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Abstract
Background  Accurately predicting the walking independence of stroke patients is important. Our objective was to 
determine and compare the performance of logistic regression (LR) and three machine learning models (eXtreme 
Gradient Boosting (XGBoost), Support Vector Machines (SVM), and Random Forest (RF)) in predicting walking 
independence at discharge in stroke patients, as well as to explore the variables that predict prognosis.

Methods  778 (80% for the training set and 20% for the test set) stroke patients admitted to China Rehabilitation 
Research Center between February 2020 and January 2023 were retrospectively included. The training set was used 
for training models. The test set was used to validate and compare the performance of the four models in terms of 
area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value 
(NPV), and F1 score.

Results  Among the three ML models, the AUC of the XGBoost model is significantly higher than that of the SVM and 
RF models (P < 0.001, P = 0.024, respectively). There was no significant difference in the AUCs between the XGBoost 
model and the LR model (0.891 vs. 0.880, P = 0.560). The XGBoost model demonstrated superior accuracy (87.82% 
vs. 86.54%), sensitivity (50.00% vs. 39.39%), PPV (73.68% vs. 73.33%), NPV (89.78% vs. 87.94%), and F1 score (59.57% 
vs. 51.16%), with only slightly lower specificity (96.09% vs. 96.88%). Together, the XGBoost model and the stepwise 
LR model identified age, FMA-LE at admission, FAC at admission, and lower limb spasticity as key factors influencing 
independent walking.

Conclusion  Overall, the XGBoost model performed best in predicting independent walking after stroke. The XGBoost 
and LR models together confirm that age, admission FMA-LE, admission FAC, and lower extremity spasticity are the 
key factors influencing independent walking in stroke patients at hospital discharge.

Trial registration  Not applicable.
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Background
Stroke is a major problem in China due to its high mor-
bidity, mortality and disability [1]. Even with timely treat-
ment in the acute phase, patients may still be disabled 
and require rehabilitation, resulting in a high economic 
burden [2]. A significant portion of the cost is directly 
attributable to the inability of stroke survivors to walk 
independently [3]. 40% of stroke patients who are initially 
unable to walk are either ambulatory or require assis-
tance with walking three months after stroke [4]. The 
ability to walk independently is a key factor in a patient’s 
daily activities and quality of life, and regaining the ability 
to walk independently becomes an important goal in the 
rehabilitation of stroke patients with hemiplegia [5–7]. 
It is critical to accurately predict the subsequent recov-
ery of walking ability in stroke patients who are unable 
to walk independently at the time of admission to reha-
bilitation [8]. In this way, clinicians and therapists can 
provide patients with prognosis, goal setting, treatment 
selection, and discharge planning, and based on accurate 
prediction of independent walking, the government or 
the patient’s family can effectively provide appropriate 
socioeconomic support and health care resources [9, 10].

In the field of stroke rehabilitation, studies on predic-
tive models for walking recovery have been a hot topic 
[3, 11, 12]. However, some of the predictive models that 
have been developed are too complex to be used in a clin-
ical setting. Therefore, there is a need to develop simple, 
reliable, and feasible models for predicting independent 
walking that can be applied to stroke patients in inpa-
tient rehabilitation. Logistic regression (LR) has been 
widely used in prognostic studies of stroke patients. LR 
measures the relationship between a categorical depen-
dent variable and one or more independent variables by 
using a probability score as the predictive value of the 
dependent variable [13]. LR is commonly used in predic-
tive modeling of dichotomous outcomes in health care 
[14]. However, it has several drawbacks, including easy 
underfitting, difficulty in handling nonlinear relation-
ships, sensitivity to outliers, and possibly poor classifica-
tion accuracy [15]. Therefore, there may be limitations in 
applying LR to predictive modeling of prognosis in stroke 
patients.

As a scientific and mature modeling method, machine 
learning (ML) is increasingly used in epidemiologi-
cal research and medicine [16, 17]. With the increasing 
complexity and number of data sets available, as well as 
multi-factor data from a variety of sources, the ML is 
considered to have advantages over traditional regression 
models [18, 19], including ease of analysis, the ability to 
consider a large number of variables simultaneously, and 
to capture complex interactions between variables.

The eXtreme Gradient Boosting (XGBoost), Support 
Vector Machines (SVM), and Random Forest (RF) are the 

more mature and widely used ML modeling algorithms. 
The XGBoost can be used to solve supervised learn-
ing problems using a gradient boosting framework with 
high accuracy, difficulty in overfitting, and scalability [20, 
21]. The XGBoost has been increasingly used in health-
care research to predict or screen for prognostic factors. 
The SVM are one of the most popular supervised learn-
ing algorithms used for pattern recognition, classifica-
tion, and regression analysis [22]. The RF is an integrated 
learning method that generates a collection of decision 
trees branching on random variables. By using the major-
ity principle for all trees and branches, RF can make pre-
dictions with high accuracy, less overfitting and strong 
anti-noise ability [23]. However, the optimal model tends 
to vary across studies and there is a lack of models that 
use these ML algorithms to predict independent walking 
in stroke patients.

Therefore, the aim of this study was to investigate the 
optimal prediction of independent walking at discharge 
based on clinical data of stroke patients who were unable 
to walk independently at admission using classical logis-
tic regression methods and three currently accepted 
ML models (the XGBoost, SVM, and RF model), and to 
explore variables related to prognosis.

Methods
Overview
This study protocol was approved by the medical eth-
ics committee of China Rehabilitation Research Center 
(approval number 2022-141-02). Informed consent was 
not obtained as this was a retrospective, hospital-based 
study.

Participants
Between February 2020 and January 2023, a retrospective 
cohort of inpatients admitted to and discharged from the 
neurorehabilitation unit of China Rehabilitation Research 
Center for first-onset stroke was studied. Patients were 
included if they met the following inclusion criteria: (1) 
were aged ≥ 18 years; (2) had a first-ever unilateral cere-
bral stroke; (3) were unable to walk independently at 
admission and had a Functional Ambulation Category 
(FAC) score ≤ 3. Patients were excluded according to the 
following criteria: (1) had other underlying neurologi-
cal diseases; (2) had a diagnosis of disturbance of con-
sciousness; (3) had unstable vital signs; (4) length of stay 
(LOS) < 14 days; (5) had incomplete required data.

Data
In this study, a total of 1033 patients were screened and 
778 stroke patients who met the inclusion criteria were 
ultimately included in the analysis. The following data 
were collected from 778 stroke patients (21 variables in 
total): age (years), sex (male or female), medical insurance 
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(yes or no), LOS, time since onset, type of stroke (isch-
emic or hemorrhagic), side of stroke (left or right), lesion 
location (cortical, subcortical, or both), lower extremity 
deep vein thrombosis (yes or no), emotional disorder (yes 
or no), cognitive disorder (yes or no), sleep disorder (yes 
or no), dysphagia (yes or no), aphasia (yes or no), lower 
limb spasticity (yes or no), FAC score at admission, Fugl-
Meyer Motor Assessment of the Lower Extremity (FMA-
LE) score at admission, Fugl-Meyer Balance Assessment 
(FMB) score at admission, National Institutes of Health 
Stroke Scale (NIHSS) score at admission, Barthel Index 
(BI) score at admission, and FAC score at discharge. 
The FAC scale has been widely used to assess walking 
independence in stroke patients, with six levels (0–5). 
According to previous reports, stroke patients with fac 
score > 3 at discharge were defined as “independent walk-
ing”, otherwise as “non-independent walking” [24]. In this 
study, we used “independent walking at discharge (yes or 
no)” as the response variable, and the remaining 20 vari-
ables were used for prediction.

Statistical analysis
The IBM SPSS Statistics software version 25 (IBM Corp, 
Armonk, USA) was used for data analysis. Categorical 
variables were presented as frequencies and percent-
ages. For continuous variables, the Kolmogorov-Smirnov 
test was used to assess data distribution. Continuous 
variables were expressed as mean ± standard deviation 
if they fit the normal distribution; otherwise, they were 
expressed as medians (QL, QU). The χ2 test was used to 
compare categorical variables, and the Student’s t-test or 
the Mann-Whitney nonparametric test was used to com-
pare continuous variables.

In this study, all enrolled patients were randomly 
divided into two data sets with a split ratio of 4:1. Sub-
sequently, 80% of the patients were used for model 
training and 20% of the patients were used for model 
testing. Predictive models were constructed using the 
walking status at discharge (“independent walking” or 
“non-independent walking”) as the outcome variable. 
We used the “autoReg”, “XGBoost”, “e1071”, “randomFor-
est” and “caret” packages in R software version 4.2.2 to 
develop and test the LR, XGBoost, SVM, and RF models. 
In constructing the classical LR model, we first screened 
the training cohort for factors associated with “indepen-
dent walking” using univariate analyses. Subsequently, 
factors with P < 0.10 in the univariate analyses were 
included in the stepwise binary LR analysis. Due to the 
small number of original variables in this study and the 
fact that variables of lower importance may also have a 
beneficial effect on the training of the model, all feature 
variables were included in the training of the XGBoost, 
SVM, and RF models. The XGBoost, SVM, and RF mod-
els were optimized by either 5-fold cross-validation or 

hyperparameter tuning. In this study, the “pROC” pack-
age was used to plot the receiver operating characteristic 
(ROC) curves and calculate the area under curve (AUC) 
[25, 26]. The AUC was used to comprehensively evaluate 
the models, and the AUC of the models were compared 
by the Delong method [27]. The predictive performance 
of the models was further evaluated in terms of accu-
racy, sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV) and F1 score. 
A two-tailed P value < 0.05 was considered statistically 
significant.

Results
Patient characteristics
A total of 778 stroke patients randomly assigned to 
the training set (n = 622) and the test set (n = 156) were 
finally enrolled in this study (Fig. 1). The characteristics 
of the training and test sets are shown in Table 1. For all 
the variables analyzed, there was no significant differ-
ence between the training and testing sets. Overall, 107 
patients (17.20%) in the training set achieved “indepen-
dent walking” at discharge and 28 patients (17.95%) in the 
testing set achieved “independent walking” at discharge.

Logistic regression model
Univariate analyses performed on the training set showed 
that patients who achieved “independent ambulation” 
at discharge were significantly different from those who 
did not on the variables of age, lesion location, lower 
extremity deep vein thrombosis, cognitive disorder, dys-
phagia, lower limb spasticity, FAC at admission, FMA-
LE at admission, FMB at admission, NIHSS at admission 
and BI at admission (all P < 0.05) (Table 2). Subsequently, 
based on the results of the univariate analyses, variables 
with P < 0.10 were included in the stepwise binary LR 
analysis. As shown in Table 2, four variables (age, lower 
limb spasticity, FAC at admission, and FMA-LE at admis-
sion) were independent determinants of independent 
walking at discharge for stroke patients who were unable 
to walk independently at admission. A logistic regression 
model is constructed from the four influencing factors 
examined above, and its expression is logit (P) = − 2.15-
0.03 × 1 + 1.32 × 2 + 1.61 × 3 + 0.13 × 4. In the formula, x1, x2, 
x3 and x4 represent age, no lower limb spasticity, FAC at 
admission = 3 and FMA-LE at admission, respectively. 
The Hosmer-Lemeshow goodness of fit test result on 
the training set was 10.211 (P = 0.251) with 8 degrees of 
freedom, and the Hosmer-Lemeshow goodness of fit test 
result on the test set was 6.790 (P = 0.560) with 8 degrees 
of freedom.
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Comparisons of logistic regression and machine learning 
models
All baseline variables were used in the development of 
the three ML models (XGBoost, SVM, and RF) for pre-
diction of “independent walking” at discharge. The test 
set was used to compare the performance of the mod-
els. In the LR model, the ROC curve was used to evalu-
ate the discriminative ability of the prediction model, and 
its AUC was 0.891 (95%CI = 0.828–0.954) in the test set. 
The AUC of the XGBoost, SVM and RF models are 0.880 
(95%CI = 0.818–0.942), 0.659 (95%CI = 0.567–0.751), and 
0.713 (95%CI = 0.617–0.808), respectively. Among the 
three ML models, the AUC of the XGBoost model is 
significantly higher than that of the SVM and RF mod-
els (P < 0.001, P = 0.024, respectively). Although the LR 
model had a slightly higher AUC than the XGB model 
in the test set, there was no significant difference in the 
comparison (0.891 vs. 0.880, z = 0.570, P = 0.569). ROC 
curves for all models are shown in Fig. 2. Table 3 shows 
the number of correct predictive values of all mod-
els, based on which the accuracy, sensitivity, specificity, 

PPV, NPV and F1 scores of the LR, XGBoost, SVM, and 
RF models were calculated. These values together con-
firmed that the XGBoost model performed best among 
the three ML models, as shown in Table 4. Compared to 
the LR model, the XGBoost model had superior accu-
racy (87.82% vs. 86.54%), sensitivity (50.00% vs. 39.39%), 
PPV (73.68% vs. 73.33%), NPV (89.78% vs. 87.94%), and 
F1 score (59.57% vs. 51.16%), and the specificity was only 
slightly lower (96.09% vs. 96.88%).

Predictors selection
Stepwise logistic regression analysis showed that age, 
lower limb spasticity, admission FAC, and admission 
FMA-LE were independent predictors of independent 
walking in stroke patients. The XGBoost model was used 
to rank the importance of the feature variables, and the 
top ten variables are as follows: FMA-LE at admission, 
FAC at admission, age, NIHSS at admission, LOS, FMB at 
admission, BI at admission, lower limb spasticity, type of 
stroke, lesion location (Fig. 3).

Fig. 1  Flow-chart of participants enrolled in this study
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Discussion
It is of great importance to accurately predict the walking 
independence of stroke patients at the time of rehabili-
tation admission. In this study, we innovatively devel-
oped three machine learning algorithm-based models 
(XGBoost, SVM, and RF) to predict whether stroke 
patients would be able to walk independently at dis-
charge from the rehabilitation center and compared them 
with the traditional stepwise LR model. The results show 
that, overall, the XGBoost model had the best predictive 
performance.

Most of the previous studies on related topics have 
used only LR analysis methods to build only one pre-
dictive model [28, 29]. However, the conventional LR 
analysis has its limitations, for example, it cannot well 

analyze the complex nonlinear relationship between vari-
ables [30]. Recently, new machine learning techniques 
have shown higher predictive performance compared to 
traditional predictive methods [31]. In this study, three 
commonly used machine learning algorithms (XGBoost, 
SVM, and RF) were selected to establish three models for 
predicting independent walking in stroke patients and 
compared with the classic LR model. First, the AUCs of 
the models were calculated and compared. The higher 
the AUC of the model, the higher the predictive value. 
Among the three machine learning models, the AUC of 
the XGBoost model was significantly higher than that of 
the SVM model and the RF model, suggesting that the 
overall performance of the XGBoost model was optimal. 
As a decision tree-based algorithm, XGBoost was voted 

Table 1  Comparison of the demographic and clinical characteristics of all patients, and of those in the training and testing sets
Variables Total

(n = 778)
Training
(n = 622)

Testing
(n = 156)

Statistic P value

Age, years 59.00 (49.00–68.00) 59.00 (49.00–67.00) 60.50 (48.00–69.00) Z = 0.672 0.502
Sex (male), n (%) 541 (69.54) 437 (70.26) 104 (66.67) χ²=0.759 0.384
Medical insurance (yes), n (%) 709 (91.13) 571 (91.80) 138 (88.46) χ²=1.721 0.190
Length of stay, n (%) χ²=0.205 0.977
  ≤ 1 month 156(20.05) 125(20.10) 31(19.87)
  1–2 months 362(46.53) 291(46.78) 71(45.51)
  2–3 months 163(20.95) 130(20.90) 33(21.15)
  ≥ 3 months 97(12.47) 76(12.22) 21(13.46)
Time since onset, n (%) χ²=0.005 0.998
  ≤ 1 month 65 (8.35) 52 (8.36) 13 (8.33)
  1–3 months 669 (85.99) 535 (86.01) 134 (85.90)
  ≥ 3 months 44 (5.66) 35 (5.63) 9 (5.77)
Type of stroke (ischemic), n (%) 418 (53.73) 333 (53.54) 85 (54.49) χ²=0.045 0.831
Side of stroke (left), n (%) 427 (54.88) 345 (55.47) 82 (52.56) χ²=0.424 0.515
Lesion location, n (%) χ²=3.766 0.152
  Cortical 112 (14.4) 86 (13.83) 26 (16.67)
  Subcortical 462 (59.38) 380 (61.09) 82 (52.56)
  Both 204 (26.22) 156 (25.08) 48 (30.77)
Lower extremity deep vein thrombosis (yes), n (%) 162 (20.82) 132 (21.22) 30 (19.23) χ²=0.300 0.584
Emotional disorder (yes), n (%) 348 (44.73) 278 (44.69) 70 (44.87) χ²=0.002 0.968
Cognitive disorder (yes), n (%) 541 (69.54) 423 (68.01) 118 (75.64) χ²=3.432 0.064
Sleep disorder (yes), n (%) 262 (33.68) 211 (33.92) 51 (32.69) χ²=0.085 0.771
Dysphagia (yes), n (%) 190 (24.42) 157 (25.24) 33 (21.15) χ²=1.129 0.288
Aphasia (yes), n (%) 242 (31.11) 184 (29.58) 58 (37.18) χ²=3.359 0.067
Lower limb spasticity (yes), n (%) 195 (25.06) 162 (26.05) 33 (21.15) χ²=1.589 0.208
FAC at admission, n (%) χ²=0.733 0.865
  0 479 (61.57) 380 (61.09) 99 (63.46)
  1 105 (13.5) 86 (13.83) 19 (12.18)
  2 90 (11.57) 74 (11.90) 16 (10.26)
  3 104 (13.37) 82 (13.18) 22 (14.10)
FMA-LE at admission 11.00 (6.00–19.00) 11.00 (6.00–19.00) 12.00 (5.75-19.00) Z = 0.266 0.791
FMB at admission 5.00 (2.00–8.00) 5.00 (2.00–8.00) 5.00 (1.00–8.00) Z = 0.511 0.611
NIHSS at admission 9.00 (6.00–13.00) 9.00 (6.00–13.00) 9.50 (6.00–14.00) Z = 0.708 0.480
BI at admission 37.50 (20.00–50.00) 40.00 (20.00–50.00) 35.00 (20.00–50.00) Z = 0.565 0.573
Independent walking at discharge (yes), n (%) 135 (17.35) 107 (17.20) 28 (17.95) χ²=0.048 0.826
Note Data are mean (standard deviation), n (%), or medians (QL, QU)
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the best algorithm in a machine learning and prediction 
competition hosted by Kaggle.com [32, 33]. Due to its 
best accuracy and performance, machine learning based 
on XGBoost algorithms has been increasingly taken seri-
ously as a competitive alternative to regression analysis 
and used to predict clinical outcomes. The AUC of the 
two models exceeded 0.85 in both the training and test 
sets, indicating that the overall predictive performance of 
the models was good. Although the AUC of the XGBoost 
model was slightly lower than that of the LR model in 
the test set, the Delong test revealed no significant dif-
ference. Previous studies usually used multiple indicators 
to evaluate model performance [34, 35]. Thus, we fur-
ther compared the accuracy, sensitivity, specificity, PPV, 
NPV, and F1 scores of the two models in the test set. Our 
results demonstrated that, taken together, the XGBoost 
model performed better than the LR model. Therefore, 
it was recommended that the XGBoost model be used to 
predict whether stroke patients who were unable to walk 
independently at the time of rehabilitation admission 
would be able to walk independently at discharge. We 
also suggested that future studies could consider using 
the XGBoost algorithm to predict other functional out-
comes in stroke patients.

Step logistic regression analysis showed that age, lower 
extremity spasticity, FAC at admission and FMA-LE at 
admission were independently associated with inde-
pendent walking at discharge in stroke patients. The 
XGBoost model ranked the importance of the variables, 
and the top 10 variables were FMA-LE at admission, 
FAC at admission, age, NIHSS at admission, LOS, FMB 
at admission, BI at admission, lower limb spasticity, type 
of stroke, lesion location. Together, the two models deter-
mined that the key variables affecting independent walk-
ing in stroke patients at discharge were age, FMA-LE at 
admission, FAC at admission, and lower extremity spas-
ticity. A review of 15 studies that explored which factors 
predicted independent walking at 3, 6, and 12 months for 
in non-ambulatory people within one month of stroke, 
and found that younger age predicted independent walk-
ing at 3 months [3]. Similarly, we found that the younger 
the stroke patient, the more likely they were to walk inde-
pendently at discharge. The same conclusion was also 
reached by Kennedy et al. [36] and Hirano et al. [12] This 
study also found that the presence of lower extremity 

Variables Univariate analysis Multivariable 
analysis

Odds Ratio 
(95%CI)

P value Odds Ratio 
(95%CI)

P value

Age 0.98 (0.97–0.99) 0.018 0.97 
(0.96–0.99)

0.013

Sex, male vs. 
female

1.31 (0.82–2.11) 0.263 - -

Medical insur-
ance yes vs. no

0.97 (0.46–2.05) 0.930 - -

Length of stay, 
vs. ≤ 1 month
  1–2 months 1.10 (0.63–1.92) 0.730 - -
  2–3 months 0.95 (0.49–1.85) 0.889 - -
  ≥ 3 months 0.93 (0.43–2.01) 0.851 - -
Time since onset, 
vs. ≤ 1 month
  1–3 months 0.78 (0.39–1.58) 0.497 - -
  ≥ 3 months 0.35 (0.09–1.36) 0.129 - -
Type of stroke, 
hemorrhagic vs. 
ischemic

0.92 (0.61–1.41) 0.715 - -

Side of stroke, 
right vs. left

0.97 (0.64–1.48) 0.889 - -

Lesion location, 
vs. cortical
  subcortical 0.48 (0.28–0.84) 0.009 - -
  both 0.45 (0.23–0.85) 0.015 - -
Lower extrem-
ity deep vein 
thrombosis, no 
vs. yes

3.01 (1.52–5.96) 0.002 - -

Emotional disor-
der, no vs. yes

1.25 (0.82–1.91) 0.303 - -

Cognitive disor-
der, no vs. yes

2.60 (1.70–3.98) < 0.001 1.60 
(0.94–2.73)

0.086

Sleep disorder, 
no vs. yes

1.07 (0.69–1.66) 0.771 - -

Dysphagia, no 
vs. yes

1.83 (1.06–3.14) 0.029 - -

Aphasia, no vs. 
yes

1.38 (0.85–2.23) 0.190 - -

Lower limb spas-
ticity, no vs. yes

2.94 (1.60–5.42) < 0.001 3.73 
(1.80–7.72)

< 0.001

FAC at admis-
sion, vs. 0
  1 1.59 (0.72–3.53) 0.253 0.63 

(0.25–1.54)
0.307

  2 6.14 
(3.26–11.57)

< 0.001 1.72 
(0.78–3.77)

0.179

  3 20.22 
(11.16–36.63)

< 0.001 5.01 
(2.40-10.46)

< 0.001

FMA-LE at 
admission

1.18 (1.14–1.21) < 0.001 1.14 
(1.10–1.18)

< 0.001

FMB at 
admission

1.40 (1.30–1.52) < 0.001 - -

Table 2  Univariate and multivariable logistic regression model 
of study variables vs. independent walking at discharge in the 
training set

Variables Univariate analysis Multivariable 
analysis

Odds Ratio 
(95%CI)

P value Odds Ratio 
(95%CI)

P value

NIHSS at 
admission

0.76 (0.71–0.81) < 0.001 - -

BI at admission 1.06 (1.05–1.08) < 0.001 - -

Table 2  (continued) 
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spasticity prevented patients from achieving independent 
walking at discharge. A recent study, which found that 
moderate levels of plantar flexors spasticity resulted in 
the highest sensitivity for predicting poor gait speed per-
formance and the highest specificity for predicting good 
mobility performance in post-stroke patients, supported 
our findings to some extent [37]. This study also showed 
that patients with FAC = 3 at admission were 5.01 times 
more likely to achieve independent walking at discharge 
than those who were unable to walk at all, which was con-
sistent with the findings of Louie et al. [38]. They found 
that those with any ability to walk at admission (with or 
without therapist assistance) were 9.48 times more likely 
to be discharged home than those who were unable. In 
addition, we found that lower limb motor function was 
an important factor in independent walking. Hiratsuka 
et al. also found that lower limb motor function was an 
additional predictor of independent walking in a 30-day 
poststroke cohort [39]. Notably, the TWIST algorithm 
proposed by Smith et al. in 2017 incorporated trunk 
control test scores and hip extension strength to predict 

Table 3  Number of correct predictive values of the LR and ML 
models
Model Dataset Observed Predicted

Inde-
pendent 
walking

Non-in-
depen-
dent 
walking

LR Training Independent 
walking

40 67

Non-independent 
walking

14 501

Total 54 568
Testing Independent 

walking
11 17

Non-independent 
walking

4 124

Total 15 141
XGBoost Training Independent 

walking
77 30

Non-independent 
walking

12 503

Total 89 533
Testing Independent 

walking
14 14

Non-independent 
walking

5 123

Total 19 137
SVM Training Independent 

walking
47 60

Non-independent 
walking

12 503

Total 59 563
Testing Independent 

walking
10 18

Non-independent 
walking

5 123

Total 15 141
RF Training Independent 

walking
107 0

Non-independent 
walking

0 515

Total 107 515
Testing Independent 

walking
13 15

Non-independent 
walking

5 123

Total 18 138

Table 4  The performance of the LR and ML models
Model Dataset AUC Accuracy Sensitivity Specificity PPV NPV F1 score
LR Training 0.889 86.98% 37.38% 97.28% 74.07% 88.20% 49.69%

Testing 0.891 86.54% 39.39% 96.88% 73.33% 87.94% 51.16%
XGBoost Training 0.972 93.25% 71.96% 97.67% 86.52% 94.37% 78.57%

Testing 0.880 87.82% 50.00% 96.09% 73.68% 89.78% 59.57%
SVM Training 0.708 88.42% 43.93% 97.67% 79.66% 89.34% 56.63%

Testing 0.659 85.26% 35.71% 96.09% 66.67% 87.23% 38.53%
RF Training 1.000 100% 100% 100% 100% 100% 100%

Testing 0.713 87.18% 46.43% 96.09% 72.22% 89.13% 56.52%

Fig. 2  Receiver operating characteristic curve for the models
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whether and when an individual patient walked indepen-
dently after stroke [40]. They later built on their earlier 
work to examine other potential predictors, including 
age, knee extension strength, and Berg Balance Test score 
[41]. However, the trunk control test and lower limb 
muscle strength test were not included in the admission 
assessment records of patients at our hospital, and we 
will consider including them in future prospective stud-
ies. Some studies have also used neurophysiological or 
neuroimaging measures to predict walking independence 
in stroke patients [42–44], but one study showed that the 

absence of lower limb motor-evoked potentials did not 
preclude independent walking [45]. Although this study 
lacked more types of indicators to predict independent 
walking, we established a model with good predictive 
performance by using simple and easily accessible clinical 
data, which might be more in line with the actual clinical 
situation and had certain reference significance for clini-
cal practice.

Fig. 3  Features selected using XGBoost and the corresponding variable importance score
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Limitations
Undoubtedly, our study has several limitations. First, 
this was a retrospective, single-center study, and selec-
tion bias was inevitable. In the future, we will conduct 
prospective studies with larger samples to obtain more 
accurate results. Second, we did not have a separate data 
set to externally validate the predictive model established 
in this study, so the generalizability may not be guaran-
teed. Further studies using data from other hospitals are 
needed. Third, our prediction model used only clinical 
data of rehabilitation admission, whereas other studies 
may have incorporated imaging features, electrophysi-
ological features, etc. In future prospective studies, we 
should consider using more types of data to build pre-
dictive models. Fourth, we did not follow long-term 
outcomes of walking function in stroke patients after dis-
charge, and predictors of long-term outcomes in stroke 
patients may be different from those at discharge. Fifth, 
we selected only 3 commonly used machine learning 
algorithms to build the models and compare them, and 
other algorithms such as AdaBoost and neural networks 
deserve further investigation. However, in this study, we 
initially found that the XGBoost model showed better 
predictive performance than the LR model in predicting 
independent walking in stroke patients based on clinical 
data at the time of rehabilitation admission. Our method-
ology and results will inform future studies.

Conclusions
Overall, the XGBoost model showed the best perfor-
mance in predicting independent walking after stroke. 
The XGBoost and LR models together confirm that age, 
FMA-LE at admission, FAC at admission, and lower 
extremity spasticity are key factors affecting independent 
walking in stroke patients at discharge from hospital. Our 
study suggests that XGBoost can be used to build a pre-
dictive model of independent walking in stroke patients 
at discharge based on clinical data of hospitalized stroke 
patients, providing guidance for setting rehabilitation 
goals, selecting treatment plans, and making discharge 
plans.
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