed with
variances ax and <ry which are additionally assumed to be isotropic and equal to <r.
This value will vary with the type of corner detector used. The linearised variance
of the invariants may be computed as follows,

^ = E(f-cix,)(^-dx,) (8)

or as noise is uncorrelated [1] (by the law of propagation of error),

-
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The vectors x< have components,

x, = Li , (10)

where / is the focal length of the camera. The derivatives of 7X are then given by,

dli ^l /l(ei,x2,X4)| | Ke^xa^s)] I(e1,x3,x4)l |(ex,x2,x5)|\
dXi * \|(Xi,X2 ,X4)| |(Xi,X3,Xs)| |(Xi,X3,X4)| \(Xi,X2,X5)\J

where,

=

dx? ll VKXLXJ.X,)! \(XUX2,XS)\

etc.

( '

^ 1 = 1 /I(e2.x2,x4)l |(e2,x3,
dyi x \\(x1,x2,x4)\ |(xi,x3,

x5)|

T /l(xi,e2,X4)| |(xi,e2,x5)|>\
H l ( x x X ) | | ( X x x ) | ; '

,X5)| |(Xi,X3,X4)| | (xi ,X2 ,X5)| /

where,

/ ° \
(15)

(16)

and so forth. The same analysis may be performed in order to derive a similar
expression for the derivatives of I2. These expressions permit the computation of
the variance of the two invariants. To test whether it is possible that five points
visible in two views lie on a plane the difference in each of the two invariants must
obey the condition

|I' - I| < 2V/Var(7). (17)

Figure 1 shows an image from a motion sequence with motion vectors from
tracked corners superimposed on it. Figure 2 shows all the starting positions of
the flow vectors as square boxes. Two of the groups of five points found using the
invariant planarity test are marked by darker symbols. From this sequence a total
of 13 groups of five planar points were found. In this case the value of a was taken
to be 0.2. Points at extreme distance will tend to behave as if they were on a plane
as well as those on flat surfaces.

5 Finding the Projectivity between four Points
in two Views

If four coplanar points are available in two views then a projectivity may be defined
which will transform the first set of points into the second (provided no three of the
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Figure 1: An image from a motion sequence with flow vectors of tracked corners
superimposed on it.

points are collinear). The same projectivity will predict the position of any point
on the plane in the first image in the second image [11].

If X; are the initial four points and x'; the transformed four points then,

X ; — Aj/^Xi. K*°)

The easiest way of finding V is first to transform both xt- and x',- to the canonical
frame e,- where e! and e2 are as before and

(19)

- ( ! ) •

where using i from 1 to 3 gives,

x, = A.vVde,,

= (QXI,/3X2 ,7X3)

and using i = 4 gives

X4 = (Xj, X2, X3) 0

\ 7

(20)

(21)

(22)

(23)
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Figure 2: The starting positions of the flow vectors in figure 1 are marked. Two of
the groups of five planar points are marked by darker boxes. The boxes marked with
stars were found to be on the same plane as the left hand group of five. The boxes
marked with crosses were found to be on the same plane as the right hand group of
five. The line represents the line of intersection of the two planes.

I"]
I Q I /„ „ v \ — 1

 v fOA\
I P I — 1*11 *2 i * 3 / *4 i l " y

this may be solved for a, j3, 7 by inverting the matrix whose columns are xi, X2, X3.
The corresponding matrix M.2 that maps x',- to et- must then be found and then,

V = M2M?. (25)

Three matrix inversions must hence be performed to find V. Analytical expressions
are available for the inverse of 3 by 3 matrices therefore, with the aid of Mathematica
the variance of V with respect to either set of four points can be determined.

Alternative methods of calculating this projectivity have been explored. A
pseudo inverse technique [9] [13] using all five of the points was tried. A mini-
mum eigenvalue technique similar to that used by Kanatani [8] was also used. The
most 'useful' technique in terms of predicting the motion of planar points was the
four point method detailed above.

6 Finding Additional Coplanar Points
Once it has been established that four points lie on a plane then the projectivity
that maps the four points to their images may be used to predict the new image
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position of any point on the same plane [11]. If the projectivity between the two
frames is V then,

x = XVx, (26)

with A constrained so that x • e3 = / . If a rapid answer is required a simple distance
threshold between predicted and actual image position may be used. We derive here
an expression for the x and y variances of the predicted position x of a point x. The
variance of the x component of the predicted position is given by,

dx\ dx , dx
d

di

or as dx and dy are uncorrelated,

di di

I
dy

where

dx
dx

dx
dy

f
V31x + V32y + 1

f
V3lx + V32y + 7-

V
W

W "

- (Vux +

—(Vnx+

3/)2

(28)

(29)

fv 32

'(^3ix + ^32y + ^33/)2 ( 3 0 )

and a is as before. The corresponding variance in y is derived analogously. Points
are accepted as being on the plane associated with the projectivity if the difference
between actual and predicted position in the second frame is less than two standard
deviations in the x or y directions. That is,

and

(31)

(32)

The permissible difference in position may be anisotropic. Figure 2 shows the ad-
ditional groups of points found to be on the same plane as the initial two groups of
five.

It would have been possible to insert successive points into the five point planar
invariant keeping four of them constant and using the analysis of section 4. This
however would take more time and as will be seen in the following sections the pro-
jectivity associated with a plane in motion has additional uses. For simply detecting
planar regions no camera calibration at all is required. It is only if information like
plane normal or motion direction are required that calibration is necessary.

7 Finding the Motion Direction
As is well known if four planar point correspondences are available then the motion
direction may be recovered up to a two fold ambiguity [5] [14]. If two non-parallel
planes are visible then this ambiguity may be resolved. A more direct method of
recovering an observer's motion direction is presented here. Let the two projectivities
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associated with the motion of points on the two planes be V\ and
V\ may be used to predict the new position of any point x,

i. Projectivity

x =

and likewise V2 may also be used to predict a new position of any point,

x' = \V2x.

(33)

(34)

The two predicted positions will only coincide for certain points. The predictions
will agree for the points on the line of intersection of the two planes and the motion
direction, (the two predictions will agree on the epipole). Why this is so is shown
in figure 3. The line of intersection (in the image) of the two planes and the motion

plane 1

line of camera center

Figure 3: This figure show two camera positions relative to two planes. The line of
intersection is preserved between views of the planes. The only other image direction
which both projectivities predict go to the same position is the motion direction of
the camera.

direction may be found by solving the following eigenvector equation,

= W2x. (35)

If the camera undergoes any rotation at all the real eigenvalue will have eigen di-
rection parallel to the motion direction and the degenerate pair will have eigen
directions that span the line of intersection of the two planes. The method will fail
when the system has three degenerate roots. This corresponds to the case when the
motion direction points towards a point on the line of intersection of the two planes.
Figure 2 shows the line of intersection of the two planes in figure 1.
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8 Possible Extension

The central idea in the paper is that the transformation, associated with a change
in viewing position, of a group of planar points may be written as 3 by 3 matrix.
This fact permits the prediction of the new position of any point on the plane. The
following section suggests a way of making use of this fact.

8.1 Using Lines in the Invariant

In a man made world planar regions are often bounded by lines (books, roads, sides
of buses, houses, etc). If a line has been found in an image from a motion sequence
then is it possible to use points lying on one side of the line to construct invariants,
conservation of which will imply that the lines and points are coplanar. Line are the
dual of points in P(2) and hence a minimum of one line and four points are required
to construct two invariants.

A line 1 through a set of points x is defined by the equation,

1 • x = 0 (36)

this means that 1 transforms according as,

1' = A,?- r l . (37)

Noting that,
x,, (38)

where x,- are points not on the line 1, invariants may be constructed of the form,

lMm | I -x4 , >
1" isuns- (39)

The covariance of these invariants may be derived in a similar manner to section 4.
These may be used to look for groups of four points coplanar with the line. This
remains to be implemented.

9 Conclusions

The mechanism proposed provides a robust and rapid means of isolating sets of
planar points from two views of a scene. If two planar regions are available then it is
straightforward to recover the camera's motion direction. The direction of the plane
normal may be isolated from the projectivity associated with a particular plane and
the motion direction used to resolve the two fold ambiguity. If estimates of plane
normal and motion direction have been obtained then the camera's rotation may be
estimated.

10 Acknowledgements

We acknowledge discussions with Professor J. M. Brady, Dr A. Zisserman, Dr. D.
Murray, P. Beardsley and R. Cipolla of the Robotics Research Group. We are
grateful for support from the SERC, the EEC Esprit program and DRA RARDE
Chertsey.



68

References

[1] Coehlo C , Heller A., Mundy J., and Forsyth D. An experimental evaluation
of projective invariants. In DARPA Image Understanding Workshop, 273-294,
1991.

[2] O.D. Faugeras and Maybank S.J. Motion from point matches: Multiplicity of
solutions. Int. Journal of Computer Vision, 4:225-246, 1988.

[3] D.A. Forsyth, J.L. Mundy, A.P. Zisserman, and CM. Brown. Projectively
invariant representations using implicit algebraic curves. In Proc. 1st European
Conf. on Computer Vision, 427-436. Springer-Verlag, 1990.

[4] C.G. Harris. Determination of ego - motion from matched points. In 3rd Alvey
Vision Conference, 189-192, 1987.

[5] Longuet-Higgins H.C. The reconstruction of a plane surface from two projec-
tions. In Proc. R. Soc. Lond., 399-410, 1986.

[6] B.K.P. Horn and B.G. Schunk. Determining optical flow. Artificial Intelligence,
vol.l7:185-203, 1981.

[7] B.K.P. Horn and E.J. Weldon. Direct methods for recovering motion. Int.
Journal of Computer Vision, vol.2:51-76, 1988.

[8] K. Kanatani. Geometric Computation for Machine Vision, volume 1st Edition.
MIT Press, 1991.

[9] Carlsson S. Projectively invariant decomposition of planar shapes. In J.L.
Mundy and A. Zisserman, editors, Geometric Invariance in Computer Vision,
267-276. MIT Press, 1992.

[10] J.L. S. Mundy and A. Zisserman. Geometric Invariance in Computer Vision,
volume First Edition. MIT Press, 1992.

[11] J.G. Semple and G.T. Kneebone. Algebraic projective geometry. Oxford Uni-
versity Press, 1952.

[12] C.E. Springer. Geometry and Analysis of Projective Spaces, volume 1. Freeman,
1964.

[13] G. Strang. Linear Algebra and its Applications, volume I. Academic Press,
1980.

[14] R.Y. Tsai and T.S. Huang. Estimating three-dimensional motion parameters of
a rigid planar patch. IEEE Trans, on Acoustics, Speech and Signal Processing,
vol.ASSP-29,no.6:1147-1152, 1981.


