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This note describes two different methods for motion seg-
mentation from optical flow. In the first method, the Ja-
cobian matrix of the first spatial derivatives of the com-
ponents of optical flow is used to compute the amount
of uniform expansion, pure rotation, and shear at every
flow point. In the second description, local properties
of optical flow which are invariant for non-singular lin-
ear transformation are computed from the trace and the
determinant of the matrix itself. Both the methods al-
low to distinguish between different kinds of motion, like
translation, rotation, and relative motion in sequences of
time-varying images. Preliminary results show that they
can also be useful to identify the different moving objects
in the viewed scene.

Time-varying images provide useful information for the
understanding of several visual problems. This informa-
tion, which can be thought of as encoded in optical flow
[1] — a dense planar vector field which gives the velocity
of points over the image plane —, appears to be essen-
tial for important visual tasks like passive navigation and
dynamic scene understanding (see [2-5] for example).

In this note, the optical flow computed through a tech-
nique which has recently been proposed in ref. [6,7] is
used for motion segmentation. Two different local de-
scriptions of image motion that are invariant for orthog-
onal transformations of coordinates on the image plane
(i.e., arbitrary rotation of the viewing camera around the
optical axis) are discussed. In the first description, which
is obtained by looking at the changing image brightness
as a ID deformable body, the Jacobian matrix of the
first spatial derivatives of the components of optical flow
is used to compute the amount of uniform expansion,
pure rotation, and shear at every flow point. The sec-
ond description focuses on the local properties of optical
flow which are invariant for non-singular linear trans-
formation and thus can be inferred from the trace and
the determinant of the matrix itself. According to these
descriptions, image motion can be segmented in regions
where either the average percentage of uniform expan-
sion, pure rotation, or shear is larger than a fixed value,
or where the qualitative nature of the eigenvalues do not
change.

Experiments on real images show that, in many cases,
these regions roughly correspond to the image of the ob-

served moving objects and make it possible to distin-
guish between different kinds of 3D motions. The com-
putation of the percentage of uniform expansion, pure
rotation, and shear seems to be less sensitive to noise
than the study of the qualitative nature of the eigen-
values of the Jacobian matrix. In the case of transla-
tion, which is discussed analytically, the percentage of
uniform expansion is usually much larger than the per-
centages of pure rotation and shear. At the same time,
the two eigenvalues of the Jacobian matrix are real and
often almost equal. At boundary points, instead, the
shear component is larger and the eigenvalues may have
opposite sign. Motion segmentation for rotation and rel-
ative motion is also discussed. Finally, it is shown that
the integration between the presented motion segmenta-
tion and other visual cues like intensity edges allows to
obtain more accurate image segmentation.

Some conclusions can be drawn from the presented anal-
ysis. Firstly, it has been shown that it is possible to
obtain motion segmentation from optical flow. Two dif-
ferent techniques based on the study of the Jacobian
matrix of optical flow have been implemented which can
be used to segment the image plane in regions that al-
low to distinguish between different kinds of motion, like
translation, rotation, and relative motion, and to iden-
tify the different moving objects. The presented results
complement recent results [8] that have been obtained on
qualitative and quantitative properties of the Jacobian
matrix at the singular points of optical flow, that is, the
points where the flow vanishes. Here, the segmentation
and the analysis of the spatial structure of optical flow in
the neighborhood of singular points, which were essential
for the understanding of the observed 3D motion in ref.
[8], are obtained easily and reliably from local analysis.
In fact, the obtained motion segmentation is useful even
when no singular point is found in optical flow. Finally,
it appears that the technique which has been used for the
computation of optical flow [6,7] is not only adequate for
3D motion recovery from singular points of optical flow
[6,7,9], but also for motion and object segmentation.

UNIFORM EXPANSION, PURE ROTA-
TION, AND SHEAR

Optical flow can be extracted from image sequences by
making suitable assumptions on the time-varying im-
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age brightness. Recently [6,7] it has been proposed to
compute the optical flow u = (MI,M2) at the location
x = (a?i,X2) on the image plane at the time t by solving
the system of algebraic equations for (111,̂ 2)

pure rotation, and shear in the flow respectively at that
point. At every point x in a sufficiently small neighbor-
hood of a point XQ of the image plane, the optical flow
u(x) can be written as

dVE
~dt

= 0 (1)
(2)

where d/dt — d/dt + u • V, d/dt is the partial tem-
poral derivative, V is the 2D spatial gradient, and
E = E(x\,X2, t) is the time-varying image brightness on
the image plane. The optical flow which can be obtained
from eq. 1 is usually adequate for the understanding of
motion and the estimate of motion parameters from sin-
gular points [6,7]. However, in order to reliably extract
motion information from the singular points of optical
flow, or through some other method, it is useful to study
the spatial structure of optical flow at other locations.

We now show that the spatial structure of optical flow at
every point can be described in terms of three quantities,
a, (3, and 7, which give the amount of uniform expansion,

Figure 1. Time varying image sequences: case of
translation. A) One frame (256 x 256 pixels) of a
sequence in which a box is translating toward the
viewing camera; B) optical Sow computed at the
frame in A) according to the procedure described
in ref. [7] and subsampled over a 32 x 32 grid for
better visualization.

where

are the entries of the Jacobian matrix M of the partial
spatial derivatives of the components of u computed at
xo- A theorem of Helmoltz [10] shows that the most gen-
eral infinitesimal motion of a sufficiently small element of
a deformable body (in the 2D case) can be decomposed
in the sum of a rigid translation, a uniform expansion,
a rotation, and two orthogonal component of shear. If
the changing image brightness is viewed as the 2D de-
formable body and optical flow as the infinitesimal mo-
tion, as suggested in ref. [11,9], it is clear that in eq. 2
the term of rigid translation is given by U(XQ). The other
four terms can be obtained [9] by writing the matrix M

B

< <

ft

> 7

Figure 2. Time varying image sequences: case of
rotation. A) one frame of a sequence in which a
box is rotating on a plane tilted with respect to
the image plane; B) optical flow computed at the
frame in A) (see legend of Figure IB).
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as

M = ali + /?I2 + 71 Is + 7214

where a = ( M u + M22)/2, P = (M12 - M2i)/2, 71 =
(Mu - M22)/2, 72 = (M12 + M2i)/2, and

1 0
0 - 1

14 =

0 1
- 1 0

0 1
1 0

The matrices I,-, i = 1,...,4 correspond to the uniform
expansion, the pure rotation, and the two orthogonal
components of shear respectively. It is easy to see that Ij
and I2 (which are the identity and antisymmetric tensor
respectively) are left unchanged for arbitrary orthogonal
transformation. Thus a and /? are also invariant. Conse-
quently, the amount of uniform expansion and pure rota-
tion, which are independent of the system of coordinates,
are intrinsic properties of optical flow. On the contrary,
since the two components of shear are not invariant sep-
arately, 71 and 72 do not describe intrinsic properties of
the flow. An invariant measure of the amount of shear in
optical flow is given by 7 = \ff\ + 72. In what follows,
therefore, we will refer to 7 as the amount of shear in
optical flow.

We now show that a, /?, and 7 can be used for mo-
tion segmentation. Figures 1A and 2A show two images
of a translating and a rotating object respectively. The
corresponding optical flows computed by solving eq. 1
according to the technique described in ref. [7] are shown
in Figures IB and 2B. Let us consider first the case of
translation. The shaded region in Figure 3A, which is
superimposed to the translating box of Figure 1A, marks
the locations on the image plane where the average per-
centage of uniform expansion in the optical flow of Fig-
ure IB is much larger (more than 70 %) than the average
percentages of pure rotation and shear. It can be seen
that the shaded region roughly corresponds to the mov-
ing object. Clearly, the region grows if the threshold on
the average percentage is lowered.

This result can also be discussed analytically by con-
sidering a smooth translating surface. From the equation
of perspective projection it is easy to obtain

a X3 2 n • x

1 n x u • e3

^~ 2 n-x

u \n x e*3|
1 ~ 2 \n-x\

where T3 is the component of the translational velocity in
the direction parallel to the optical axis and to the unit
vector £3, X3 is the distance of a point p on the moving
surface from the image plane, and n the unit normal
vector to the surface at p. The optical flow u is to be
thought of as a 3D vector of norm u and coordinates
(ui,u2,0) computed at x = (xi,X2,f), the image point
of p, where / is the focal length.

B

Figure 3. Motion segmentation through the com-
putation of the amount of uniform expansion,
pure rotation, and shear. A) the shaded region
marks the locations where the average percent-
age of uniform expansion in the optical How of
Figure IB is 79%. The percentages of shear and
pure rotation were 14% and 7% respectively. The
region has been obtained as follows. As a first
step, the procedure selects the How points at
which the percentage of uniform expansion, pure
rotation, and shear is larger than 30%. Then,
the connected regions which contains at least one
thousand pixels are picked. Finally, the regions
where the average percentage of either one of
the three components is larger than 70% are ex-
tracted; B) the shaded region marks the loca-
tions where the average percentage of pure rota-
tion in the optical How of Figure 2B is 76%. The
percentages of shear and uniform expansion were
21% and 3% respectively. Processing as in A).

Notice that when the normal to the moving surface is
parallel to the image plane, we have /? = 7 = 0. The
component of pure rotation and shear vanishes also at
the singular point, that is, where u= 0, and it is always
true that \j3\ < 7. Even if, in principle, neither (3 nor
7 are bounded, in most situations we have that a is
much larger than (3 or 7. This is clearly true when the
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angle 9 between n and x is small (0 is the angle between
the tangent plane to the moving surface and the image
plane), because /? and 7 vanish with 62, whereas the
term T3/X3 in a does not depend on 0. For large 0 (up
to 70 degrees), typical velocities and distances (T3 ~
lcm/frame and X3 ~ 100cm), focal length of about
one thousand pixels and average magnitude of optical
flow of a few pixels per frame, it can be easily checked
that the ratio between a and either one of /? and 7 is
still some units.

The case of rotation is more complex, since even the opti-
cal flow of a rotating planar surface can be very different
from a pure rotation on the image plane. However, in
the simple case shown in Figure 2A, the tangent plane
to the rotating box is orthogonal to the rotation axis.
Thus, we expect to find a large component of pure rota-
tion in the flow of Figure 2B. The shaded region in Figure
3B marks the location where the average percentage of
pure rotation in the optical flow of Figure 2B is above 70
%. The quality of the resulting motion segmentation is
comparable with the segmentation obtained in the case
of translation.

EIGENVALUES OF THE JACOBIAN
MATRIX
Let us describe an alternative method for motion seg-
mentation. When optical flow is seen as a smooth vec-
tor field [12,8], useful information about qualitative and
quantitative properties of motion can be recovered, by
using the theory of dynamical systems, from the Jaco-
bian matrix at the singular points of optical flow, which
are the points where the flow vanishes. It has been shown
[8] that the spatial structure of optical flow in the neigh-
borhood of a singular point, which is described by the
trace and the determinant of the Jacobian matrix at the
singular point, make it possible to distinguish between
different types of motion and allows to recover relevant
motion parameters, like time-to-collision for translation
and angular velocity for rotation.

Therefore, in order to study the Jacobian matrix at the
singular points, it may be useful to extend the qualitative
analysis to the neighboring points and, in fact, to every
flow point. The Jacobian matrix is expected to vary
continuously over optical flow and thus the qualitative
properties of the trace and the determinant of the matrix
should remain the same over regions of the image plane.

Let us consider again the optical flow of the translat-
ing box in Figure. IB. The shaded region in Figure 4A
marks the locations where the trace, TVM, and the de-
terminant, DetM., of the Jacobian matrix satisfy (up to
some allowed deviation) the relationship

DetM =
Tr2M

(3)

Eq. 3 implies that the eigenvalues of the Jacobian matrix
are equal. It is straightforward to see that this property
is typical of a translating plane which is parallel to the
image plane. In fact, for the eigenvalues Ai and A2 of M
in the general case of a smooth translating surface we
have

T3 n-u
A2 = -~rr + -z-^:

A 3 n • x

Figure 4. Motion segmentation through the com-
putation of the trace and the determinant of the
Jacobian matrix of optical How. A) the shaded
region marks the locations where the relative
difference between DetM and Tr M/4 is within
25%, that is, where the eigenvalues of M are
roughly equal; B) the shaded region marks the
locations where DetM is larger than Tr*M/4 and
the relative difference is greater than 25%, that
is, where the eigenvalues ofM are complex.

Thus, Ai and A2 are always real. Moreover, Ai equals
X2 at the singular point and when the normal vector n
to the moving surface is orthogonal to the image plane.
According to the same argument of the previous section,
it can be concluded that Ai ~ A2 at most locations and
for typical values of motion and structure parameters.
Since X1 is always positive, the eigenvalues can have op-
posite signs only if A2 can assume negative values. It
can be shown [13] that this happens if the moving sur-
face is very far from the viewer and the tangent plane to
the surface forms a wide angle with the image plane. In
practice, however, this case is of little interest because
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it is usually very difficult to correctly compute optical
flow at locations where the tangent plane to the moving
surface is nearly orthogonal to the image plane.

Concluding, from the qualitative properties of the
eigenvalues of the Jacobian matrix and from the aver-
age percentage of uniform expansion, it can easily be
understood whether the observed motion is a transla-
tion independently of the location of the singular point.
Figure 4B shows the same analysis for the optical flow of
Figure 2B in the case of rotation. In this case we expect
to find that the eigenvalues are always complex or that

implies that the choice of the parameters and the accu-
racy in the computation of optical flow are more critical
for this method than for the method of section 2.

Finally, let us consider a more complex dynamic scene
where motion segmentation appears to be almost essen-
tial. Figure 5A shows an image of a relative motion
between an oscilloscope, which is translating outward,
and an electric device, which is translating toward the

DetM<
Tr2M

(4)

Figure 5. Motion and image segmentation in a
sequence of relative motion. A) One frame repre-
senting a relative motion in which an oscilloscope
was translating outward and an electrical device
was translating toward the viewing camera; B)
optical How computed at the frame in A); (see
legend of Figure IB).

The shaded region in Figure 4B marks the locations
where the inequality 4 holds true. In both the cases
of Figure 4, it has to be noticed that the segmentation
which can be obtained by means of constraints like eq.
3 and inequality 4 is rather sensitive to noise. This fact

Figure 6. A) The shaded regions mark the lo-
cations where the average percentage of uniform
expansion (light grey) and uniform contraction
(dark grey) of the optical flow in Figure 5B is
larger than 70%. Processing as in legend of Fig-
ure 3A. Intensity edges of the image in Figure 5A
have been superimposed. Edge points have been
extracted by means of gaussian convolution with
unit standard deviation (mask size = 5 pixels)
and non-maxima suppression of the magnitude
of the spatial gradient. Then, edge points are
chained by means of a standard contour following
procedure; B) a more accurate segmentation can
be obtained by means of a rather simple proce-
dure. The regions in A) are recursively enlarged
until an edge point is reached. The interior of
a closed edge chain which turns out to be sur-
rounded by an enlarged region is annexed to the
region itself.
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viewing camera. The computed optical flow is shown in
Figure 5B. Figure 6A reproduces the regions where the
average percentage of uniform expansion (light grey) and
uniform contraction (dark grey) is larger than 70 %. In-
tensity edges of the image in Figure 5A have been super-
imposed to compare the resulting motion segmentation
vs. the correct segmentation. A very accurate segmenta-
tion (see Figure 6B) can be obtained by a simple region
growing algorithm, described in the legend of Figure 6,
which takes into account intensity edges.
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