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Abstract
In breeding programs, stress memory in plants can develop drought stress tolerance. Memory stress, as an 
approach, can keep stress data by activating tolerance mechanisms. This research was conducted to evaluate 
some physiologically effective mechanisms in inducing memory drought stress in the seeds that were exposed 
to water stress three times in four treatments including rainfed, 33%, 66%, and 100% of field capacity (FC). After 
the production of the seeds, the third-generation seeds were placed under different irrigation treatments, seed 
and seedling traits, starch to carbohydrate ratio in seed, protein concentration and glutathione reductase were 
investigatied in a factorial format based on a randomized complete block design with three replications. Results 
showed that percentage of changes from the lowest to the highest value for traits including seed vigor, seed 
endosperm weight, seed coat weight, accelerated aging, cold test, seedling biomass and seedling length were 
25, 37, 65, 65, 55, 77, 55, 65 and 79, respectively and germination uniformity was 3.9 times higher than the lowest 
amount. According to the deterioration percentage, seed vigor and the percentage of seed germination in cold 
test data, it can be reported that seed production by 100% FC was not appropriate for rainfed plots. However, 
considering the the appropriate results in the percentage of germination for a cold test, germination uniformity 
percentage, and the lowest accelerated aging seeds, seed production under the rainfed conditions with 33% 
FC watering can be recommended. In-silico analysis was coducted on Glutathione reductase (GR) enzymes in 
Gossypium hirsutum. It is clear that GR has a Redox-active site and NADPH binding, and it interacts with Glutathione 
S transferase (GST). So, memory drought stress through inducing physiological drought tolerance mechanisms such 
as starch-to-carbohydrate ratio and GR can determine the suitable pattern for seed production for rainfed and low 
rainfall regions in a breeding program. Our study thus illustrated that seed reprduction under 33% FC equipped 
cotton with the tolerance against under draught stress from the seedling stage. This process is done through 
activating glutathione reductase and balancing the ratio of starch to carbohydrates concentration.
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Introduction
Drought stress, as the most common abiotic stress, 
causes negative effects on developmental, physiologi-
cal, biochemical, and molecular traits [10]. It seems 
that global warmaing plays a significant role in expand-
ing drought stress based on 30 years analysis of average 
temperature during flowering evaluation temperature 
data [40]. Sugumar et al. [40]. reported that the phe-
nomenon of climate change affects the number of days 
and the severity of water deficiency that cotton plants 
are exposed to. This, consequently, can cause changes 
of seed reproduction strategies. Being in exposure to a 
small degree of drought stress in advance can enhance 
the plant’s adaptability to subsequent stress [45].

Plants have evolved various regulatory mechanisms 
to cope with the changes in environmental conditions. 
It is clear that plants, in exposure to drought stress 
subsequently during a life cycle, can establish different 
adaptation and tolerant mechanisms [48]. One of these 
strategies is called stress memory, which causes the 
plant to have an incremental response when exposed 

to the subsequent water shortage stresses [15]. Achiev-
ing stress memory may be a response at the tran-
scriptional level that is associated with increased 
transcription and transcript levels of stress response 
genes that are produced during subsequent stresses on 
the plant [7].

According to Soriano et al. [39] study, abscisic acid 
(ABA) may be involved in drought stress memory in 
a short period; however, epigenomic variations play 
an essential role in meristem functioning of seedling 
growth, seed development, and crop yield in the long 
term [2]. As Moloi et al. [26] indicated, soluble sugar 
concentration is evaluated as the primary drought tol-
erance indicator [26]. Moreover, Makonya et al. [24] 
reported that non-structural carbohydrates (glucose 
and sucrose) and starch are the primary sources of 
energy for plant growth, which are used for the allo-
cation of carbon and osmolytes. Also, it is understood 
that non-structural carbohydrate such as starch was 
rebuilt after drought stress [16]. Furthermore, restric-
tions on sharing of starch leads to survival of seedlings 

Fig. 1 (a) temperature average (sowing to harvesting time) during three year, (b) irrigation treatment time for seed reproduction during three years and 
(c) Diagram of conducting three years of experiment (It was obtained by Correspond author)
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under a drought stress condition. Conversely, Gluta-
thione as a substrate or co-factor for several biochemi-
cal reactions, not only copes with hormones and redox 
molecules but also takes part in signal transduction 
under abiotic stress conditions [27]. In this regard, 
Wang et al. [44] indicate glutathione reductasse 
enhances stress resistance in plants, even though many 
functions of glutathione in plants under environmental 
stress remain unknown.

It is clear that decrease in seedling dry weight, 
seed germination percentage and age acceleration in 
seeds under a drought stress condition are resulted 
by increase in hydrogen peroxide (H2O2) and O2 in 
the radical and cotyledon leaves of seedlings [45]. On 
the other side, glutathione reductase is able to dimin-
ish this damage effect on seedlings by increasing ABA 
and balancing growth regulation compounds [5]. High 
activity in glutathione reductase is derived from ROS 
detoxification role in exposure to (H2O2) and O2

− 
accumulation. Glutathione influences the growth of 
seedlings through its regulating effect on cell division 
in the root meristemic segments to the extent that 
this function is important for morphological adapta-
tion to drought stress, which consequently emphasizes 
memory stress role [18]. Sairam et al. [34]. figured out 
that increasing both glutathione reductase activity and 
the amount of glutathione reductase expression causes 
plants to be more tolerant to oxidative stress [38]. It 
is hyphosized that by supplying about 30% total water 
requirement during flowering, seeds will have poten-
tial cotton seed through activatiting memorial drought 
stress.

The current expriment was conducted as an innova-
tive study on cotton to evaluate memory drought stress 
effects on seed vigor and seed deterioration by evalu-
ating Glutathione reductase activity role in drought 
stress, in particular in breeding programs for achieving 
suitable emergence in rainfed farms.

Material and method
In order to investigate this research, the experiment 
was conducted at Hashemabad Cotton Research Sta-
tion, which was located at the southeast corner of the 
Caspian Sea (36° 51’ N latitude, 54° 16’ E longitude, 
and 13.3 m above the mean sea level). The mean tem-
perature information is presented (Fig.  1a). Cotton 
seeds were cultured in the soil with sandy clay silt (6, 
6.8, 3) texture throughout the 0.5 m soil profile. Water 
content at field capacity (FC) and wilting point were 
28.1% and 14.1% by volume, respectively.

As shown in Fig. (1b and 1c), in the first year (2016), 
all experiment seeds were purchased from the mar-
ket and named S0. These seeds were cultivated and 
were subjected to four treatments included rainfed, 

33%, 66%, and 100% of field capacity (W0, W1, W2, 
and W3, respectively), and the resulting seeds, which 
were named S11, S12, S13, and S14, were collected for 
cultivation in the following year. In the second crop 
season (2017), the seeds obtained from the first year 
(S11, S12, S13, and S14), along with the seeds obtained 
from the market (S10) were subjected to water treat-
ment similar to the first year, as a double water-stress 
exposure test. Therefore, the experiment in the second 
year included both seed treatments and irrigation con-
ditions. The seeds obtained in the second year, known 
as S21, S22, S23, and S24, along with the seeds pur-
chased from the market (S20), were treated with rain-
fed, 33%, 66%, and 100% of water requirement (W0, 
W1, W2, and W3 respectively) in the third year (2018). 
The seeds obtained from these treatment conditions 
were named as S31, S32, S33, and S34. All the experi-
ments were conducted following a split-plot factorial 
design with three replications. The seeds were planted 
at a 20 cm distance from each other and an 80 cm dis-
tance between rows. The amount of irrigation and the 
time of irrigation were determined by a water-flow 
meter and gravimetric methods, respectively. After the 
production of seeds, the third-generation seeds were 
placed under different irrigation conditions (S31, S32, 
S33, and S34) in order to investigate seed and seed-
ling traits, including germination percentage, seed 
vigor, germination uniformity (Gu), seed endosperm 
weight, seed coat weight, 100 seed weight, Starch to 
carbohydrate Ratio in seed, accelerated aging, cold 
test, growth seedling, and seedling biomass and pro-
tein concentration. Also, Glutathione reductase was 
planted in laboratory conditions in a factorial format 
based on a randomized complete block design with 
three replications.

Germination percentage
50 seeds from each resulting seed were germinated 
between two rolled filter papers (25 × 38  cm) with 10 
mL of distilled water. Each rolled paper was placed 
at 25 ± 2  °C in with 250  mol m− 2s− 1 light intensity 
(diurnal cycle was 8  h light and 16  h darkness). The 
seeds were considered to have germinated after nine 
days and estimated using the following equation [36]: 
Gmax = 100×Germinated seed number at 9th day/ 
Total number of seeds.

Seed vigour index
This experiment was conducted using the ISTA rules 
[20] based on the Cool-Warm test. Incubated seed at 
optimum temperature and germination was recorded 
daily. Seedling lengths were measured after seven days 
of incubation on 50 seedlings from each replicate. For 
the cool test assay, 50 cotton seeds were cultivated in 
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the standard germination method at 18 ° C for seven 
days. Warm test was operated in interval (16  h/20 0C 
and 8 h/30 0C) for four days. After adding the percent-
age of cold test with warm test, Seeds Vigour Index for 
each treatment was classified (Table 1).

Germination uniformity (Gu)
Germination uniformity was calculated using the 
number of germinated seeds in each day (n), the mean 
of germination time (t ̅), and the number of days from 
the beginning of germination (t) using the following 
formula [23].

 

CUG =
∑

n

∑
[(

−
t −t

)2

× n

]
 (1)

Seed endosperm weight, seed coat weight, and 100-seed 
weight
100 seeds, with three replicates of each sampled seed, 
were randomly selected and weighed. The seeds were 
placed in 75  ml distilled water at 40 ± 2  °C for 48  h. 
Then, the average of seed coats and endosperm were 
separated from eachother and dried at 100 °C for 24 h, 
and then weighed following Liu et al. [21].

Starch to carbohydrate ratio in seed
The sampled seeds were a homogenous mixture of 
seeds from the bolls collected from the upper, mid-
dle, and lower parts of cotton plants, respectively. 
Then, the samples were kept in liquid nitrogen for 
biochemical analysis in a laboratory. The total car-
bohydrate was quantified using Phenol-Sulfuric acid 
and the starch content (mg g− 1) was determined using 
the phenol–sulfuric acid method [25]. To evaluate the 
starch content, 10 ml distilled water was added to the 
dried pellet. Then, Ba (OH)2 (0.3  N) and ZnS04 (5%) 
were mixed with them. After centrifuging the sam-
ples (3000  rpm, 10  min), 1  ml phenol (5%) and 5  ml 
sulfuric acid (98%) in 2  ml were added to the super-
natant. Then, the absorbance of the extract was read 

Table 1 Seed Vigor index (Ista, 1985)
Classification Cool + warm test germination percentage
Excellent ≥ 160
Good 140–159
Fair 120–139
poor ≤ 120

Fig. 2 Seed Vigor (percentage) under different water treatments [Rainfed (without irrigation, 33%, 66% and 100% FC) water need] in the triple water-
stress exposure
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at a wavelength of 485  nm to determine starch con-
tent. Finally, the starch-to-carbohydrate Ratio was 
estimated.

Accelerated ageing (AA) test
200 seeds from each sampled seed using an aging 
temperature and time combination of 43 ± 0.5  °C for 
96 ± 15  h were placed on wire mesh trays in plastic 
boxes and 50 mL of distilled water was added to the 
plastic boxes [17]. After ageing, seeds per replicate 
were allowed to germinate on filter paper at 25 ± 2  °C 
in a growth chamber for eight days.

Growth seedling test
In order to evaluate growth seedling parameters, such 
as root length and seedling length, 50 seeds were cul-
tivated in an incubator at 25 ± 2 °C on filter paper [17]. 
After counting the germination seeds on the eighth 
day, for each treatment, five seedlings were separated 
for shoot and root length. After separating shoot and 
root segments, they were kept in an oven (50  °C for 
48 h). Finally, they were weighted.

Protein concentration
The protein content was determined using Bradford 
reagent, where bovine serum albumin was used as a 
protein standard. At first, after grinding 0.5 g of fresh 
leaf, it was homogenized in potassium phosphate buf-
fer. The samples were centrifuged at 4  °C for 20  min 
at 12,000 g. 2.5 mL reaction solution and 100 mg Coo-
massie Brilliant Blue G-250 were added to the superna-
tant (0.02 mL). Finally, phosphoric acid 85% (w/v) was 
added to this solution. The concentration of solutions 
was read using bovine serum albumin as a standard.

Glutathione reductase (GR)
GR activity in each treatment was measured following 
Foyer and Halliwell [13] method. For this assay, 0.025 
mM Na-phosphate buffer (pH 7.8), 0.5 mM GSSG, 
0.12  Mm NADPH Na4, and 0.1 mL extract enzyme 
were prepared and reached a final volume of 1 mL. 
NADPH oxidation was analyzed at 340  nm. One unit 
of GR was defined as mg− 1 protein·g− 1 FW [4].

Fig. 3 Gu (percentage) under different water treatments [Rainfed (without irrigation, 33%, 66% and 100% FC) water need] in the triple water-stress 
exposure
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In silico study
In order to conduct bioinformatics analysis, Gluta-
thione reductase (XP_016691145.2) enzymes in Gos-
sypium hirsutum protein sequence are selected from 
NCBI databases. Protein properties, such as sequence 
alignment, location, ligand binding sites, protein struc-
ture and their interactions were studied using clustral 
Omega, Loctree 3, COACH, PDB, STRING respec-
tively [49].

Statistical analysis
Statistical analysis was performed using the SPSS 
package program version 23.0. Data was analysed 
by one-way ANOVA, followed by Duncan’s multiple 
range test (DMRT) comparison at P > 0.05%.

Results and discussion
Seed Vigor and Gu
As results represented (Fig.  2), S33 under 66%FC had 
the best seed vigor. However, the lowest vigor was 
observed in S34 under rainfed conditions (Fig. 2). Seed 
vigor is known as a combined traits that comes from 
accelerated ageing seed tolerance, seed dormancy, 
viability, rapid germination, and seedling establish-
ment [12]. Seed germination cannot be the best scale 
for plant establishment successfully, in particular in 
stressful conditions [32]. Therefore, evaluating seed 
vigor determines the potential seeds for optimum 
emergence percentage in the field [31]. In line with 

this, Wijewardana et al. [46] showed that heat stress 
and drought stress during seed development, in partic-
ular seed filling, cause seed vigor to reduce. Therefore, 
cotton seed reproduction by irrigating, 100% FC, pro-
duced weak seed vigor.

Gu results showed that S34 under 33% FC, 37.1% 
were the most, even though germination percentage 
for this treatment was 86% (Fig.  3). However, Gu in 
S30 under rainfed conditions was the lowest (Fig.  3). 
Gu, as the most important indicator for achieving suit-
able germination, causes the seedlings to emerge at the 
same time. Therefore, GU causes plant establishment 
to enhance [35]. These incredible approaches could be 
employed to select and develop drought-tolerant cot-
ton varieties with improved root growth and seedling 
vigor under drought-stress conditions. Based on previ-
ous reports and studies [31], we hypothesize that there 
might be a strong association between early seedling 
vigor and root growth traits. This strong relationship 
might be the most important characteristic for healthy 
seedlings, assisting the plant facing drought stress with 
limited yield losses.

Seed endosperm weight, seed coat weight and 100 seed 
weight
As Table  2 shows, the most seed endosperm weight 
was observed in S33 under rainfed conditions, while 
the lowest endosperm seed weight was obtained in S34 
under 100%FC conditions. By increasing the amount 

Table 2 Physiological parameters seed under different water treatments [Rainfed (without irrigation, 33%, 66% and 100% FC) water 
need] in the triple water-stress exposure
W S Endosperm weight 

(g/100 seeds)
Seed coat weight 
(g/100 seed)

100 seed weight (g) Seedling Biomass(g) Seedling 
length (Cm )

W0 S30 8.47 ± 0.07ab 4.46 ± 0.03a-c 12.93 ± 0.14ab 0.067 ± 0.00ab 11.65 ± 0.64e-g
S31 6.60 ± 0.94d-g 3.49 ± 0.03bc 10.09 ± 0.87c-g 0.061 ± 0.00a-e 12.30 ± 0.99d-e
S32 7.92 ± 0.05a-c 4.24 ± 0.12a-c 12.15 ± 0.35a-c 0.059 ± 0.01a-e 9.65 ± 1.06gh
S33 8.56 ± 0.0 a 4.38 ± 0.0a-c 12.94 ± 0.03ab 0.069 ± 0.00 a 12.55 ± 0.35c-e
S34 5.20 ± 0.12a-c 4.10 ± 0.03a-c 12.29 ± 0.18ab 0.071 ± 0.00a 9.25 ± 1.34 h

W1 S30 7.16 ± 0.42c-f 3.72 ± 0.01bc 10.88 ± 0.45b-g 0.068 ± 0.00a 11.65 ± 0.92e-g
S31 7.35 ± 0.56a-e 4.57 ± 0.10ab 11.92 ± 0.81a-e 0.064 ± 0.01a-d 11.75 ± 1.77e-g
S32 8.24 ± 0.26a-c 5.32 ± 0.41a 13.55 ± 1.26 a 0.066 ± 0.00a-c 11.85 ± 1.34e-g
S33 7.23 ± 1.05b-e 4.52 ± 0.33ab 11.75 ± 1.86a-e 0.054 ± 0.01c-g 10.55 ± 0.78 f-h
S34 7.19 ± 0.13c-f 4.14 ± 0.21bc 11.33 ± 0.65a-f 0.068 ± 0.00a 7.10 ± 1.13i

W2 S30 7.44 ± 0.45a-d 4.52 ± 0.23a-c 11.96 ± 1.01a-d 0.047 ± 0.00 fg 12.60 ± 0.57c-e
S31 6.35 ± 0.73d-g 3.72 ± 0.11bc 10.07 ± 1.00c-g 0.053 ± 0.00d-g 11.90 ± 1.27e-g
S32 6.30 ± 0.43d-g 4.49 ± 0.45bc 10.78 ± 1.54b-g 0.055 ± 0.01b-f 14.85 ± 0.92a-d
S33 6.15 ± 0.49 d-g 3.56 ± 0.09bc 9.71 ± 0.70d-g 0.059 ± 0.00a-e 15.20 ± 1.41ab
S34 6.57 ± 0.28d-g 3.81 ± 0.10bc 10.38 ± 0.53c-g 0.062 ± 0.01 a-d 14.80 ± 0.28a-c

W3 S30 5.79 ± 0.11 g 3.72 ± 0.04bc 9.50 ± 0.21e-g 0.063 ± 0.01a-d 11.65 ± 1.48e-g
S31 5.92 ± 1.18 fg 3.48 ± 0.24bc 9.40 ± 1.77e-g 0.043 ± 0.043 g 14.00 ± 0.85b-e
S32 5.57 ± 0.01 g 3.48 ± 0.01bc 9.04 ± 0.03 fg 0.046 ± 0.00 fg 13.15 ± 0.49b-e
S33 6.07 ± 0.73e-g 4.15 ± 0.46 a-c 10.22 ± 1.85c-g 0.046 ± 0.00 fg 14.00 ± 0.42b-e
S34 5.50 ± 0.14 g 3.22 ± 0.00c 8.72 ± 0.15 g 0.049 ± 0.00e-g 16.55 ± 0.07a
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of irrigation from 33% FC to 100%FC, endosperm seed 
weight was decreased (Table  2). Also, under 33% FC 
condition, only endosperm weight and coat weights 
for S32 seeds were the most (Table 2). Moreover, The 
highest weight of 100 seeds was in S33 under rainfed 
conditions. (Table  2). The average 100-seed weight in 
S32 under 33%FC indicated that the most seed weight 
was in this irrigation plot (Table 2). Based on activat-
ing memory drought stress, under 66% FC and 100% 
FC conditions, a decrease in 100-seed was declined by 
an increase in the amount of irrigation (Table  2). As 
Bose et al. [3] showed, growing plants under drought 
stress causes a change in the amount of metabolic 
compounds. Although the waterless priming seed pro-
cess is necessary during the early stages of germination 
of seeds, it causes the emergence of primary root from 
the seed coat to prevent the emergence of the primary 
root from the seed coat, hence reducing seed endo-
sperm weight [6].

Aaccelerated ageing
According to the result, the lowest accelerated aging 
was observed in S31 under 33% FC irrigation con-
ditions, while the most accelerated seed aging was 
related to S34 under 100% FC irrigation conditions 
(Fig. 4). As Sharma et al. [37] figured out, the accumu-
lation of ROS, for instance 1O2, O2

•−, H2O2 and OH• 
enhanced during the process of seed aging. It is clear 
that storages of free radicals the cause cell membranes 
to be destroyed and all cell compounds such as nucleic 
acids, proteins, carbohydrates, and lipids hurt cell 
irreversibility. Figure 4 showed that S24 in the rainfed 
leaked the most seed storage while S20 had the lowest 
leakage, and that cold test is an important parameter 
for seed health under long period storage.

Cold test
The lowest percentage of seed in the cold test was 
obtained at S30 in 66% FC and S31 under 33% FC irri-
gation conditions. However, S31 and S33, under 66% 
FC irrigation conditions with the most percentage, are 
able to have the best seed vigor for not only planting at 

Fig. 4 Accelerated aging seed under different water treatments [Rainfed (without irrigation, 33%, 66% and 100% FC) water need] in the triple water-stress 
exposure
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the first sowing date but also for being more tolerant 
against low temperature of soil (Fig. 5). As reported by 
Filho [11], cold test and accelerated aging are known 
as an indicator for evaluating seed tolerance to stress.

Seedling biomass and seedling length
Results represented that S31 and S32 under rainfed 
and 33% FC conditions had the most seedling biomass 
(Table  2), though they had the lowest seedling length 
(Table  2). As Saha et al. [33] reported, the accumula-
tion of some osmolites under drought stress causes 
the seeds to be more tolerant. Moreover, S33 and 
S34 under 66% FC and 100% FC had the highest dry 
weight, respectively. As Faghani et al. [9] observed, 
stomatal conductance was declined in the leaves of 
S33 and S34 under 100% FC irrigation conditions. 
S30 under 66% FC had the most seedling length in 
comparison to other seed treatments even though it 
had the lowest seedling biomass (Table  2). Under the 
rainfed condition, S33 had the most seedling biomass 

(Table  2). It is obvious that several plant species are 
equipped with drought stress memory on the physi-
ological and biochemical levels in order to minimize 
water loss, regulate ROS homeostasis, and change 
photosynthetic rates through changing phytohormone 
contents or in biomass [28]. Also, as many studies 
revealed, drought stress caused a decrease in germi-
nation, seedling growth, root and shoot dry weight, 
cleoptile length and vegetative growth (32, 22), which 
can be influenced by the loss of turgor and followed by 
limitation in the process of cell growth [42]. However, 
in the present study, when the plant was grown from 
seed sources obtained from drought conditions, it had 
the ability to overcome the negative effects of drought 
and it can be considered to be related to a phenom-
enon called ‘stress memory’.

Starch to carbohydrate ratio in seed
As results indicated (Fig. 6), in rainfed conditions, S33 
had the most starch content to soluble carbohydrate 

Fig. 5 Seed in cold test (percentage) under different water treatments [Rainfed (without irrigation, 33%, 66% and 100% FC) water need] in the triple 
water-stress exposure
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ratio. According to memory drought stress effects, the 
ratio of starch content to soluble carbohydrates causes 
to increase seed weight. As Hlahla et al. [19] results 
showed, the significant increase in the starch content 
in the seed of drought-tolerant cultivars is strongly 
related to the fundamental roles of starch for evalu-
ating drought stress tolerance. Moreover, under both 
33% and 66% FC conditions, due to acting memory 
drought stress, the ratio of starch to carbohydrate 
soluble in the seeds of S31, 10.3% and 14.8% were 
more than that in the S30 seeds. On the other hand, 
if the field has enough water sources for irrigating 
under high irrigation conditions, S30 will accumulate 
the most starch to soluble carbohydrate in the seed 
(Fig.  6). Furthermore, the glucose storage in S34 was 
more than starch by irrigation 100% FC. It means that 
S34 is sensitive to high irrigation (100% FC). It is clear 
that during drought stress, starch should be degraded 
in order to replenish glucose needs in the plant cell 
[24]. Hence, following this approach can lead to a 
balance in the content of glucose storage so that the 
photosynthesis process under the drought stress con-
dition is protected [1]. As Hlahla et al. [19] concluded, 
the accumulation of starch in seeds directly correlates 
with seed mass per plant.

Protein concentration and glutathione reductase (GR)
Although the most protein storage was observed in 
S33 under rainfed, the lowest protein concentration 
was obtained in S32 under 66%FC irrigation condi-
tions (Fig.  7). It can be concluded that the increase 
of 100-seed weight and seed dry weight in S33 in the 
rainfed condition derived from high protein storage in 
S33 seed (Table  2). Quite related to this, Rakszegi et 
al. [30] showed that severe drought causes the protein 
concentration of seeds to increase, while decreasing in 
protein storage of seed is known as a tolerant index.

GR activity in the seeds of S33 under 66% FC condi-
tion was observed to be the highest while the amount 
of this enzyme was increased in S34 under rainfed 
conditions. Based on memory drought stress acti-
vation, with an increase in the level of irrigation S34 
seeds, as a genetic resource, is sensitive to o toler-
ate rainfed conditions. On the other hand, S31 under 
the rainfed and 33% FC conditions had the lowest GR 
(Fig. 8a). Then, activating memory stress in S31 could 
be more tolerant against drought stress due to having 
low GR activity. It is obvious that the accumulation of 
the radical form of oxygen was too low to activate GR. 
It is clear that S31 seeds under 66% FC and 100% FC 
conditions had 74.3% and 81.5% glutathione activity, 
respectively, which was more than that in 33% FC irri-
gation conditions. Therefore, perceiving drought stress 
signals and increasing the radical form of Oxygen and 

Fig. 6 Starch to carbohydrate ratio in seed under different water treatments [Rainfed (without irrigation, 33%, 66% and 100% FC) water need] in the triple 
water-stress exposure
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free radicals, glutathione enzyme is activated more 
to export damaged effects of drought stress. Conse-
quently, Glutathione, as a main scavenger of O.2, H2O2, 
and OH·, can counteract the inhibitory effects of ROS 
that are induced by oxidative stress and cause cells to 
have the normal status in this condition [27]. Szalai et 
al. [41] found that Glutathione, as a substrate or co-
factor for a number of biochemical reactions, interacts 
with hormones and redox molecules. So, it plays a cru-
cial role in stress-induced signal transduction to reme-
diate drought aspects.

In-silico analysis of GR
Bioinformatic analysis of protein structure GR 
(XP_016691145.2) in cotton indicated that GR (molec-
ular weight 60 kDa, oxidoreductase family) contains a 
Redox-active site and NADPH binding domain. The 
second structure of GR consists of 28% alpha-helix 
and 14% Beta sheet. In this sequence, Cystein amino 
acid was highly conserved in the catalytic site of the 
enzyme. In-silico analysis showed that XGXGXA 
motifes and arginine amino acid were in the NADPH 
binding domain. Also, active sites in GR were deter-
mined in 51, 52, 33, 31, 32, 28, 29,172, 171, 143, 141, 

79, 75, 74, 73, 72, 70, 69, 68,54,53, 375, 346, 344, 
343, 341, 335, 334, 298, 295, 211, 190, 173 positions 
(Fig.  8b). Glutathione disulfide (GSSG) and Nicotin-
amid-Adenine dinucleotide (NAD) were considered 
GR subestrate. The study of intercellular GR deter-
mined that GR is in cytosol and chloroplast of cotton 
(Table 2). It is clear that the lowest and highest affinity 
values between substrate and enzyme were approxi-
mately − 5 to − 5.8  kcal/mol, respectively (Table  2). 
Generally, the results proved that GR interacted with 
GST(Glutation –S-transferase).

Protein sequence GR is comprised of two cysteine 
residues (Redox-active site), a dimerization domain, 
and an NADPH binding domain that showed high 
conservation in different species [22]. Investigations 
showed that GR sequences have 10–16 exsons and 
gene expression detected in leaves, roots, pheloem, 
and buds of plants. Based on Phylogenetic evalua-
tions, this protein is divided into clades GR (I and II). 
Clade I codes proteins that are related to cytosol [47]. 
GR activity in chloroplasts plays a vital role in chloro-
plast protection against oxidative stress and is avail-
able for reduced glutathione. Also, affecting GSH/
GSSG ratio, GR can balance cellular redox in cytosol 

Fig. 7 Protein concentration in seed under different water treatments [Rainfed (without irrigation, 33%, 66% and 100% FC) water need] in the triple 
water-stress exposure
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and mitochondria [50]. The cellular location of GR has 
been reported in cytoplasm, chloroplast, and mito-
chondria in different species. This issue is rooted in 
the duplication process during evolution and protec-
tion of cellular balancing [47]. Abiotic stress effects 
such as the structure of the enzyme, and protein dena-
turation influence its function by decreasing tendency 
of the enzyme and the substrate. Then, abiotic stress, 
can modify the phosphoralation and acetylation of GR 
and hence the stability of the enzyme decreases [22].

The results of the in-silico analysis determined that 
GR interacted with GST [43]. Although GR and GST 
have different functions, they can collabrate for bal-
ancing cellular redox and detoxification processes [8]. 
GST plays an important role in the detoxification of 
toxic compounds and the high activity of this enzyme 

causes harmful aspects to cells; consequently, it leads 
to high tolerance to exposure to abiotic stress [14]. 
The interaction of GR and GST is conducted through 
preparing GSH and its usage. Finally, GR protects GST 
function indirectly. Moreover, GST is able to catalyze 
the reduction of GSSG. This reaction is known as a 
subsitution pathway. Therefore, it helps to stabilize 
optimum GSH/GSSG ratio in cells [29].

Conclusion
In General, memory drought stress information of 
S31, such as reducing accelerates aging seed percent-
age, evaluating GR activity, the best percentage of 
Gu and seed vigor showed that this pattern could be 
recommended for these fields. Therefore, S31 can be 
introduced for early sowing date and cold regions by 

Fig. 8 (a) Glutation activity enzyme in seed under different water treatments [Rainfed (without irrigation, 33%, 66% and 100% FC) water need] in 
the triple water-stress exposure. (b) Protein structure of Glutation Reductase (a) The 3D structure (b) proteins interactions of Glutation Reductase. GR 
(A0A1U8HLC7), (A0A1U8HUK0)and Glutathione transferase (A0A1U8P119)
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supplying 33% of the required water because of hav-
ing the highest percentage of germination seeds in 
cold test analysis. It should be noted that, for rainfed 
fields, the seeds that were reproduced under third 66% 
FC water exposure conditions had the highest shoot 
weight and shoot length for seedling, protein content, 
and starch to carbohydrate ratio in seed and seed bio-
mass. Then, seeds reproduction with 33% and 66% FC2

3
will produce more tolerant seeds for the fields without 
rainfall and water sources, which can be a response to 
stress memory. In-silicon analysis revealed that GR 
was located in cytosol and chloroplast and interacted 
with GST. Generally, the effective role of GR in con-
trolling oxidative stress and acclimation with envi-
ronmental conditions can be derived from memorial 
stress during the plant development stage.
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