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β‑glucans, SAM, and GSH fluctuations 
in barley anther tissue culture conditions affect 
regenerants’ DNA methylation and GPRE
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Abstract 

Background  Microspore embryogenesis is a process that produces doubled haploids in tissue culture environ-
ments and is widely used in cereal plants. The efficient production of green regenerants requires stresses that could 
be sensed at the level of glycolysis, followed by the Krebs cycle and electron transfer chain. The latter can be affected 
by Cu(II) ion concentration in the induction media acting as cofactors of biochemical reactions, indirectly influencing 
the production of glutathione (GSH) and S-adenosyl-L-methionine (SAM) and thereby affecting epigenetic mecha-
nisms involving DNA methylation (demethylation—DM, de novo methylation—DNM). The conclusions mentioned 
were acquired from research on triticale regenerants, but there is no similar research on barley. In this way, the study 
looks at how DNM, DM, Cu(II), SAM, GSH, and β-glucan affect the ability of green plant regeneration efficiency (GPRE).

Results  The experiment involved spring barley regenerants obtained through anther culture. Nine variants (tri-
als) of induction media were created by adding copper (CuSO4: 0.1; 5; 10 µM) and silver salts (AgNO3: 0; 10; 60 µM), 
with varying incubation times for the anthers (21, 28, and 35 days). Changes in DNA methylation were estimated 
using the DArTseqMet molecular marker method, which also detects cytosine methylation.

Phenotype variability in β-glucans, SAM and GSH induced by the nutrient treatments was assessed using tentative 
assignments based on the Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy. The effec-
tiveness of green plant regeneration ranged from 0.1 to 2.91 plants per 100 plated anthers. The level of demethylation 
ranged from 7.61 to 32.29, while de novo methylation reached values ranging from 6.83 to 32.27. The paper demon-
strates that the samples from specific in vitro conditions (trials) formed tight groups linked to the factors contributing 
to the two main components responsible for 55.05% of the variance (to the first component DNM, DM, to the second 
component GSH, β-glucans, Cu(II), GPRE).

Conclusions  We can conclude that in vitro tissue culture conditions affect biochemical levels, DNA methylation 
changes, and GPRE. Increasing Cu(II) concentration in the IM impacts the metabolism and DNA methylation, elevating 
GPRE. Thus, changing Cu(II) concentration in the IM is fair to expect to boost GPRE.
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Background
Barley (Hordeum vulgare L.) is a cereal that has been eco-
nomically important for centuries. It originated from the 
wild form Hordeum vulgare ssp. spontaneum and was 
probably domesticated in the Middle East around 8000 
BC [1]. Today, barley continues to play a significant role 
in feeding [2], brewing [3], and distilling [4]. It is also a 
model plant in many plant studies, including those that 
employ double haploids (DH). The generation by tissue 
culture of plants with a completely homozygous doubled 
chromosome set in a single cycle eliminates the expendi-
ture of time and labour. It is, therefore, so desirable for 
breeding work. Haploid forms have a different morphol-
ogy from diploids; they are smaller than diploid barley, 
have thinner leaves, are more bushy, and their gametes 
are mostly aborted. Therefore, they are not the primary 
target for breeding and are usually eliminated during 
research or breeding processes. Thus, doubling the num-
ber of chromosomes during development is necessary for 
a chance of seed set and reproductive success.

Barley plants can be grown as doubled haploids using 
the "bulbosum" method [5] or through embryogenesis of 
microspores in anther [6] or isolated microspore cultures 
[7]. The isolated microspore method has been around 
for over thirty years, whereas the "bulbosum" and other 
methods for almost fifty years. These techniques are 
designed to generate homozygous, homogenous mate-
rials fit for breeding purposes [8, 9] or fundamental 
research [10].

Using anther or isolated microspore cultures to grow 
plants does not necessarily result in homogeneous plants 
because of changes to the tissue culture or differences 
already present in the explants (pre-existing variation) 
[11]. It is crucial to reduce such variation to the lowest 
level possible if the impact of the in vitro culture is to be 
studied. According to studies of anther culture triticale 
and barley regenerants that underwent a generative cycle 
[12–14], it is possible to control the phenomenon using 
the generative offspring of a self-evolved single regener-
ant that was a doubled haploid [12–14].

However, genetic or epigenetic variation may impact 
the uniformity of regenerants produced by tissue culture. 
Such regenerants are hampered by tissue culture-induced 
variation (TCIV) [15, 16], whereas their generative 
progeny are by somaclonal variation [12, 17–19]. TCIV 
refers to changes arising at the DNA sequence level and 
in the DNA methylation of the regenerants. Hence, the 
studies presented here describe epigenetic phenomena 
concerning plant tissue cultures. In addition to DNA 
methylation, several other mechanisms, such as histone 
methylation, chromatin remodelling, and short RNA, 
belong to the epigenetic aspects (described in the review 
papers) [20–23].

Various methods are used to assess tissue culture-
induced variation and rely on different forms of DNA 
markers. Grass species have been studied using both 
dominant (Inter-Simple Sequence Repeat: ISSR, Random 
Amplified Polymorphic DNA: RAPD, Amplified Frag-
ment Length Polymorphism: AFLP, Inter-Retrotrans-
poson Amplified Polymorphism: IRAP) [24–26] and 
codominant (Restriction Fragment Length Polymor-
phism: RFLP, Simple Sequence Repeats: SSR) marker 
techniques [27, 28]. These marker techniques primarily 
investigate the genetic nature of TCIV variation, whereas 
RFLP (methylation-sensitive RFLP) [29, 30], AFLP 
(metAFLP) [31], and the Methylation-Sensitive Ampli-
fied Polymorphism (MSAP) [32] techniques could be 
employed to study the methylation aspect. Some of these 
methods were also used to assess TCIV in triticale [33] 
and barley [34]. An alternative option is to use a new-
generation sequencing strategy. The MSAP quantitative 
method was employed in the Diversity Arrays Technol-
ogy Methylation Analysis (DArTseqMet) approach [35] 
to explore the TCIV shared by regenerants from barley 
cultures. The methodology focused on improving the 
effectiveness of green plant regeneration [35]. Cu(II) ion 
concentration in the induction media (IM) influences 
GPRE, as was shown in triticale [36]. In earlier investiga-
tions, Ag(I)’s function and timing of a subsequent culture 
were also discussed [35].

Variation induced in plant tissue cultures also includes 
changes that may involve the regenerant metabolome 
[37]. The Attenuated Total Reflectance (ATR) technique 
can investigate biochemical changes by directly analys-
ing solid or liquid samples without additional prepara-
tion [38]. The ATR technique is commonly combined 
with Fourier Transformed Infrared (FTIR) spectroscopy 
(ATR-FTIR) to simplify the measurement. The ease of 
preparation and the small sample size that can be recov-
ered from the crystal surface if necessary [39] are unde-
niable advantages of ATR-FTIR. This method has been 
used extensively to study plant materials considering 
different growth conditions and abiotic stresses affect-
ing the biochemical phenotype [40–43] and in studies on 
barley [34] and triticale [37] plants derived via androgen-
esis in anther culture.

The success of green plant regeneration by androgene-
sis is influenced by many factors, ranging from the appro-
priate treatment of harvested tillers with spikes (low 
temperature [44], darkness [45], glutathione supplemen-
tation [46]) to the modification of tissue culture media 
with plant growth regulators [47], sugars [48], micro- and 
macronutrients [49]. Recent studies on the regeneration 
of barley and triticale by androgenesis in anther cultures 
have revealed relationships between TCIV, supplementa-
tion of induction media with Cu(II) ions and green plant 
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regeneration efficiency (GPRE). In addition, metabolites 
such as glutathione (GSH) [50], S-adenosyl-L-methio-
nine (SAM) [51], and β-glucan [34] were identified as 
those that could be affected by ions (Cu(II), Ag(I)) added 
to induction media through metabolic pathways.

β-glucans are the primary substrates for glycolysis, 
pumping the Krebs cycle [52]. The latter is linked to the 
electron transfer chain (ETC), resulting in ATP. SAM is 
made when ATP and S-adenosyl-L-methionine are com-
bined (the Yang cycle). SAM is the leading methylating 
agent in cells [53] and is in charge of more than 80% of 
methylation events, such as DNA methylation. Moreo-
ver, via the transsulfuration pathway, the Yang cycle indi-
rectly affects GSH synthesis [53, 54]. The ETC depends 
on Cu(II). Thus, any imbalances in the ion concentration 
should affect ATP production and the synthesis of the 
following metabolites.

GPRE is promoted by Cu(II) ion in the IM acting as 
cofactors of biochemical reactions, including those of 
the electron transport chain (ETC), the Yang cycle and 
GSH synthesis pathways affecting epigenetic mecha-
nisms involving DNA methylation. Such a hypothesis 
was tested on triticale and is believed to be a more gen-
eral mechanism in anther cultures of cereals. We hypoth-
esize that ions acting as cofactors may differently affect 
tissue cultures, inducing varying stresses influencing bio-
chemical reactions that could be studied via metabolome 
fluctuations. Furthermore, fluctuations may affect metab-
olome and, thus, GPRE. As such, subtle changes should 
be linked, and understanding the relationships between 
different levels of cells functioning during androgenesis is 
crucial for future progress in DH production. The study 
identifies relationships between DNM, DM, Cu(II), SAM, 
GSH and β-glucan influencing GPRE.

Methods
Plant material
The study used spring barley (Hordeum vulgare L.) geno-
type NAD2 from Poznan Plant Breeding Ltd. (Nagrado-
wice, Poland). Donor plants that arose by self-pollination 
of androgenic regenerant (doubled haploid) were selected 
based on their morphology, including plant height, leaf 
shape, and type of tillering. Anther cultures were estab-
lished using explants (anthers) from the donor plants to 
obtain regenerants through androgenesis. The donors 
were prepared for analysis as described previously [16].

The process for obtaining regenerants was previously 
outlined elsewhere [55]. The necessary steps are as fol-
lows: tillers from donor plants were harvested 6–10 
weeks after being planted into pots and cut when micro-
spores were in the mid-to-uninucleate stage. Cut tillers 
with spikes were stored in plastic bags in the dark at 4 
°C for 21 days. After this period, anthers were plated on 

N6L induction media (IM) [56] supplemented with 2 mg 
l−1 2,4-D (2,4-dichlorophenoxyacetic acid), 0.5 mg l−1 
NAA (naphthaleneacetic acid), and 0.5 mg l−1 kinetin 
and incubated in the dark at 26 °C. The IM also contained 
varying concentrations of salts, such as CuSO4 (copper 
sulfate: 0.1; 5; 10 µM) and AgNO3 (silver nitrate: 0; 10; 
60 µM). Different incubation times (21, 28, and 35 days) 
were used for the anther cultures, and nine IM (A-I) vari-
ants were prepared. The incubation time of the explants 
on the induction media covers points from the plat-
ing anthers on IM to calli, embryo-like structures, and 
embryo collection and transfers them onto regeneration 
media. The next step was regeneration on K4NB media 
[57] containing 0.225 mg l−1 BAP (6-benzylaminopu-
rine). The regeneration process occurred at 26 °C during 
the 16-h day and 8-h night. The rooting of the regener-
ated green plants took place on N6I medium [56] sup-
plemented with 2 mg l−1 IAA (indole-3-acetic acid). The 
resulting plants were transferred to pots and grown in 
a greenhouse (16 h light, 16 °C / 8 h dark, 12 °C) until 
maturation. The morphology of green regenerants was 
assessed based on traits such as plant height, leaf shape, 
type of tillering, and seed-setting ability, which allowed 
for the estimation of the spontaneous doubling of the 
number of chromosomes. Finally, GPRE was evaluated 
based on the number of green regenerants produced per 
100 plated anthers. Thirty-five plants derived from a sin-
gle donor plant, obtained in all variants tested (A-I), were 
selected for analysis.

DNA extraction, DArTseqMet genotyping 
and quantification of variation
We used a commercial kit called DNeasy MiniPrep from 
Qiagen (Hilden, Germany) to extract DNA. Leaves from 
the donor plant and regenerants were collected during 
the tillering stage. We assessed the quantity of the DNA 
samples using spectrophotometry and checked their 
quality by running them through a 2% agarose gel with 
ethidium bromide.

DArT PL (https://​www.​diver​sitya​rrays.​com) performed 
DArTseqMet on 35 regenerants. The resulting mark-
ers were converted into semi-quantitative methylation 
characteristics using the MSAP technique. The conver-
sion involved the analysis of molecular data produced by 
HpaII and MspI endonucleases, interpreting the results 
to identify specific events, quantifying them, and devel-
oping MSAP characteristics that indicate changes in 
DNA methylation (such as demethylation (DM) or de 
novo methylation (DNM)) [58].

ATR‑FTIR
The samples were first lyophilized using a laboratory 
freeze dryer (Alpha 1–4 LSC Christ, Polygen, Østerode, 

https://www.diversityarrays.com
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Germany) and then homogenized into powder using a 
ball mill (MM 400, Retsch, Haan, Germany) to conduct 
mid-infrared spectroscopy. The measurements were 
taken using the iZ10 module of the Nicolet iN10 MX 
infrared imaging microscope (Thermo Fisher Scientific, 
Waltham, MA, USA). The microscope was equipped with 
a deuterated triglycine sulfate (DTGS) detector and a 
KBr beam splitter. Sixty-four spectra were collected per 
sample in the Attenuated Total Reflectance (ATR) mode 
at 4 cm−1 resolution in the wavenumber range between 
600 and 4000 cm−1. The measurements were taken using 
the one-bounce diamond crystal and the ATR accessory 
(Smart Orbit, Thermo Scientific, Madison, WI, USA). The 
surface of the diamond crystal was cleaned with water or 
propanol before each measurement to remove residuals 
from previous samples. The spectra were recorded, aver-
aged, and baseline-corrected using OMNIC software 
(v.9.0, Thermo Fischer Scientific Inc.). The 1st derivative 
was calculated and vector normalized following Savitzky-
Golay filtering and smoothing. The calculations, statistics 
(mean, SD) and plots of spectra were performed using 
the ChemoSpec package [59] (functions: normSpectra 
and surveySpectra (method = ″sd″)) in the R program-
ming language [60].

Statistical analyses
Pearson’s correlation analysis, Principal Component 
Analysis, Classification & Regression Trees, and the Pass-
ing-Bablok regression were conducted in XlStat 2020.1.1 
Excel add-inn [61].

Results
A double haploid barley plant produced progeny con-
sistent in height, leaf size, tillering, and seed set. Explant 
tissue was taken from one of the progeny plants. The 
concentration of Cu(II) and Ag(I) ions in the IM, as well 
as the time of anther cultures, were altered in nine tri-
als (A-I). Finally, 35 regenerants entirely in type as donor 
plants regarding plant morphology were derived. No 
other (off-type) regenerants were evaluated. In each 
trial, there were between 3 and 5 regenerants. According 
to Table 1, the effectiveness of green plant regeneration 
ranged from 0.1 (trial E) to 2.91 (trial G) (Table 1).

DNA quantity and quality from the donor plant’s and 
its regenerants’ fourteen-day-old leaves were sufficient 
for the DArTseqMet analysis. DArTseqMet approach 
found that the overall DNM and DM ranged from 6.83 
to 32.27 and 7.61 to 32.29 (Table  1), respectively, based 
on the banding patterns shared by the donor plant and its 
regenerants.

The absolute values of the 1st derivative calculated for 
ATR-FTIR absorbances was used as the numerical input 
to the analysis. The contribution of compounds under 

consideration, i.e. β-glucans, S-adenosyl-L-methio-
nine and glutathione, was evaluated assuming spectral 
regions selected in our previous studies [34, 37, 51]. Fig-
ure  1 presents collected spectra and absolute values of 
the 1st derivative calculated on the spectra absorbance, 
along with shaded regions depicting contribution from 
β-glucans, S-adenosyl-L-methionine (SAM) and glu-
tathione (GSH) at 990–950 cm−1, 1630–1620 cm−1 and 
2550–2540 cm−1, respectively.

Bartlett’s sphericity test was significant (p < 0.0001 at 
α < 0.05), indicating that at least one of the correlations 
(Table  2) between the variables is meaningly differ-
ent from zero. The highest and positive correlation val-
ues were evaluated between DM and DNM, β-glucans 
and GSH. A negative correlation was observed between 
β-glucans and SAM. The remaining significant correla-
tions were both positive and negative but below 0.5.

The Principal Component analysis eigenvalues have 
shown that the first three components explain nearly 
68.7% of the variance (Table 3).

According to the PCA, the samples representing tri-
als form more or less uniform clusters. For example, see 
samples of trials H, I, E and C. Some samples of different 
trials overlap (A, B, C, and D).

The factor loadings (Table 4, Fig. 2) show that DM and 
DNM are positively and closely correlated, and together 
with SAM and GPRE, they mainly influence grouping 
along the first component. The second component is 
affected by GSH, β-glucans, Cu(II), and Time. The fac-
tors are positively correlated and responsible for group-
ing samples representing trial E and partly G. The third 
component (not shown) is influenced by the Ag(I) factor.

The classification and regression tree analysis (Fig.  3) 
shows that trials are the most influential factors for the 
first grouping level, with GPRE as a dependent variable. 
The left node, reflecting the second level, uses trials for 
further classification. Then, the time of anther cultures is 
crucial at the fourth level. Trials determine classification 
at the fifth level and silver ions at the sixth level. The sec-
ond level classification (right node including F, G, and H 
trials) is due to DNM. The last classification concerning 
samples with DNM greater than 30.625 is due to Cu(II) 
ion concentration.

The curves for DNM, DM, SAM, GSH, β-glucans, and 
GPRE show evident changes related to trials. The E trial 
had the lowest GPRE, DNM, DM, and SAM readings. On 
the other hand, trial G yielded the greatest GPRE value, 
which matched the best GSH value. The DM value also 
outperformed the DNM value.

The comparisons of the curves (Fig.  4) conducted 
via the Passig-Bablok regression analysis (Table  5) 
show curves of DM and DNM, DM and SAM, DM and 
β-glucans, SAM and GSH, SAM and β-glucans, GSH 
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and β-glucans passed linearity of variables and were 
different. The relationship between DNM and SAM, 
DNM and GSH, DNM and β-glucans, DNM and GPRE, 
DM and GSH, SAM and GPRE, GSH and GPRE, and 
β-glucans and GPRE was not linear, whereas the model 
was significant, suggesting differences in curves.

Discussion
The study was based on a biological system [16] with 
varying anther culture conditions, involving a sophisti-
cated molecular marker system (DArTseqMet) [35, 62] 
for methylome analysis, spectroscopic method (ATR-
FTIR) [34] for analysis of variation in biochemical 

Table 1  The in vitro tissue culture conditions including Cu(II) and Ag(I) ion concentrations in the induction medium (IM), time (days) 
of anther culture, β-glucans, S-adenosyl-L-methionine (SAM) and glutathione (GSH) based on the 1sd derivative of the FTIR spectrum 
within 990–950, 1630–1620 and 2550–2540 cm−1 range, respectively, and efficiency of green plant regeneration (GPRE) as a number 
of green regenerants obtained by 100 plated anthers contraposed with experimental trials (A-I) and the DArTseqMet quantitative 
characteristics concerning asymmetric de novo DNA methylation (DNM) and DNA demethylation (DM) variations

Trial In vitro tissue culture conditions DArTseqMet (%) FTIR data GPRE

Cu(II) Ag(I) Time DNM DM SAM GSH β-glucans

A 0.1 0 21 28.15 32.18 0.37877002 0.037779 0.0443 0.64

A 0.1 0 21 28.19 32.29 0.38572509 0.027657 0.0267 0.64

A 0.1 0 21 28.16 32.25 0.38024021 0.033741 0.0371 0.64

A 0.1 0 21 28.14 32.17 0.36916384 0.029796 0.0317 0.64

A 0.1 0 21 28.1 32.21 0.37316889 0.03685 0.0388 0.64

B 0.1 10 28 31.09 29.43 0.37212605 0.036056 0.0283 0.67

B 0.1 10 28 31.1 29.58 0.37036069 0.028056 0.0287 0.67

B 0.1 10 28 31.01 29.46 0.39685106 0.037014 0.0322 0.67

C 0.1 60 35 30.92 29.29 0.37441652 0.029443 0.0274 1.09

C 0.1 60 35 30.86 29.3 0.38539155 0.029008 0.0264 1.09

C 0.1 60 35 30.88 29.33 0.33857775 0.040079 0.0454 1.09

C 0.1 60 35 30.92 29.28 0.38772455 0.033056 0.0263 1.09

C 0.1 60 35 30.92 29.31 0.40502951 0.037433 0.0255 1.09

D 5 60 28 30.42 30.53 0.37808317 0.030979 0.0282 0.45

D 5 60 28 30.46 30.59 0.38031144 0.03189 0.0325 0.45

E 5 0 35 6.9 7.83 0.36384070 0.029989 0.0329 0.1

E 5 0 35 10.8 11.34 0.35114625 0.043758 0.0484 0.1

E 5 0 35 6.83 7.61 0.34510472 0.043573 0.0483 0.1

E 5 0 35 11.04 11.17 0.37218174 0.032762 0.0294 0.1

F 5 10 21 31.52 28.67 0.38049843 0.037839 0.0353 2.12

F 5 10 21 31.3 28.65 0.37682563 0.037169 0.0343 2.12

F 5 10 21 31.51 28.57 0.37245534 0.030541 0.0238 2.12

F 5 10 21 31.52 28.67 0.37727839 0.034857 0.0311 2.12

F 5 10 21 31.36 28.82 0.37400542 0.038586 0.0331 2.12

G 10 10 35 29.91 29.97 0.39753918 0.034812 0.0268 2.91

G 10 10 35 30 30.11 0.33243911 0.041996 0.0482 2.91

G 10 10 35 29.98 29.99 0.38319139 0.049887 0.0373 2.91

H 10 60 21 31.26 29.66 0.38747164 0.038674 0.044 1.77

H 10 60 21 31.28 29.78 0.35703710 0.036527 0.0533 1.77

H 10 60 21 31.25 29.79 0.36122281 0.03497 0.0426 1.77

I 10 0 28 32.2 28.13 0.41650493 0.043391 0.0441 0.54

I 10 0 28 32.27 28.28 0.38986374 0.038744 0.0361 0.54

I 10 0 28 32.23 28.23 0.37705811 0.040217 0.0388 0.54

I 10 0 28 32.2 28.31 0.39947962 0.03587 0.0335 0.54

I 10 0 28 32.19 28.29 0.39081405 0.02932 0.0223 0.54
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profile, and in putative compounds possibly related to 
GPRE.

The biological system encompasses barley donor plants, 
the generative progeny of a doubled haploid obtained 
by anther culture through microspore embryogenesis 
(androgenesis). Utilization of a single homozygous donor 
plant was dictated by the necessity of elimination of puta-
tive somaclonal [16] and pre-existing [63] variations that 
might impact regenerants. Preliminary verification of 
plant uniformity was tested at the morphological level. 

Plant height, leaf size, tillering, and seed set evaluated 
between donor plants and their regenerants derived 
via several experimental trials encompassing different 

Fig. 1  The mean (central line) and the standard deviation (ribbon) of the spectra absorbance (bottom) and the absolute values of calculated the 1st 
derivative (top) collected from the barley leaves of young regenerants derived via androgenesis. The inset presents the spectra and the 1st derivative 
for region around 2500 cm−1, which can be tentatively assigned to GSH (shaded). The wavenumber ranges corresponding to SAM (1630–1620 
cm−1) and β-glucans (990–950 cm-1), are marked grey shaded

Table 2  Pearson’s correlation matrix—analysis between original results reflecting Cu(II) and Ag(I) ion concentrations, time of anther 
culture, percentages of DNM and DM, FTIR spectra assigned to SAM, GSH, and β-glucans, and GPRE at p < 0.05

Values in bold are different from 0 with a significance level alpha = 0.05

Variables Cu(II) Ag(I) Time DNM DM SAM GSH β-glucans GPRE

Cu(II) 1
Ag(I) -0.107 1
Time -0.002 0.160 1
DNM 0.065 0.307 -0.400 1
DM -0.106 0.269 -0.472 0.939 1
SAM 0.058 -0.048 -0.118 0.412 0.346 1
GSH 0.407 -0.179 0.176 -0.092 -0.152 -0.140 1
β-glucans 0.337 -0.017 -0.079 -0.224 -0.194 -0.505 0.679 1
GPRE 0.345 0.156 -0.138 0.444 0.400 -0.067 0.266 0.049 1

Table 3  The eigenvalues of the principal component analysis

F1 F2 F3

Eigenvalue 2.839 2.118 1.229

Variability (%) 31.542 23.534 13.661

Cumulative % 31.542 55.076 68.737

Table 4  The PCA factor loadings

Components

Factors F1 F2 F3

Cu(II) -0.133 0.662 -0.279

Ag(I) 0.310 0.020 0.839
Time -0.482 -0.201 0.392

DNM 0.907 0.307 0.050

DM 0.908 0.239 0.067

SAM 0.548 -0.199 -0.484

GSH -0.401 0.743 -0.096

β-glucan -0.502 0.681 0.106

GPRE 0.362 0.658 0.180
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concentrations of Cu(II), Ag(I), and time of anther cul-
ture revealed a lack of morphological differences among 
analyzed materials. It is a common fact that morpho-
logical differences between regenerants may not be very 
often detected [33] and, if necessary, could be easily elim-
inated during subsequent phases of anther culture plant 
regeneration. Thus, their lack could be addressed by a 
limited sample size or biological system employed to pre-
vent putative variation sources [64]. Still, the lack of such 
differences does not exclude biochemical [34] or DNA 
methylation-related changes [31].

The presented work focuses on three substances of 
importance for obtaining green regenerants by tissue cul-
ture, including SAM, GSH, and β-glucans. SAM delivers 
a methyl group to various molecules, including proteins, 
lipids, hormones and nucleic acids [65], in methylation 
reactions catalyzed by numerous methyltransferases [66]. 
The imposition of a methyl group influences the regula-
tion of gene expression, affects the mobility of membrane 
receptors and maintains membrane fluidity [67], in addi-
tion to affecting processes such as transsulfuration [68] 
and the production of ethylene [69] and polyamines [70]. 
SAM was shown to influence de novo methylation in trit-
icale in plant tissue cultures, while de novo methylation 

was involved in GPRE [51]. The second compound is 
GSH, a small intracellular thiol molecule that is a potent 
non-enzymatic oxidant. Among its many functions in 
plant cells, glutathione prevents the oxidative denatura-
tion of proteins under stress conditions by protecting 
their thiol groups [71, 72], and it is a substrate for glu-
tathione peroxidase and glutathione S-transferase. The 
primary function of glutathione is its role in conferring 
tolerance to abiotic stress [73] and hence its applications 
in obtaining plants by in  vitro culture [74, 75]. Finally, 
β-glucans are important for glycolysis [76, 77]. Glycolysis, 
which uses β-glucans, pumps the Krebs cycle, producing 
ATP [78]. Thus, the Krebs cycle is crucial for SAM and 
GSH as producing both chemical compounds is an ATP-
dependent process [69, 79, 80].

In contrast, ATP synthesis requires copper ions as 
cofactors involved in elements of the respiratory chain 
[81]. The ATR-FTIR study employed leaves of young 
regenerants to analyze changes in biochemical com-
pounds possibly reflecting the Krebs’, Yung, and GSH-
ascorbate cycles. In this study we used the 1st derivative 
[82–84] which provided enhanced resolution (Fig.  1) 
compared to raw spectra and thus facilitated the proper 
location of poorly resolved components in the complex 

Fig. 2  Principal component analysis biplot. Active variables (for explanation see Table 1) are given in red whereas trials are indicated in colored dots
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spectrum of the plant material. The selected SAM, GSH, 
and β-glucans spectral regions proved to vary between 
trials, confirming that tissue culture conditions may 
affect the biochemical level of cells and that the influence 
is “remembered” in leave tissue during multiple rounds of 
cell deviations and tissue specification.

Based on triticale experiments [36] and the role of SAM 
[85], we have shown that SAM impacted DNA meth-
ylation what might result in gene expression changes 
affecting GPRE [51]. The DNA methylation changes 
were studied via DArTseqMet markers quantified with 
MSAP [58] semi-quantitative approach and converted 
into DMV and DM. The analysis revealed the presence 
of differences at the DNA methylation levels evaluated 
between regenerants regarding Cu(II), and Ag(I) ion con-
centrations in the IM and time of anther cultures. Thus, 
varying experimental conditions affecting microspore 
biochemistry, DNA methylation and GPRE should result 
in different sample groupings representing trials.

Unsurprisingly, the notion was confirmed by the 
PCoA analysis. Samples of some trials formed tight 
groups, and group formation was linked to the factors 
contributing to the two main components responsible 

for 55.05% of the variance. The most correlated fac-
tors were DNM, DM, and SAM, which had the most 
significant input for the first component. The second 
component was composed mainly of GSH, β-glucans, 
Cu(II), and GPRE that were moderately correlated 
(GSH to β-glucans and Cu(II) to GPRE). The Ag(I) and 
time had little input into the first two components, sug-
gesting their limited role in barley anther culture plant 
regeneration. The fact was in agreement with structural 
equation modeling involving Cu(II), Ag(I), Time, DNM, 
DM, and GPRE, where the Ag(I) effect was identified 
but was weak [86].

While PCoA shows the input of loading factors to the 
sample classification, employing classification and regres-
sion analysis illustrates their hierarchy. Thus, the primary 
samples’ grouping was due to trials reflecting the in vitro 
tissue culture conditions used for plant regeneration. The 
trend is partly reflected at the second classification level, 
where 24 out of 35 samples were subdivided according to 
trials and the remaining 11 samples according to DNM. 
Time and Cu(II) were responsible for further classifica-
tions, whereas Ag(I) showed the lowest input, which is in 
agreement with PCoA.

Fig. 3  Classification and regression tree analysis illustrating trials classification
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The most straightforward result is possibly showing 
how in vitro tissue culture conditions affect biochemical 
levels, DNA methylation changes and GPRE. Depend-
ing on trials, the biochemical, DNA methylation levels 
change (and profiles of changes for the analyzed char-
acteristics differ from each other as indicated by Pass-
ing Bablok regression analysis) with the most prominent 
fluctuation in the trial E and G. Low Cu(II) concentration, 

lack of Ag(I) in the medium and prolongated time of in 
vitro cultures exhibits decreased SAM level, somewhat 
increased GSH and β-glucans. At the same time, appar-
ent depletion of DNM and DM is observed, leading to the 
lowest value of GPRE. Possibly, under such conditions, 
the Krebs cycle is not functioning efficiently, which is 
reflected by lowered SAM values, which results in DNA 
demethylation and decreased DNA de novo methylation. 

Fig. 4  Standardized characteristics of DM, DNM, SAM, GSH, β-glucans, and GPRE for trials

Table 5  The Passing Bablok regression results indicating similarity between graphs regarding DNM, DM, SAM, GSH, β-glucans, and 
GPRE

Yellow cells – linearity of variables is assumed; orange cells – linearity of variables is not assumed; characters in green indicate that the given parameter is insignificant; 
characters in black shows significant model parameters
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Although not studied, it sounds reasonable to postulate 
that gene expression (possibly poorly coordinated due 
to decreased DNA methylation level) is less directed 
towards plant regeneration or is not effectively regulated. 
Increased GSH may suggest oxidative stress. In parallel 
to low Cu(II) concentration, which is under elevated con-
centration, might reduce oxidative stress, it is becoming 
clear why GPRE achieved the lowest value among all tri-
als tested.

On the contrary, the highest Cu(II), intermediate Ag(I) 
concentrations and prolongated time of other cultures 
resulted in the best values of GPRE. Cu(II) plays a crucial 
role in antioxidative stress, and its amount is sufficient 
for proper biochemical cycle functioning. Furthermore, 
the highest level of GSH supports the hypothesis that 
antioxidative components of the cell function at the high-
est levels, whereas high SAM values suggest that epige-
netic control of gene expression may be well established. 
Moreover, DNM and DM are in balance, indicating the 
correct transcriptome functioning, which translates to 
increased GPRE.

Conclusions
Our study shows complex interplay between biochemi-
cal and methylome levels affecting GPRE due to in vitro 
anther culture conditions and illustrates that varying 
the conditions one may affect plant regeneration. Fur-
thermore, the observed changes affecting biochemical 
and DNA methylation levels seem congruent with the 
structural equation model presented for triticale [33], 
indicating that comparable mechanisms of plant regen-
eration via anther cultures may be involved in both 
cases. Although indicative, our results must be subjected 
to structural equation modelling analysis to draw the 
most significant relationships between analyzed factors. 
Still, increasing Cu(II) concentration in the IM affected 
metabolome and DNA methylation, raising GPRE. Thus, 
manipulating Cu(II) concentration in the IM is reason-
able to suggest that it would benefit GPRE.
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