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Abstract
Objective Ovarian cancer is a serious malignant tumor threatening women’s health. The early diagnosis and effective 
treatments of ovarian cancer remain inadequate, and about 70% of ovarian cancers are in advanced stages when 
discovered. This study aimed to use the decision tree method of artificial intelligence machine learning to build a 
model for predicting the benign and malignant degree of ovarian cancer patients.

Study design A total of 758 patients were included in the study. These patients were diagnosed by B-ultrasound, CT 
or MR. The clinicopathological features and circulating blood cell indexes were recorded and analyzed. The prediction 
model of benign and malignant ovarian tumors was constructed by CART decision tree, and the receiver operating 
characteristic (ROC) curve was drawn to evaluate the predictive value of the decision tree model.

Results It was found that significant predictor variables included age, disease duration, patient general condition 
and menopausal status, ascites, tumor size, HE4, CA125, ROMA index, and blood routine related indicators (except for 
basophil count percentage and absolute value). In the constructed decision tree model, ROMA_after was the root 
node with the maximum information gain. ROMA_after, Mass size (MR/CT), HE4, CA125, platelet number, lymphocyte 
ratio, white blood cell count, post-menopause, hematocrit and mean platelet volume were important indicators 
in the decision tree model. The area under the receiver operating characteristic curve of this model for predicting 
benign and malignant ovarian cancer was 0.86.

Conclusions The decision tree model was successfully constructed based on clinical indicators and preoperative 
circulating blood cells, and showed better results in predicting benign and malignant ovarian cancer than alone 
imaging indicators or biomarkers among our data, which means that our model can more accurately predict benign 
and malignant ovarian cancer.
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Introduction
Ovarian cancer, the seventh most common cancer world-
wide, is the second leading cause of gynecological cancer 
death after cervical cancer with the mortality-to-inci-
dence ratio (MIR) of over 0.6 [1, 2]. A study estimates 
that about 1/6 women have died within three months of 
being diagnosed with ovarian cancer [2]. Therefore, it is 
very essential to diagnose and treat ovarian cancer early.

At present, clinical diagnosis of ovarian cancer mainly 
relies on imaging examinations and tumor marker detec-
tion [3, 4]. However, imaging examinations (CT, MRI, 
etc.) have the disadvantage of not being able to identify 
benign and malignant tumors and transvaginal ultra-
sound (TVUS) combined with two-dimensional vagi-
nal color Doppler ultrasound can only detect about 17% 
of patients with ovarian tumors [4–6]. Ovarian tumor 
markers include CA125, HE4, and the Risk of Ovarian 
Malignancy Algorithm (ROMA) combining HE4 and 
CA125, but the sensitivity and specificity of CA125 and 
HE4 are not high, with less than 50% in the diagnostic 
sensitivity of stage I ovarian cancer [7–9]. There is an 
urgent need to develop new methods for the early clinical 
diagnosis of ovarian cancer. Routine blood examination 
is one of the simplest, most economical, and most conve-
nient examinations in clinical practice. It is mainly used 
to measure white blood cells, platelets, and red blood 
cells related indicators [10]. This examination can quickly 

reflect the patient’s blood status and inflammation at the 
time of blood collection [11]. Some studies show that 
routine blood examination can reflect the status of the 
tumor micro-environment and has certain value in the 
diagnosis and prognosis of tumors [12–14]. However, 
The evidence of circulating blood cell in predicting early 
diagnosis of ovarian cancer is unclear.

This study aimed to analyze the differences in preop-
erative circulating blood cell indicators between benign 
and malignant ovarian cancer patients and to explore the 
role of routine blood indicators as potential biomark-
ers for the diagnosis of benign and malignant tumors. In 
addition, this study used artificial intelligence machine 
learning algorithms to build a decision tree model for 
predicting benign and malignant ovarian cancer patients.

Materials and methods
General information collection and ethics
The experimental framework design of this experiment 
was shown in Fig. 1. This study retrospectively analyzed 
the information of ovarian cancer patients who vis-
ited the department of gynecology of the Third Xiangya 
Hospital of Central South University from January 2018 
to December 2020. These patients were diagnosed with 
ovarian cancer through B-ultrasound, CT or MR exami-
nations with the age of 14 years or older and a history of 
menstruation. Patients were excluded with severe heart 

Fig. 1 Experimental framework design. This flowchart detailed a three-step process: data preprocessing, model construction, and evaluation. Step 1 
involved removing features, handling outliers, and filling missing values. Step 2 focused on feature selection using various tests and building a decision 
tree model with Bootstrap ROC. Step 3 evaluated the model by comparing ROC curves for imaging and tumor data
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disease, liver and kidney disease, diabetes, and non-neo-
plastic ovarian cysts with a history of radiotherapy and 
chemotherapy [15]. And all ovarian tumors were initially 
diagnosed by cryopathology before surgery, and postop-
erative specimens were evaluated by at least two gyneco-
logical pathologists. Preoperative blood samples (5  ml/
person) from each participant were collected, processed, 
and stored at − 80  °C for subsequent analysis. HE4 and 
CA125 were detected by using the electrochemilumines-
cence technology of the COBAS E411 analyzer (Elecsys; 
Roche Diagnostics, Mannhein, Germany), with detec-
tion ranges of 15-1500 pmol/L and 0.600–5000 U/mL. 
This project was a retrospective study conducted in the 
department of gynecology of the Third Xiangya Hospi-
tal of Central South University, which was qualified for 
tumor treatment. Informed consent: all participants gave 
informed written informed consent. This study had been 
approved by the Ethics Committee of the Third Xiangya 
Hospital of Central South University (IRB No. 2018-
S355). All methods were carried out in accordance with 
relevant guidelines and regulations.

ROMA calculation
The calculation is based on the patient’s menopausal sta-
tus and the concentrations of HE4 and CA125 [16]. The 
calculation formula is as follows:

Premenopausal: Predictive Index (PI) = -12.0 + 2.38 × ln 
[HE4] + 0.0626 × ln [CA125]

Postmenopausal: Predictive Index (PI) = -8.09 + 1.04 × 
ln [HE4] + 0.732 × ln [CA125]

ROMA (%) = Prediction Index (PI) × 100%
For premenopausal women, ROMA value 11.4% is used 

as the cut-off point, ≥ 11.4% indicates a high risk of ovar-
ian cancer, and < 11.4% indicates a low risk of ovarian 
cancer. For postmenopausal women, the ROMA value is 
29.9% as the cut-off point, ≥ 29.9% indicates a high risk of 
ovarian cancer, and < 29.9% indicates a low risk of ovar-
ian cancer [16].

Decision tree model
The decision tree model in this study was constructed 
based on the classification and regression tree (CART) 
analysis method developed in 1984 [17]. CART analysis 
is a non-parametric, nonlinear method that gradually 
divides samples into subsets according to certain crite-
ria [18]. The decision tree generated by CART consists 
of nodes and leaf nodes. The nodes are divided accord-
ing to attributes to form sub-nodes or leaf nodes. Each 
sub-node corresponds to a subset under the attribute, 
with the purpose of improving the purity of the subset as 
much as possible [19].

Statistical analysis
Mean ± standard deviation was applied to describe con-
tinuous variables. For discrete variables, the chi-square 
test or Fisher’s exact test was used to detect differences 
between benign and malignant groups. A p value less 
than 0.05 was considered to have a significant differ-
ence. For continuous variables, a normality test was first 
performed by using the Shapiro-Wilk test. If the data 
conformed to the normal distribution, the independent 
samples t test was applied for verification; otherwise, the 
Mann-Whitney U test was applied.

For statistical analysis, the scikit-learn machine learn-
ing library in Python 3.8 was used to implement machine 
learning algorithms. The univariate logistic regression 
was to determine the dominant variables of the benign 
and malignant tumor prediction model. Then a decision 
tree model was built for predicting ovarian cancer malig-
nancy and the Graphviz library was used to visualize 
the decision tree. The model evaluation was performed 
through an internal validation technique using 1000 
bootstrapped resamples to obtain bias-corrected estima-
tion for predictive performance [20]. Finally, the receiver 
operating characteristic curve (ROC) was applied to fur-
ther evaluate the predictive performance of the decision 
tree model.

Results
Clinical characteristics and circulating blood cell indicators 
of patients with benign and malignant ovarian tumors
A total of 758 patients were included in the study 
(Table  1). 534 patients were diagnosed with benign 
tumors and 224 patients were diagnosed with malig-
nant tumors. The age of patients with benign tumors 
was significantly lower than that of patients with malig-
nant tumors (p < 0.001). In addition, the course time of 
patients with benign tumors was significantly longer than 
that of patients with malignant tumors (p < 0.001), which 
may be related to the lower survival rate of patients with 
ovarian cancer diagnosed as malignant. Under different 
health conditions, 6.74% of patients with benign tumors 
were in good condition, 93.26% were in moderate con-
dition. Among patients with malignant tumors, 2.23% 
were in good condition, 95.98% were in moderate con-
dition, and 1.79% were in cachexia. The overall condi-
tion of benign patients was better than that of malignant 
patients (p < 0.001). There was no statistical difference in 
body mass index (BMI) (p = 0.257).

Table  1 showed that the size of malignant tumors 
detected by ultrasound was significantly larger than that 
of benign tumors (p < 0.001), which was consistent with 
the detection results of CT or MR. Both benign and 
malignant tumors tended to occur on one side. Among 
patients with malignant tumors, 64.73% patients were 
post-menopausal, and 14.73% patients developed signs 
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Table 1 Statistical analysis of baseline indicators and clinical characteristics of patients with benign and malignant ovarian tumors
Variable Total Malignant tumor (n = 224) Benign tumor (n = 534) P-value
Normal information
Age 41.97 ± 16.16 50.50 ± 14.09 38.39 ± 15.64 < 0.001
BMI 22.46 ± 2.45 22.60 ± 2.47 22.40 ± 2.44 0.257
Course of disease (days) 307.72 ± 740.25 149.49 ± 464.49 374.09 ± 820.40 < 0.001
General condition < 0.001
good( 1 ) 41(5.41%) 5(2.23%) 36(6.74%)
medium( 2 ) 713(94.06%) 215(95.98%) 498(93.26%)
cachexia ( 3 ) 4(0.53%) 4(1.79%) -
Imaging indicators
Mass size (BUS) 85.58 ± 51.97 103.10 ± 46.04 78.24 ± 52.59 < 0.001
Mass size (MR/CT) 89.25 ± 65.57 105.67 ± 62.45 82.36 ± 65.68 < 0.001
Mass locations (BUS) 0.284
Unilateral ( 1 ) 682(89.97%) 197(87.95%) 485(90.82%)
Bilateral ( 2 ) 76(10.03%) 27(12.05%) 49(9.18%)
Mass locations (MR/CT) 1
Unilateral ( 1 ) 647(85.36%) 191(85.27% ) 456(85.39%)
Bilateral ( 2 ) 111(14.64%) 33(14.73%) 78(14.61%)
Post-menopause < 0.001
No ( 1 ) 461(60.82%) 79(35.27%) 382(71.54%)
Yes ( 2 ) 297(39.18%) 145(64.73%) 152(28.46%)
Ascites (palpation) < 0.001
Yes ( 1 ) 39(5.15%) 33(14.73%) 6(1.12%)
No ( 2 ) 719(94.85%) 191(85.27%) 528(98.88%)
Tumor markers
HE4 (pmol/L) 212.10 ± 537.10 515.23 ± 893.93 84.95 ± 143.39 < 0.001
CA125 (U/mL) 332.66 ± 1120.92 971.25 ± 1911.41 64.79 ± 112.53 < 0.001
ROMA_before 25.52 ± 28.60 53.86 ± 36.55 13.64 ± 11.13 < 0.001
ROMA_after 30.65 ± 28.30 60.85 ± 33.65 17.98 ± 10.92 < 0.001
Red blood cell related indicators
RBC 4.18 ± 0.43 4.06 ± 0.47 4.24 ± 0.40 < 0.001
HGB 121.82 ± 14.68 116.47 ± 15.76 124.07 ± 13.60 < 0.001
HCT 37.51 ± 3.98 36.19 ± 4.42 38.06 ± 3.65 < 0.001
RDW 13.12 ± 1.62 13.37 ± 1.97 13.01 ± 1.44 < 0.001
MCV 89.88 ± 6.85 89.39 ± 6.68 90.08 ± 6.91 0.016
MCH 29.18 ± 2.76 28.75 ± 2.60 29.36 ± 2.80 < 0.001
MCHC 324.28 ± 12.12 321.37 ± 11.23 325.50 ± 12.28 < 0.001
White blood cell related indicators
WBC 6.45 ± 2.17 7.03 ± 2.67 6.20 ± 1.87 < 0.001
NE% 60.69 ± 11.26 67.76 ± 11.00 57.73 ± 9.98 < 0.001
NE 4.04 ± 2.06 4.95 ± 2.55 3.66 ± 1.68 < 0.001
MO% 6.50 ± 1.94 6.82 ± 2.07 6.37 ± 1.86 0.006
MO 0.41 ± 0.16 0.46 ± 0.19 0.38 ± 0.13 < 0.001
BA% 0.43 ± 0.24 0.40 ± 0.23 0.44 ± 0.24 0.051
BA 0.03 ± 0.01 0.03 ± 0.02 0.03 ± 0.01 0.994
EO% 2.20 ± 1.89 1.91 ± 2.00 2.32 ± 1.84 < 0.001
EO 0.13 ± 0.12 0.12 ± 0.12 0.14 ± 0.12 0.005
LY 1.83 ± 0.65 1.46 ± 0.55 1.99 ± 0.63 < 0.001
LY% 30.10 ± 10.22 23.01 ± 9.94 33.08 ± 8.78 < 0.001
Platelet related indicators
PLT 247.02 ± 83.61 288.03 ± 112.71 229.82 ± 60.08 < 0.001
MPV 10.51 ± 1.35 10.22 ± 1.35 10.64 ± 1.34 < 0.001
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of ascites. Both proportions were higher than those in 
patients with benign tumors (p < 0.001).

Common biomarkers for ovarian cancer including 
CA125 and HE4 had significant differences in identify-
ing benign and malignant tumors. The CA125 concen-
tration in patients with malignant tumors was 15 times 
higher than that of benign tumors and the HE4 concen-
tration in the serum of patients with malignant tumors 
was 6 times higher. ROMA index was used to evaluate 
the difference between patients with benign and malig-
nant tumors (p < 0.001). Before and after menopause, the 
average ROMA index of patients with benign tumors was 
significantly lower than that of patients with malignant 
tumors (p < 0.001).

In addition to commonly used clinical diagnostic meth-
ods for ovarian cancer, we also studied the differences in 
blood routine indicators between patients with benign 
and malignant ovarian cancer. Among these indicators, 
the values of patients with malignant tumors were signifi-
cantly higher than those of patients with benign tumors, 
including red blood cell distribution width (RDW) among 
red blood cell-related indicators, white blood cell count 
(WBC) and neutrophil count (NE) and percentage (NE%) 
among white blood cell-related indicators, monocyte 
number (MO) and percentage (MO%); and platelet num-
ber (PLT) among platelet-related indicators (p < 0.001). 
On the contrary, these indicators were significantly lower 
in patients with malignant tumors, including red blood 
cell-related indicators such as red blood cell count (RBC), 
hemoglobin concentration (HGB), hematocrit (HCT), 
mean corpuscular volume (MCV), and mean hemoglo-
bin content (MCH) and mean hemoglobin concentra-
tion (MCHC); eosinophil number (EO) and percentage 
(EO%), lymphocyte number (LY) and percentage (LY%) 
in leukocyte-related indicators; and platelet-related indi-
cators in mean platelet volume (MPV) (p < 0.001). There 
was no statistical difference in basophil count (BA) and 
percentage (BA%) between patients with benign and 
malignant tumors (p > 0.05).

In summary, important clinical variables to distinguish 
benign and malignant ovarian tumors included age, dis-
ease course, patient’s general condition and menopausal 
status, ascites, tumor size, HE4, CA125, ROMA index, 
and blood routine related indicators (except basophils 
percentage and absolute value).

Univariate logistic regression analysis on the impact of 
outcomes
Next, univariate logistic regression was used to make 
preliminary judgments to determine the indicators that 
affected the outcomes. The results were shown in Table 2. 
According to the p value (p > 0.05), the values of BMI, 
tumor location, BA, BA%, EO and MCV did not affect 
the benign and malignant outcomes of ovarian cancer. 

Therefore, these indicators were excluded in subsequent 
model construction.

Decision tree model for predicting benign and malignant 
ovarian cancer
After processing the data using Scikit-Learn, ROMA_
after was the root node with the largest information gain 
(Fig.  2). The Gini coefficient of the node indicates the 
impurity of the data, and the smaller the better [21]. In 
the root node, sample represented the total number of 
samples before division, and value represented the num-
ber of malignant and benign ovarian cancer samples in 
the node. According to whether ROMA_after ≤ 54.13, 
the 454 samples were divided into two groups, one group 
contained 380 samples and the other group contained 
74 samples. Mass size (MR/CT) and HE4 were used as 
classification criteria for first-level nodes. Then, entered 
the second, third, fourth and fifth layer nodes respec-
tively until there were no leaf nodes. And when the deci-
sion reached each leaf node, the probabilities of benign 
and malignant tumors were determined by the number 
of class samples divided by the total number of samples 
in the current subset. The detailed explanation of the 
decision tree model can be found in the supplementary 
materials.

The indicators involved in this decision tree model 
included ROMA_after, mass size (MR/CT), LY%, CA125, 
post-menopause, HCT, PLT, HE4, MPV, WBC, mass size 
(BUS), MO%, MO and NE%. ROMA_after was of high-
est importance to the decision tree model, while mass 
size (MR/CT), LY%, CA125, post-menopause, HCT, PLT, 
HE4, MPV, WBC had smaller contribution to the model 
(Fig.  3). Furthermore, the predictive ability of this deci-
sion tree model for benign and malignant ovarian cancer 
could be evaluated by the Area Under Curve (AUC). The 
AUC of the decision tree model was 0.86 (Fig.  4A) and 
the average AUC of internal validation technique using 
1000 bootstrapped resamples was 0.899 (Fig.  4B), while 
the AUCs of both benign and malignant ovarian cancers 
predicted by imaging indicators or ovarian tumor bio-
markers (such as CA125, HE4, and ROMA) were 0.74 
(Fig.  4C and D), which showed that the decision tree 
model constructed by introducing preoperative circulat-
ing blood cell indicators had a higher predictive value.

Discussion
Approximately 70% of ovarian malignant tumors are 
diagnosed at an advanced stage, resulting in a poor prog-
nosis, due to the lack of specificity of its main symptoms 
[22]. Therefore, early detection of benign and malignant 
tumors is of great significance to improve the prognosis 
of ovarian cancer patients. Increasing studies have con-
firmed that blood routine indexes have important predic-
tive roles in the early diagnosis of cancer [12–14]. This 
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study also found that most routine blood indicators had 
significant differences in counts and percentages between 
benign and malignant tumors, and changes in these indi-
cators are also closely related to the clinicopathological 
characteristics of ovarian tumors [23].

At present, machine learning has been widely used in 
the medical field, and the predictive performance of deci-
sion tree model for cancer diagnosis has been increas-
ingly recognized [24, 25]. In this study, we successfully 
established a decision tree model based on preopera-
tive routine blood indicators and serum tumor mark-
ers. Some studies report the ROMA index constructed 
by combining CA125 and HE4 can not only improve 
the diagnostic specificity of ovarian cancer [26], but can 
also be used to identify different types of ovarian tumors 

[7]. Similarly, ROMA_after was also the root node with 
the maximum information gain in our decision tree 
model. Morely, LY%, HCT, PLT, MPV and WBC in rou-
tine blood indicators also played important roles in the 
model. Research reports tumor-infiltrating lymphocytes 
with high expression of CD3 + and CD8 + can signifi-
cantly improve the prognosis of endometrioid ovarian 
cancer [27] and lymphocytes can promote synergistic 
anti-tumor responses of humoral immunity and cellular 
immunity in mouse ovarian cancer models [28]. In recent 
years, the recognition of platelets as markers of inflam-
mation has increased, which can induce the transforma-
tion of tumor epithelial cells into mesenchymal cells and 
promote the extravasation and metastasis of tumor cells 
[29]. Ovarian cancer patients with thrombocytosis have a 

Table 2 Single-factor logistic regression analysis of differential variables
Variable Estimated value Standard deviation P-value OR Lower limit Upper limit
Normal information
Age 0.049 0.006 < 0.001 1.051 1.039 1.062
General condition 1.502 0.489 0.002 4.491 1.723 11.708
Course of disease (days) -0.001 0.000 < 0.001 0.999 0.999 1.000
Imaging indicators
Mass size (BUS) 0.011 0.002 < 0.001 1.011 1.007 1.015
Mass size (MR/CT) 0.005 0.001 < 0.001 1.005 1.003 1.008
Mass locations (BUS) 0.305 0.254 0.230 1.357 0.824 2.232
Mass locations (MR/CT) 0.010 0.225 0.964 1.010 0.650 1.569
Post-menopause 1.529 0.170 < 0.001 4.613 3.308 6.431
Ascites (palpation) -2.722 0.452 < 0.001 0.066 0.027 0.159
Tumor markers
HE4 0.007 0.001 < 0.001 1.007 1.006 1.009
CA125 0.005 0.001 < 0.001 1.005 1.004 1.007
ROMA_before 0.070 0.006 < 0.001 1.073 1.059 1.086
ROMA_after 0.082 0.007 < 0.001 1.085 1.070 1.101
Red blood cell related indicators
RBC -1.009 0.197 < 0.001 0.364 0.248 0.537
HGB -0.035 0.006 < 0.001 0.966 0.955 0.976
HCT -0.118 0.021 < 0.001 0.889 0.853 0.926
RDW 0.126 0.048 0.009 1.135 1.032 1.248
MCV -0.014 0.011 0.206 0.986 0.964 1.008
MCH -0.076 0.028 0.006 0.927 0.878 0.979
MCHC -0.029 0.007 < 0.001 0.972 0.959 0.985
White blood cell related indicators
WBC 0.167 0.036 < 0.001 1.182 1.101 1.270
NE% 0.091 0.009 < 0.001 1.095 1.076 1.115
NE 0.303 0.043 < 0.001 1.354 1.243 1.474
MO% 0.118 0.04 0.004 1.126 1.040 1.219
MO 3.253 0.544 < 0.001 25.870 8.903 75.178
EO% -0.136 0.05 0.007 0.873 0.791 0.964
EO -1.327 0.733 0.070 0.265 0.063 1.117
LY% -0.115 0.010 < 0.001 0.891 0.874 0.910
LY -1.618 0.171 < 0.001 0.198 0.142 0.277
Platelet related indicators
PLT 0.009 0.001 < 0.001 1.009 1.007 1.011
MPV -0.248 0.064 < 0.001 0.780 0.688 0.885
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Fig. 3 The importance of features was expressed by the weight distribution rate of decision tree

 

Fig. 2 Visualization of the decision tree for predicting benign and malignant ovarian cancer. ROMA_after was the root node. Mass size (MR/CT) and HE4 
were the classification standards for the first-layer nodes; PLT, LY%, and CA125 were the second-layer nodes; WBC, Post-menopause, HCT and CA125 
were the third-layer nodes; ROMA_after, Mass size (MR/CT), CA125 and MPV were the fourth-layer nodes; the fifth layer was the leaves. The probability 
of benign and malignant was the number of class samples divided by the total number of samples in the current subset. 1 represented a benign tumor, 
and 0 represented a malignant tumor. Figure 2 represented a single decision tree generated from the complete dataset, not a collection of trees from 
the 1000 bootstrap samples
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poor prognosis whether at first diagnosis or at recurrence 
[30]. And WBC is considered to be a prognostic indica-
tor of ovarian cancer [31]. This decision tree model was 
built by combining imaging, tumor serum markers, and 
blood routine related indicators. Therefore, in view of the 
importance of these indicators in differentiating benign 
and malignant ovarian cancer, this decision tree model 
will further improve the diagnostic ability of ovarian can-
cer in primary hospitals.

For the purpose of relevance and effectiveness main-
tained over time, it is essential to implement a system-
atic approach for updating and improving the model 
with new data and variables. As additional patient data 
is collected, the model can be retrained using larger, 
more diverse datasets, which would enhance its accu-
racy and generalizability across different populations. 
Furthermore, incorporating emerging clinical markers, 

genetic information, or additional blood indices could 
significantly improve predictive capabilities. Establish-
ing a continuous learning framework would allow the 
model to adapt to evolving clinical practices and patient 
demographics by periodically integrating new data and 
outcomes. Furthermore, creating feedback mechanisms 
for clinicians utilizing the model in practice can provide 
invaluable insights into its performance and areas need-
ing refinement. Regular evaluation against real-world 
outcomes will help identify any decline in predictive 
accuracy, facilitating timely adjustments. By adopting 
these strategies, the decision tree model can evolve and 
maintain its utility in clinical settings, ultimately lead-
ing to improved patient management and outcomes. 
With the aim of dataset expansion, we plan to establish 
multi-center collaborations with various hospitals and 
research institutions to collect data from diverse regions 

Fig. 4 ROC for predicting benign and malignant ovarian cancer models. (A) a decision tree model; (B) the average value of internal validation technique 
using 1000 bootstrapped resamples; (C) a prediction model using imaging indicators alone; (D) a prediction model using tumor markers alone
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and populations. Additionally, we will leverage exist-
ing public datasets and utilize data-sharing platforms to 
encourage contributions from other researchers. Patient 
recruitment efforts will focus on engaging underrep-
resented groups, while data augmentation techniques, 
such as Generative Adversarial Networks (GANs), will 
be employed to create synthetic samples. We will also 
conduct longitudinal studies to gather more compre-
hensive data over time and leverage electronic health 
records (EHR) to quickly increase sample size, all while 
ensuring adherence to ethical guidelines and data privacy 
regulations.

The decision tree model incorporates various strate-
gies to effectively handle missing data, which is crucial 
for maintaining its robustness and applicability. One 
common approach is imputation, where missing val-
ues are filled using techniques such as mean, median, or 
mode imputation, as well as more advanced methods like 
K-Nearest neighbors (KNN) or regression imputation 
[32, 33]. This allows the model to utilize all available data 
without losing valuable cases. Moreover, the model can 
employ surrogate splits, identifying alternate splitting 
criteria for instances with missing values, thus ensuring 
that decisions can still be made even when some data 
points are incomplete. During the tree-building process, 
missing values can be accommodated by creating sepa-
rate branches for instances with missing data, allowing 
the model to address the inherent uncertainty of missing 
information. While a complete case analysis may exclude 
cases with missing data, this approach risks losing impor-
tant information and introducing bias. By implementing 
these strategies, the decision tree model enhances its 
predictive accuracy and remains effective in real-world 
applications.

The performance of model was compared favorably 
with existing diagnostic tools, specifically imaging indi-
cators and conventional tumor biomarkers. The deci-
sion tree model achieved an AUC of 0.86 for predicting 
benign and malignant ovarian cancer, which indicated 
a strong ability to distinguish between the two classes, 
comparing with the AUCs of 0.74 for predictions based 
solely on imaging indicators or tumor biomarkers. The 
model combined clinical markers and preoperative cir-
culating blood cell indicators with traditional imaging 
and biomarker data, enhancing predictive accuracy and 
making it more effective than models relying solely on a 
single type of diagnostic tool. Importantly, the internal 
validation does not guarantee the generalizability of the 
model to external populations, meaning our findings are 
interpreted with caution. The further validation is essen-
tial to confirm the model’s applicability in diverse clinical 
settings. Therefore, we will conduct prospective studies 
that utilize independent datasets to validate our model’s 
performance. Such studies will provide critical insights 

into the model’s robustness and its potential role in clini-
cal decision-making. Overall, while our decision tree 
model demonstrates potential, ongoing research and vali-
dation efforts are necessary to establish its clinical utility.

The decision tree model can adapt to new data 
changes and multi-center applications through strategic 
approaches such as incremental learning, which allows 
updates with new patient data without complete retrain-
ing. Regularization and pruning help prevent overfitting, 
ensuring good generalization to unseen data. Incorpo-
rating ensemble methods like Random Forests enhances 
robustness by aggregating predictions from multiple 
trees, beneficial for diverse patient populations. Cross-
center validation ensures effective performance across 
different healthcare settings, while continuous monitor-
ing and feedback loops enable timely adjustments based 
on user insights.

For the sake of effectiveness, concrete plans for periodi-
cally updating data and retraining can be established. A 
regular schedule for collecting new patient data—quar-
terly or biannually—keeps the model current with demo-
graphic changes. Automated data pipelines facilitate 
seamless integration, minimizing errors. Continuous 
monitoring tracks performance metrics, triggering auto-
matic retraining when performance declines. Feedback 
from clinical users informs retraining decisions, while 
version control systems ensure stability during updates. 
Conducting cross-validation after retraining assesses 
performance on updated data, ensuring generalization 
across clinical settings. Together, these strategies ensure 
the decision tree model remains relevant and effective in 
a dynamic healthcare environment.

In order to investigate the potential impact of con-
founding variables such as comorbidities and medication 
use on the model, we plan to conduct further analyses 
that will incorporate these variables in future iterations 
of the model. Specifically, we will utilize electronic health 
records and structured patient interviews to systemati-
cally collect comprehensive histories regarding patients’ 
comorbidities and medications, including dosage and 
duration of use. We will also employ multivariable regres-
sion analysis and machine learning techniques to assess 
how these confounding variables influence the model’s 
predictive capabilities. This process will help us identify 
and control for factors that may significantly impact the 
outcomes, thereby enhancing the model’s accuracy and 
applicability. Besides, we plan to conduct external vali-
dation across diverse populations to ensure the model’s 
broad applicability and reliability in varied clinical set-
tings. Through these measures, we aim to build a more 
comprehensive and robust model that better serves clini-
cal practice.

This study has the following limitations: (1) This model 
was not suitable for the benign and malignant judgment 
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of all ovarian tumor patients. This study excluded 
patients with severe heart disease, liver and kidney dis-
ease, diabetes, non-neoplastic ovarian cysts and a history 
of radiotherapy and chemotherapy; (2) Known risk fac-
tors for ovarian cancer (such as family history, hormone 
replacement therapy) and ovulation factors (lifetime 
Ovulatory cycle, breastfeeding, irregular menstruation 
and fallopian tube ligation) [15] were not included in this 
study; (3) The pathological subtypes of tumors were not 
further graded; (4) The study does not explicitly account 
for confounding variables such as patient comorbidities 
or medication use in the final decision tree mode; (5) 
We recognize that feature selection is a critical aspect of 
model development that can introduce significant limi-
tations. While we used statistical methods like univari-
ate logistic regression to identify significant predictors, 
this reliance may inadvertently exclude relevant indi-
cators that could enhance model performance, result-
ing in a model that, despite its robustness with selected 
features, may not fully capture the complexity of ovarian 
tumor malignancy. Likewise, the feature selection pro-
cess can introduce bias if the chosen indicators do not 
adequately represent the broader patient population, 
potentially compromising the model’s validity and appli-
cability in diverse clinical settings. In future research, we 
aim to enhance our understanding of minimum sample 
size requirements for reliable model performance across 
various clinical contexts. Establishing these requirements 
is essential for ensuring robust and generalizable out-
comes. We plan to incorporate statistical power analysis 
to determine the necessary sample sizes based on effect 
sizes and variability within patient populations. By pro-
viding context-specific recommendations and conduct-
ing pilot studies, we hope to refine these estimates and 
adapt our model to evolving clinical practices. This ongo-
ing evaluation will ultimately strengthen the applicability 
of our decision tree model in diverse settings.

Conclusion
A decision tree model based on clinical markers and pre-
operative circulating blood cells was constructed. Com-
pared with using imaging indicators and biomarkers 
(such as CA125, HE4, ROMA) alone to predict benign 
and malignant ovarian cancer, this decision tree model 
showed higher predictive value. In future research, it’s 
planning to expand the scope of research objects, add 
external validation, and add more indicators to further 
improve the results of decision tree analysis.
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