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Abstract

Projectively invariant shape descriptors allow fast indexing into model libraries, be-
cause recognition proceeds without reference to object pose. This paper describes
progress in building a large model based vision system which uses many projectively
invariant descriptors. We give a brief account of these descriptors and then describe
the recognition system, giving examples of the invariant techniques working on real
images. We demonstrate the ease of model acquisition in our system, where models are
generated directly from images. We demonstrate fast recognition without determining
object pose or camera parameters.

1 Introduction.

We use projective invariants to produce a model based recognition system which references
models in time constant with respect to the size of the model base. Typical model based
recognition systems, based on pose determination (such as the work of Lowe [7]), have
recognition time linear in the size of the model base. In such systems, recognition proceeds
by extracting a collection of features from the image, hypothesising a correspondence
between these features and an appropriate set of model features, and determining the
position and orientation (pose) of the model from this hypothesis. The hypothesis is
verified by using the computed pose to predict further image features, and confirming that
some or all of these features are found as predicted. There are two problems with this
approach: firstly, to identify all model instances in the image exhaustively each model must
be tested; secondly, there are many possible matches between image and model features,
and each match is expensive to verify, Consequently, on a serial machine, recognition time
is linear in the number of models, and the constant of proportionality is large. As each
individual match is expensive the constant of proportionality is large and so linear time
systems are slow.

There have been a few attempts to produce recognition in sub-linear time, for exam-
ple [4], but again the constants of proportionality are high. If real time recognition is to
be performed for large model bases, the processing time must be independent of the size
of the model base. A few authors have achieved this [5, 6, 9, 15]. These systems all use
projective invariants, which can directly identify a model instance from image features.
Projective invariants are properties of plane shapes which are unaffected by perspective
imaging. The values of invariants measured in the image are the same as the values mea-
sured on the model for corresponding features. This means that invariant values measured
in the image index a model immediately. Verification proceeds as for [7]; however, fewer
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hypotheses need to be verified because the object has been identified. Thus, inappropriate
matches (between image features and either the wrong features on the right model, or
features on the wrong model) are avoided.

Our technique relies on building a list of invariants for each model, these are referred
to as feature vectors, which consist of all the possible invariants for an object. Each
component of the vector is a potential recognition cue. For most objects this vector will
be large and so only a few features need to be visible to enable recognition. This promotes
stability to occlusion and noise. Much of our previous work has concentrated on using
the two invariants of pairs of coplanar conics. We have successfully built and tested a
simple recognition system using pairs of conics. Once recognised, an object’s pose can be
quickly determined [11]. Apart from pairs of coplanar conics many other plane projective
invariants exist, examples are given in section 2.

This paper describes the use of these invariants within a model based recognition
system. First we state the form of each invariant, we then describe model acquisition
and recognition. We then show recognition hypothesis verification. Examples are based
entirely on real objects and images.

2 Planar Projective Invariants.

Example 1: The Cross-Ratio.

The cross-ratio for four collinear points x;, i € {1,..,4} along a line with linear parame-

terisation #; is [13]:
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Four concurrent lines can also be used to form a cross-ratio. This follows directly for the
duality of lines and points in projective space.

Example 2: Five Coplanar Points.
Given five coplanar points xj, ¢ € {1,..,5}, two projective invariants are defined:
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where Myji = (xj,X;,X) and [M| is the determinant of M. Should any triple of points
become collinear the first invariant is undefined. An alternative definition appears in [8].
Again, we may use lines instead of points to form the invariants.

(2)

Example 3: A Conic and Two Points.
A conic, C', and two points not lying on the conic define a single invariant given by [5]:

(x]T Cxz)?
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where ' is the matrix of the conic: a conic takes the form az?+bzy+cy*+dz+ey+f =0
which can be expressed as the quadratic form:

£
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or as xTCx = 0. The envelope of the conic and two lines is the dual system. The envelope
of a conic C is the conic €1, and so two lines and a conic yield an invariant as well.
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Example 4: A Pair of Conics.

Using the notation of a conic matrix €; in example 3 above, two projectively invariant
measures can be formed for a pair of conics normalised so that |C;| = 1. These are:

I = Trace[C7'Cy]  and I = Trace[C;1Cy) (5)

3 The Model Based System

3.1 Overview.

Before recognition is possible the models must be acquired and added to the library. A
model consists of a set of lines and conics, the invariants formed by them, and a model
name. All the model data are extracted from unoccluded views of the object, which make
acquisition easy. The recognition process is then broken down into three stages:

1. Feature extraction. The conics and lines needed to form the invariants we use are
extracted from image edge data.

2. Hypothesis generation. The invariants for groups of features are computed. We
index the measured invariants against invariant values in the library using a hash
table, and if they match, produce a recognition hypothesis.

3. Hypothesis verification. When a potential match is found we confirm it by pro-

jecting edge data from an acquisition image to the test scene. Should the projected
and scene edge data be sufficiently close the match is confirmed.

The curve segmentation we use and the above processes are described in detail in the rest
of this section.

3.2 Curve Segmentation.

The aim of the segmentation methods we use is to extract straight lines, conics, and higher
order curves from edge features so that we can form invariants. Points are hard to locate
accurately from edge data, so we locate them by intersecting lines or conics. So far we
have used only lines and conics because the points found by their intersection do not yield
any functionally independent invariants.

Continuous edge curves, or edge curves with single pixel breaks, are taken directly from
Canny output [2]. For each curve, the curvature (k) and its derivative (%) are determined
as functions of arc length. The curvature representation is not projectively invariant,
but because we are interested in finding high curvature points the approximation is good
enough. Both x and & are measured by differentiating the slope of a local linear fit to the
edge data and smoothing with a 1-D Gaussian. This is done with a discrete convolution
kernel. Points on the curve where both s and & exceed thresholds are marked [10], and
the curve broken into separate line segments at these points. We have found this provides
effective segmentation. If the line segments are long enough we attempt to classify them
by:

1. Fitting a straight line to the curve by orthogonal regression. If the fit is good
enough it is accepted, else move on to (2). Points within one standard deviation (of
the smoothing Gaussian) of the ends of the segment are discarded before fitting as
these are corrupted during smoothing.

2. Fit a conic to the curve by minimising the algebraic distance [1]. Accept the fit if
the algebraic distance is small enough, else go to (3).

3. If the curve is not a straight line or a conic store the edge data for later use. Such
curves may not be algebraic, but they do possess invariants [12, 14].
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The straight line and conic fitting procedures are both in closed form (by eigenvalue
decomposition [1]), and so the computational cost of fitting is low. An example of line
and conic fitting to image edge data is shown in figure 2. Occlusion and noise can cause
extra segmentation of image curves and so pairs of lines or conics may represent the same
line or conic. This will only happen to curves adjacent in edge point lists. Therefore we
test whether consecutive lines have the same or nearly the same equations. This is done
by testing whether the endpoints of one line segment lie close to the the other line. If
two lines are similar we refit a single line to the two original sets of edge data. We do
a similar test on conics. For a review of the method see [11]. We have found that these
simple heuristics produce good results.

The segmentation produces a disjoint set of lines and conics. We then group the
straight lines into graphs. If the endpoints of two lines are within a few pixels of each
other the lines are marked as being connected. ‘T’ junctions are also formed if a line
endpoint lies close to another line but does not form an ‘L’ junction with it. These are
used during recognition.

All lines extracted from a single edgel list are then grouped together into a simple chain.
The chains consist of lines separated by conics, and non-conic or non-linear edge points,
such as corners, etc. We group image features to cut down the matching combinatorics.
For example to determine all the five line invariants for an image containing n lines we need
to compute O(n®) invariants! This is too many and we lose the benefit of having linear
library indexing?. Therefore we group the lines into chains using the connectivity of the
edges and compute invariants only for consecutive lines in a chain. This is O(n). Hence we
have potentially fast recognition. We do, however, ignore many potential matches because
of poor segmentation, or because other objects occlude the line chains and so break them
into distinct pieces. At present no grouping is done between different chains, and so no
invariants can be computed for segments in the separated groups. Because we are still able
to compute a large number of invariants from broken edge chain the chances of recognition
remain high.

3.3 Model Acquisition and Library Formation.

The invariants we use are for planar objects, or for objects with plane faces. A novel aspect
of this work is the ease of model acquisition. We extract all possible invariants from an
unoccluded view of the isolated object. These invariants are entered into a feature vector,
defined as the set of model invariants. We measure another feature vector from a different
viewpoint. We then intersect the two sets represented by the feature vectors, and form the
object feature vector from all invariants which are measured in both views. The invariants
in the object feature vector are included in the library (described below).

If a measurement changes between two different view-points we know that the features
used to compute the measurement are not coplanar, or that the features are produced
by variable segmentation, and so the measurement is not useful. If the measurement is
constant it is an invariant because invariants are constant for all views. All the constant
measures are the model descriptors, and are stored. The edge data forming all the coplanar
features for an object are also stored for use in the hypothesis verification stage.

Invariant model libraries are very simple. The library we use is split up into different
sub-libraries, one for each type of invariant. Each sub-library then has a list of each of
the invariant values tagged with an object name, and is structured as a hash table. The
hash table must be large (in terms of memory size) to provide sufficient distinguishing

'Only O(n) of the invariants are functionally independent.

?Compared to pose methods that only match three points, which is O(n®). Including the model match-
ing, for A models, gives O(An"), which is better than exhaustive invariant matching for A < n?, We expect
the number of image features n to be large.
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Figure 1: The left image shows one of the calibration scenes for the a right-angled bracket.
A different view of the bracket is shown in the right image. Feature ‘A’ produces an
extra line in the edge chain, and so the measured invariants are different from the first
calibration image. We are still able to find two pairs of matching line invariants as well
as four conic/line-pair invariants between the two images. All the invariant values for the
bracket are computed from the fitted forms for the two scenes, and compared to each other
All invariants that stay approximately constant are entered into the feature vector for the
object.

power between the invariants assigned to the models. For smaller buckets there is more
distinguishing power, and so a lower likelihood of collision, but more buckets are needed.
So long as the machine’s virtual memory is local the buckets can still be accessed quickly
when there is fine distinguishing power. This makes model indexing very fast. When an
invariant is measured in a scene we choose the relevant library, depending on the invariant
type, and hash in to find the corresponding object.

As an example we show two views of a right angle bracket in figure 1. From each
image we measure all possible invariants. The five line invariants are formed by taking all
possible sequences of five lines around the line chains. and the conic/line-pair invariant
are formed from the conic fit to the central lhole in the bracket and all pairs of consecutive
lines in the chain. The measured invariants are shown in tables 1 and 2. All invariants
that match to within a small tolerance (3%), are entered into the model library. The
invariant vectors for each image are different because of feature ‘A’ shown in figure 1. We
note that the conic/line-pair invariants tend to be less stable than the five line invariants.

3.4 Hypothesis Generation.

Once an object’s invariants have been stored in the database it can be recognised from
a cluttered scene without any knowledge of pose or camera calibration. For each feature
group in a test scene we form a feature vector. These vectors will be large, containing a
number of invariant values corresponding to actual object features as well as invariants
derived from other objects in the scene but not in the library.

At this stage we make use of the *T" junction labelling performed during the grouping
phase. The ‘T’ junctions provide a heuristic which cuts down search. Two lines forming
a ‘T junction often arise from occlusion, and thus are not part of the same plane ob ject
boundary. Therefore if we find two consecutive lines in a chain connected by a *T’ junction
we do not compute any invariants using both of the lines.

Each measured invariant is then matched via the hash table to an object name in the
model library if the invariant value (within some error bound) is stored in the library.
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Figure 2: This image shows the lines and conic fitted to the bracket for the first calibration
scene. The edge curves are broken at points of high x and &. Note that the endpoints of
the lines are not connected. This is because the smoothing kernel corrupts points towards
the ends of the lines, and so we ignore these points.

Image Five Line Invariant Values
1 2 3 4 5 6
1 0.553,2.118 | 0.679,3.57% - - - 0.844,1.229
2 - - 0.527,-41.855 | 1.013,0.984 | 0.539,3.477 | 0.839,1.239
deviation % - - E - - 0.3,0.4
Image Five Line Invariant Values
7 8 9 10 11
1 0.451,5.200 | 0.837,1.412 | 0.684,1.880 - -
2 0.458,5.040 - - 0.896,1.245 | 0.658.1.513
deviation % 0.8,1.6 - - S -

Table 1: These two tables show all the five line invariants extracted from the two cali-
bration images. Each image row shows the invariant feature vector for the corresponding
image. The object feature vector is given by the intersection of these two rows. The
feature vectors for each image differ because of the difference in the apparent outline of
the object in the two images. The % deviation between matching invariants is shown in
the last row of each table.

Image Conic/Line-Pair Invariant Value
1 2 3 4 5 6 7 3
1 2493 | 2470 | - - | 1331 | 1311 | 1.321 | 1.336
2 2.249 - 1401 | 1.186 | 1.294 | 1.316 | 1.288 | 1.293
deviation % | 9.8 - - - 2.3 0.4 2.5 3.2

Table 2: This table shows all the conic/line-pair invariants extracted from the calibration
images. The invariants are ordered around the extracted edge chain which helps match the
invariants from different scenes. The deviations show that the conic/line-pair invariants are
less stable than the five line invariants. The first invariants shown, which have differences
of 9.8% to the mean, would not be accepted as the error is too large.



Figure 3: The left image shows the bracket occluded in a scene by objects not in the
library. On the right the edge data from the first calibration scene are shown projected
onto the test scene using the model to image transformation hypothesised by the match.
The close match between the projected data (shown in white), and the scene edges shows
that the recognition hypothesis is valid.

invariant library scene error %
five line | (0.8415,1.2340) | (0.813,1.289) | (3.4,4.5)
conic/line 1.3125 1.262 3.7
conic/line 1.3135 1.321 0.6
conic/line 1.3045 1.336 2.4

Table 3: This table shows all the invariants from the scene which are formed by features
actually corresponding to bracket features. The second column shows the library values
and the third column scene values.

Should an object name be matched a sufficient nuinber of times within a vector a recog-
nition hypothesis is formed. We can then verify the hypothesis by projecting model edge
data which are taken from the calibration scene onto the test scene and checking that
there is sufficient correlation. This verification technique is similar to that used in [3], and
is explained below.

As an example of object recognition we demonstrate recognising a bracket in a scene
with occlusion and clutter caused by other objects (figure 3). All possible five line invari-
ants and conic/line-pair invariants were measured and the matching invariants are given
in table 3. From a scene such as this a large number of possible invariants can be derived.
We found that only one five line invariant matched any of the five line invariants of the
bracket, and this was a correct match. The clutter does not produce false positives for
this invariant. A number of conic/line-pair invariants were measured in the scene which
match the invariants of the bracket, but are not formed by bracket features. Hence the
conic/line-pair invariant is less likely to produce a unique match. The false positives can
be overcome during the hypothesis verification stage. Alternatively, if different measured
invariants have common model and image features we may merge the individual hypothe-
ses to form joint hypotheses. The invariants may not necessarily be compatible and so
a list of joint hypotheses is formed which contains both the individual and the merged
hypotheses. The list is ordered so that the joint hypotheses covering the most invariants
are verified before those with fewer invariants,
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Figure 4: Two different objects (lock striker-plates) are recognised in this image even with
substantial occlusion and significant perspective distortion.

3.5 Joint Hypothesis Verification.

Once the invariants have been extracted from an image and a potential match to a model
found, we must perform verification to remove all false negatives. Verification is rela-
tively expensive, but using invariants as recognition cues critically reduces the number of
hypothesis tests that have to be made.

Verification does not involve determining object pose:

1. We determine the projective transformation between the calibration and test scenes
using the lines that form the matching invariants (we will have at least five if we use
the invariants of five lines)®. The transformation can be determined uniquely if the
joint hypothesis maps three or more model lines into the image. If there are only two
lines, as for a single conic/line-pair hypothesis, there is a four fold ambiguity in the
transformation. This highlights the benefit gained from using the joint hypotheses
to increase the number of model-scene feature matches.

2. We project the stored edge data from the calibration scene onto the test scene.

(2

If the projected data and the scene data are close in the image (within 5 pixels)
and of the right orientation (within 10°) confirm the hypothesis. All edge data used
to determine the invariants in the test scene should correspond to the projected
edge data, though occlusion means that the converse is not necessarily true. The
proportion of correspondence required for a match to be confirmed depends on the
application. This technique is the same as that used in [3].

An example is shown in figure 3. The edge data from the first calibration image (figure 1)
has been projected onto the test image and is shown in white. The close correspondence
between this data and the test edge data (over 50% within 5 pixels and 10°) confirms the
recognition hypothesis.

A further recognition example is shown in image 4. Two different objects are found in
the image by the recogniser even though one of the objects is substantially occluded and
the other has undergone significant perspective distortion.

£ - z - . . . . L

We need a minimum of four lines or points to determine the projective transformation linking two
representations. The method is given in [11]. We may also determine the projective transformation
between a conic and a pair of lines, and their corresponding projection in a different frame.
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4 Conclusions.

This paper describes the initial phases in the development of a large model based vision
system which uses projectively invariant descriptors. The methods used are shown to
be workable, and by combining many different types of invariant we can measure large
feature vectors for objects and so tolerate occlusion and image noise. The problems of ex-
tracting invariants from feature groups and of the use of invariants to produce recognition
hypotheses has also been discussed. Future work on the project will include:

1. Determining stability criteria so that we know how sensitive each type of invariant
is to imaging noise.

2. Determining error bounds for measured invariants.
3. Integrating invariants of higher order planar curves and parametric curved surfaces.

4. Including distinguished plane and differential invariants as recognition cues. One
such invariant, reported in [12], has been tested and has been shown to provide a
strong recognition cue.

The model base currently consists of twenty-one models, six of which are similar to the
objects displayed in this paper, and the rest are the labels shown in [5]. So far, the actual
time spent in the hypothesis generation phase is negligible, most of the processing time
being for feature detection. Even with twenty-one models the model base is too small to
draw any firm conclusions on the overall speed of indexing for a large model base, but
future work should reveal whether constant time library indexing is really possible.

References

[1] Bookstein, F. “Fitting Conic Sections to Scattered Data.” C'VGIP-9, p.56-71, 1979.
[2] Canny J.F. “Finding Edges and Lines in Images,” TR 720, MIT Al Lab, 1983.

[3] Connolly, C.I., Mundy, J.L,. Stenstrom, J.R. and Thompson, D.W. “Matching From 3-D Range
Models into 2-D Intensity Scenes,” Proceedings [CCV1, p.65-72, 1987.

[4] Ettinger, G.J. “Large Hierarchical Object Recognition Using Libraries of Parameterized Model Sub-
parts,” Proceedings CVPR, p.32-41, 1988.

[5] Forsyth, D.A., Mundy, J.L., Zisserman, A.P., Coelho, ., Heller, A. and Rothwell, C.A. “Invariant
Descriptors for 3-D Object Recognition and Pose,” To appear PAMI, 1991.

[6] Lamdan, Y., Schwartz, J.T. and Wolfson, H.J. "Object Recognition by Affine Invariant Matching,”
Proceedings CVPR, p.335-344, 1988,

[7] Lowe, D.G. Perceptual Organization and Visual Recognition, Klewer Academic Publishers, 1985.

[8] Mohr, R. and Morin, L. *Relative Positioning from Geometric Invariants,” Proceedings CVPR, p.139-
144, 1991.

[9] Nielsen, L. and Sparr. G. “Projective Area-Invariants as an Extension of the Cross-Ratio,” Proceedings
First DARPA-ESPRIT Workshop on Invariance, p.455-480, March 1991.

[10] Pridmore, A.P., Porrill, J. and Mayhew, J.E.W. ‘Segmentation and Description of Binocularly Viewed
Contours,” V-5, No. 2, p.132-138, 1987,

[11] Rothwell, C.A., Zisserman, A.P., Marinos, C.I., Forsyth, D.A. and Mundy, J.L. “Relative Motion and
Pose From Arbitrary Plane Curves,” [V("in press, 1991.

[12] Rothwell, C.A. “Model Based Computer Vision Using Projective Invariants", First Year Report,
Department of Engineering Science, Oxford University, Oxford, 1991.

[13] Semple, J.Gi. and Kneebone, G.T. Algebraic Projective Gieometry, Oxford University Press, 1952.

[14] Van Gool, L. Kempenaers, P. and Oosterlinck, A. “Recognition and Semi-Differential Invariants,”
Proceedings CVPR, p.454-460, 1991,

[15] Wayner, P.C. “Efficiently Using Invariant Theory for Model-based Matching,” Proceedings CVPR,
p-473-478 [1991.



