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Predicting oral malodour based on the
microbiota in saliva samples using a deep
learning approach
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Abstract

Background: Oral malodour is mainly caused by volatile sulphur compounds produced by bacteria and bacterial
interactions. It is difficult to predict the presence or absence of oral malodour based on the abundances of specific
species and their combinations. This paper presents an effective way of deep learning approach to predicting the oral
malodour from salivary microbiota.

Methods: The 16S rRNA genes from saliva samples of 90 subjects (45 had no or weak oral malodour, and 45 had
marked oral malodour) were amplified, and gene sequence analysis was carried out. Deep learning classified oral
malodour and healthy breath based on the resultant abundances of operational taxonomic units (OTUs)

Results: A discrimination classifier model was constructed by profiling OTUs and calculating their relative abundance
in saliva samples from 90 subjects. Our deep learning model achieved a predictive accuracy of 97%, compared to the
79% obtained with a support vector machine.

Conclusion: This approach is expected to be useful in screening the saliva for prediction of oral malodour before
visits to specialist clinics.
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Background
Oral malodourous compounds are reportedly produced
by periodontitis-associated bacteria in the oral cavity,
such as those belonging to the genera Porphyromonas
and Prevotella, which produce volatile sulphur com-
pounds (VSCs) [1–4]. Fusobacterium nucleatum and Tre-
ponema denticola also produce VSCs, but additionally
produce butyric acid and other volatile organic com-
pounds that cause oral malodour [3, 5–7]. Neverthe-
less, because there are over 700 known bacterial species
in the human oral cavity [8, 9], and because several
species produce VSCs to varying degrees, the presence of
VSCs in the breath cannot be predicted by the presence
of specific species. Concentrations of oral malodourous
compounds produced by oral bacteria vary according
to the type and abundance of species. Interactions
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between bacterial species may play important roles in the
production of VSCs.
Analysis of the oral microbiota reveals several sig-

nals from various bacterial species present in various
numbers, but we cannot directly or indirectly distin-
guish bacterial species producing oral malodourous com-
pounds from non-producing bacteria; the bacterial cells
form complicated networks in the oral cavity. Machine
learning is suitable for prediction from such complicated
data, and we previously reported some success in pre-
dicting oral malodour using support vector machines
(SVMs) [10].
Machine learning algorithms use training data to

uncover underlying patterns, build models, and make
predictions based on the best fit models. Indeed, some
well-known algorithms, such as SVMs, random forests,
Bayesian networks, and Gaussian networks, have been
applied in genomics, proteomics, systems biology, and
numerous other domains [11]. We previously reported
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prediction of oral malodour from oral microbiota in saliva
by using an SVM based on peak areas of terminal restric-
tion fragment length polymorphisms (T-RFLPs) of the 16S
rRNA gene as data for supervisedmachine-learningmeth-
ods [10]. Using this training data, the SVM achieved a
high classification accuracy of 82%, with a sensitivity of
51% and specificity of 95%. Currently, T-RFLP does not
provide economic advantages over 16S RNA sequence
analysis. In this study, we devised a more precise clas-
sification system using a deep-learning approach based
on 16S rRNA sequences with a higher resolution than
that of T-RFLP analysis, and compared it with SVM-based
prediction.

Methods
Study population
The study population consisted of 90 patients (37
men and 53 women, mean age of 50.0 ± 14.7 years)
who had visited the Oral Malodour Clinic of Fukuoka
Dental College Medical and Dental Hospital between
August 2011 and October 2016 with a complaint of
halitosis. They had not consumed antibiotics within 3
months and had no otorhinolaryngological illness or
metabolic disease. Of the 90 patients, 45 had no or
weak oral malodour and 45 had marked oral malodour.
All participating subjects understood the nature of the
research project and provided written, informed con-
sent. Permission for this study was obtained from the
Ethics Committee for Clinical Research of Fukuoka Den-
tal College and Fukuoka College of Health Sciences
(approval numbers 89, 233, and 249). All study meth-
ods were carried out in accordance with the approved
guidelines.

Malodour assessment
The severity of oral malodorour was determined in each
patient using an organoleptic test (OLT) and gas chro-
matography. Malodour assessment and clinical exam-
ination, including tests of salivary flow and mucosal
moisture level, were performed at least 5 h after eat-
ing, drinking, chewing, smoking, and brushing or rins-
ing the mouth. The OLT scores were estimated by two
of three evaluators using a scale of 0 to 5 [12], and
the mean of the scores given by the evaluators was
used. The presence of OLT scores ≥ 2 among the three
evaluators always exceeded 75% ( = 0.50). Gas chro-
matography (model GC2014; Shimazu Works, Kyoto,
Japan) was used to measure the concentrations of hydro-
gen sulphide (H2S), methyl mercaptan (CH3SH), and
dimethyl sulphide (CH3SCH3) in the breath. The value
for total VSCs was defined as the sum of the H2S,
CH3SH, and CH3SCH3 concentrations. The threshold
for marked oral malodour was defined as an OLT score
of ≥ 3 and total VSC concentration of ≥ 0.3 ppm. The

threshold for no or weak oral malodour was defined
as an OLT score of < 3 and total VSC concentration
of < 0.3 ppm.

Sample collection and pyrosequencing analysis
Saliva samples were collected from subjects using chewing
gum. Subjects were asked to spit into a vessel through-
out the a 5 min collection period. Samples (0.5 ml) were
collected and were transferred to sterile plastic tubes. Bac-
teria were harvested by centrifugation (20,400 × g, 15
min at 4°C), and the resulting pellets were resuspended
in 150 μl of buffer containing 50 mM Tris-HCl, 1 mM
EDTA, and 1% sodium dodecyl sulfate (SDS; pH 7.6). The
suspension was added to plastic tubes containing 0.3 g
zirconia-silica beads (bead size, 0.1 mm; Biospec Prod-
ucts, Bartlesville, OK, USA) and one tungsten-carbide
bead (bead size, 3 mm; Qiagen, Hilden, Germany). The
samples were heated at 90°C for 10 min and then vig-
orously agitated for 3 min in a cell disruptor (Dis-
ruptor Genie, Scientific Industries, Inc., Bohemia, NY,
USA). After centrifugation at 6000 × g for a few sec-
onds, 200 μl of 1% SDS was added, and the samples
were incubated at 70°C for 10 min. The mixtures were
extracted using 400 μl of phenol–chloroform–isoamyl
alcohol (25:24:1), and the nucleic acids were precipi-
tated with 100% ethanol. Following centrifugation, the
DNA was washed with 70% ethanol, resuspended in 100
μl of TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH
7.6), and frozen until subsequent analysis. After extrac-
tion, samples were PCR-amplified under permissive con-
ditions using primers to amplify the 508-807 region in
prokaryotic 16S rDNA containing the MiSeq sequenc-
ing adapters and an 8-nucleotide barcode on the for-
ward primer, followed by the bases matching the 16S
rRNA gene. The analysis was performed using the for-
ward primer AA TGA TAC GGC GAC CAC CGA
GAT CTA CAC XXXXXXXX TCG TCG GCA GCG
TCA GAT GTG TAT AAG AGA CAG and the reverse
primer GTT CGT CTT CTG CCG TAT GCT CTA CAA
GCA GAA GAC GGC ATA CGA GAT XXXXXXXX
CAG AGC ACC CGA GCC TCT ACA CAT ATT CTC
TGT C. Pyrosequencing was conducted at Hokkaido Sys-
tem Science Co., Ltd. (Sapporo, Japan) on an Illumina
MiSeq sequencer (Illumina, San Diego, CA, USA) using
a paired-end 300 bp sequence read run with the Miseq
Reagent Kit v3 and MiSeq Control Software version
2.6.2.1 (Illumina).

Data analysis and taxonomy assignment
Putative chimera sequences were removed by UCHIME
v6.1.544 [13], and sequences with 80% of their nucleotides
of fragment quality score 20 or lower were removed.
The remaining sequences were assigned to OTUs using
cd-hit with a 98% threshold of pairwise identity [14].
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Each representative sequence was compared using the
BLAST algorithm with 998 sequences of the oral bacterial
16S rRNA gene (Human Oral Microbiome Database
[HOMD] 16S rRNA RefSeq Version 15.1) deposited in
HOMD and assigned to the best BLAST hit with a
97% identity. A total of 3000 sequences were randomly
extracted from each sample and used for the follow-
ing analyses (Additional files 1 and 2). LDA effect size
(LEfSe) [15] analysis was used to detect significant dif-
ferences between the relative abundances of OTUs in
samples from patients with healthy and malodourous
breath.

Machine learning
Learning and classification of the bacterial compo-
sition of each sample were accomplished using R
(http://www.r-project.org) with the h2o package for
deep learning and the activation type RectifierWith-
Dropout, and the e1071 package for the SVM with
the radial basis function (RBF). The radial kernel func-
tion transformed the data using the non-linear function
k(x1, x2) = exp(−γ |x1 − x2|2), where γ determines the
RBF width, unless otherwise specified. Classification by
machine learning was evaluated by leave-one-out cross-
validation, i.e., one sample was classified by supervised
machine learning using the other 89 samples for train-
ing. The commands used in this study are showed in
Additional file 3.

Results
Evaluation of microbiome compositions based on 16S
rRNA sequences
Nucleotide sequences of 16S rRNAs were determined
and their taxa were estimated by BLAST analysis using
HOMD. A total of 3000 sequences from each sample were
analysed and the results showed a typical bacterial com-
position profile (Fig. 1) when compared to the 16S rRNA
sequences of known oral microbes. OTUs with ≤ 0.1%
frequency, found in ≤ 4 samples, were omitted from the
following calculation. In total, 108 distinct OTUs were
noted, and the minimum, maximum, and mean numbers
of OTUs per sample were 20, 66, and 38.9, respectively
(Additional file 1).
Some OTUs belonged to the same genus, so we re-

examined the composition of the genera (Additional
file 2). Thirty-seven were present in the samples. Genera
characteristic of healthy and malodourous mouth breath
were analysed using the Mann-Whitney U test. Table 1
shows the significance of bacteria between two groups.
Linear discriminant analysis (LDA) was performed

using LEfSe [15] to detect OTUs with significantly differ-
ent relative abundances in oral malodourous and healthy
breath. A total of 108 OTUs were found to be signifi-
cantly differences between bacteria in the groups (Fig. 2).
OTUs identified as most strongly associated with oral
malodour were from the Bacteroides, Prevotella, and Por-
phyromonas genera.
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Fig. 1 Bar plot of abundance of orders in each sample using a phyloseq package. The orders are ordered by phylum: 1. Absconditabacteria; 2.
Actinobacteria; 3. Bacteroidetes; 4. Firmicutes; 5. Fusobacteria; 6. Gracilibacteria (GN02); 7. Proteobacteria; 8. Saccharibacteria (TM7)

http://www.r-project.org
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Table 1 Malodourous and healthy breath-specific genera
compared with non-parametric Mann Whitney U test (p < 0.05)

p Malodourous
group (%)

Healthy
group
(%)

Streptococcus 3.9 × 10−6 25.6 34.9

Granulicatella 0.0012 4.50 6.67

Cryptobacterium 0.0066 0.03 0.07

Rothia 0.011 9 12.37

Prevotella 3.3 × 10−7 3.60 0.90

Veillonella 2.0 × 10−5 13.6 8.73

Peptostreptococcus 7.7 × 10−5 21.2 1.23

Peptostreptococcaceae 0.00044 0.98 0.59

Megasphaera 0.0011 0.36 0.15

Leptotrichia 0.0035 2.32 1.57

Absconditabacteria 0.0040 0.38 0.060

Porphyromonas 0.0076 5.80 3.60

Capnocytophaga 0.011 0.49 0.22

Stomatobaculum 0.014 0.29 0.19

Eikenella 0.023 0.04 0.01

Solobacterium 0.023 2.07 1.44

Parvimonas 0.032 0.65 0.42

Classification of the presence of oral malodour by SVM and
deep learning
To evaluate the classification performance of SVM and
deep learning for oral malodour, proportions of OTUs
associated with oral malodour in 16S rRNA analysis were
used for classification by the support vector machine and
deep learning (Table 2). Deep learning discriminated oral
malodour from normal breath with 96.7% accuracy as
compared to SVM, which discriminated between them
with 78.9% accuracy.

Discussion
We previously reported that SVM discriminated oral mal-
odour from normal breath based on T-RFLP analysis with
81% accuracy [10]. T-RFs are generated by digestion with
restriction enzyme(s); therefore, the resolution for dis-
crimination of bacterial species is limited by the size of
recognition sites within the target fragments and lacks
quantitative ability. The costs for 16S rRNA sequence
analyses have been reduced by pyrosequencing and other
next-generation sequencing techniques. We expected that
the higher resolution would improve the recognition rate
by SVM and other machine learning systems. Contrary
to our expectations, the SVM classifier discriminated
between the presence and absence of oral malodour using
the amplified 16S rRNA sequences from the saliva sam-
ples with an accuracy of 78.9%, similar to that of T-LFs
(Table 2).

The bacterial composition in the saliva samples showed
a typical oral microbiota profile (Fig. 1), and statisti-
cal analysis showed some genera specific to healthy and
malodourous breath (Table 1). Of the genera present
at over 5% abundance, Streptococcus, Granulicatella and
Rothia were more abundant in the healthy group, whereas
Veillonella, Peptostreptococcus, and Porphyromonas were
more abundant in the malodourous group. These genera
contain oral malodour-associated species, and Porphy-
romonas spp, in particular, as periodontal bacteria, are
strongly suggested to be an oral malodour-producing bac-
teria [4, 16, 17]. In addition, LEfSe analysis revealed many
bacterial species, genera, and families with significantly
different relative abundances in oral malodourousand
healthy breath. A total of 74 OTUs or OTU groups were
noted to be significantly differentially abundant in these
groups, with an LDA threshold of 4.0 (Fig. 2). The Bac-
teroidales order, which includes the genera Prevotella and
Porphyromonas, was strongly associated with oral mal-
odour. The results of LEfSe analysis include a cladogram
showing the significant differences at different hierarchi-
cal levels (Fig. 2b). In this study, the relative abundance
of Fusobacterium was an averaged 0.12%, and Treponema
was detected in almost no samples. Thus, VSC concen-
trations cannot be predicted based on the abundances
of some known VSC-producing bacteria, and machine
learning techniques are useful.
A large proportion of oral microbiota, particularly in

the saliva, does not produce oral malodourous com-
pounds, but may indicate the presence of organisms
specific to oral malodour owing to the interactions
among bacterial species. Thus, machine learning can be
expected to classify oral microorganisms as oral mal-
odourous or non-malodourous, although our first trial
with SVM did not show high classification accuracy
(Table 2). We next focused on deep learning, which
has advanced significantly in solving problems that have
resisted the best attempts of the artificial intelligence
community for several years [18]. Application of deep
learning in bioinformatics has become a focal point of
research [19].
Deep learning classified oral malodour and healthy

breath with 97% accuracy, improving accuracy by 15%
over that obtained by SVM classification (Table 2).
Notably, the sensitivity is 100%, or false negative rate is
0%. That is, anyone whose oral microbiota is classified as
oral malodourous has a high risk of oral malodour. Clas-
sification with high sensitivity is desirable for screening
or preliminary tests because of the lower number of false
negatives, though 97% accuracy is not always expected
for such biological data. ROC curve analysis (Fig. 3) sug-
gested that this approach is effective and reliable. Patients
concerned about oral malodour could send saliva samples
for analysis before medical treatment. Packaging breath is
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Fig. 2 LEfSe analysis. a Histogram of the LDA scores computed for features differentially abundant in healthy (red) and oral malodourous (green)
breath. b Cladogram showing different abundance values (according to LEfSe) of taxa

Table 2 Recognition rates of oral malodour by SVM and deep
learning

Sensitivity (%) Specificity (%) Accuracy (%)

SVM 77.8 80.0 78.9

Deep learning 100 93.3 96.7

impractical, whereas preparation of a saliva sample is sim-
ple, as DNA from oral bacterial cells in the saliva can be
dried and transported at room temperature by using FTA
cards (GE Healthcare, Little Chalfont, UK).

Conclusions
We demonstrated deep learning-based classifica-
tion of oral malodourous and healthy breath with
high accuracy (97%) based on profiling of 16S rRNA
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Fig. 3 ROC curve for classification of malodourous and healthy breath
using 30-fold validation with activation of Tanh

sequences from microbiota in saliva samples. Classi-
fication using saliva samples is suitable for screening
of oral malodour risk. In addition, treatment for oral
malodour can be monitored using this classification
system.

Additional files

Additional file 1: Dataset of numbers of OTUs in samples. A total of 3000
sequences were randomly extracted from each sequence data of a sample.
The second column, “Malodour”, shows malodourous (P, positive) or
normal (N, negative) breath. (CSV 24 kb)

Additional file 2: Dataset of numbers of genera in samples. OTUs in
Additional file 1 were combined into genera and counted again. (CSV 10 kb)

Additional file 3: The commands of h2o and e1071 in R. (TXT 1 kb)
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