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Abstract 

Aims Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus. Early identifica-
tion of individuals at high risk of DPN is essential for successful early intervention. Traditional Chinese medicine (TCM) 
tongue diagnosis, one of the four diagnostic methods, lacks specific algorithms for TCM symptoms and tongue fea-
tures. This study aims to develop machine learning (ML) models based on TCM to predict the risk of diabetic periph-
eral neuropathy (DPN) in patients with type 2 diabetes mellitus (T2DM).

Methods A total of 4723 patients were included in the analysis (4430 with T2DM and 293 with DPN). TFDA-1 
was used to obtain tongue images during a questionnaire survey. LASSO (least absolute shrinkage and selection oper-
ator) logistic regression model with fivefold cross-validation was used to select imaging features, which were then 
screened using best subset selection. The synthetic minority oversampling technique (SMOTE) algorithm was applied 
to address the class imbalance and eliminate possible bias. The area under the receiver operating characteristic curve 
(AUC) was used to evaluate the model’s performance. Four ML algorithms, namely logistic regression (LR), random 
forest (RF), support vector classifier (SVC), and light gradient boosting machine (LGBM), were used to build predictive 
models for DPN. The importance of covariates in DPN was ranked using classifiers with better performance.

Results The RF model performed the best, with an accuracy of 0.767, precision of 0.718, recall of 0.874, F-1 score 
of 0.789, and AUC of 0.77. With a value of 0.879, the LGBM model appeared to be the best regarding recall Age, sweat-
ing, dark red tongue, insomnia, and smoking were the five most significant RF features. Age, yellow coating, loose 
teeth, smoking, and insomnia were the five most significant features of the LGBM model.

Conclusions This cross-sectional study demonstrates that the RF and LGBM models can screen for high-risk DPN 
in T2DM patients using TCM symptoms and tongue features. The identified key TCM-related features, such as age, 
tongue coating, and other symptoms, may be advantageous in developing preventative measures for T2DM patients.
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Introduction
Type 2 diabetes mellitus (T2DM) has become a world-
wide epidemic due to a complex interplay of genetic 
predisposition, excessive food intake, and environmen-
tal factors [1, 2]. It is estimated that around 463 million 
adults aged 20–79 have been diagnosed with diabetes, 
resulting in an alarming incidence rate of 9.3% [1]. Nota-
bly, China has the highest number of diabetic patients 
globally, with approximately 116 million affected adults, 
the majority of whom have T2DM [3]. 2DM is a chronic 
metabolic disorder characterized by high blood sugar lev-
els and resistance to insulin. Poor control of blood sugar 
can lead to complications affecting the heart, kidneys, 
and nervous system [4]. Among these complications, 
diabetic peripheral neuropathy (DPN) is one of the most 
prevalent chronic conditions associated with diabetes. 
It often leads to sensory and motor dysfunction in the 
limbs along with sleep disturbances, depression, reduced 
quality of life, and impaired social functioning [5]. As the 
disease progresses, approximately half of individuals with 
diabetes will develop DPN making it the primary cause 
for foot ulcers as well as disability and amputation rates 
[5–7]. The significant morbidity and disability rates asso-
ciated with DPN impose substantial physical and eco-
nomic burdens on individuals affected by this condition 
[8, 9]. Unfortunately, DPN tends to manifest gradually 
without noticeable symptoms until it reaches an irre-
versible stage [10, 11]. Numerous academic studies have 
emphasized the importance of achieving better control 
over blood sugar levels in patients with T2DM in order 
to reduce long-term morbidity related to neuropathy 
[12–14]. Therefore there is an urgent need for increased 
awareness and early intervention strategies aimed at 
preventing or mitigating the debilitating consequences 
caused by DPN in individuals living with T2DM.

Nerve conduction studies are currently considered 
as highly reliable diagnostic tools for identifying DPN. 
These tests not only help diagnose DPN [15, 16]. How-
ever, conducting these studies can be costly, time-con-
suming, labor-intensive, and impractical for routine 
clinical care. Currently, standard clinical assessments uti-
lize scored clinical evaluations and bedside tests to diag-
nose DPN in routine clinical practice. Unfortunately, by 
the time these basic tests detect neuropathy, it is often 
too advanced to reverse or halt its progression [10]. Early 
detection and diagnosis of diabetes and its chronic com-
plications are crucial for effective patient treatment and 
recovery. The ancient Chinese medical text Huangdi 
Neijing documented the early diagnosis and treatment 
of diabetes over 2000 years ago [17]. In traditional Chi-
nese medicine (TCM), diabetes is referred to as "Xiaoke" 
disease which is believed to result from "Yin deficiency", 
leading to excessive thirst and urination. TCM has 

accumulated extensive diagnostic experience with a sys-
tematic procedure and standard for diagnosing this con-
dition [18, 19]. TCM primarily relies on tongue diagnosis 
to identify imbalances in Yin-Yang energy [19], which 
aids in early-stage disease detection. TCM stands out due 
to its personalized approach towards syndrome differen-
tiation and treatment [20]. By incorporating elements of 
TCM into a clinical prediction model, an accurate digi-
tal risk assessment can be provided that highlights the 
benefits of individualized therapy. The knowledge gained 
from syndrome differentiation and treatment in TCM 
can serve as evidence-based support for preventing and 
treating DPN in patients with type 2 diabetes mellitus.

In our previous study, we utilized LASSO regression 
to screen variables and subsequently developed a clinical 
nomogram. The findings indicated that TCM indicators, 
including age, smoking, sweating, and purple tongue, 
demonstrated strong predictive efficacy for DPN [21]. 
Building upon these results, the current study employs 
the SMOTE algorithm to address data imbalance 
between the two groups. We established predictive mod-
els for DPN using four machine learning methods and 
evaluated their performance using the AUC. The final 
results indicate that the RF and LGBM algorithms exhibit 
superior performance, and the feature importance rank-
ing is used to optimize the limitations of the variables in 
the previous study. Finally, the 5 most important features 
of predicted DPN were screened out and ranked.

Managing DPN should prioritize individualization; 
however, physicians often encounter challenges during 
the decision-making process due to increasing patient 
numbers, variations among individuals, as well as the 
complex nature of DPN itself. In medicine, machine 
learning techniques have emerged as a promising strat-
egy for addressing these challenges effectively [22]. ML 
offers several advantages compared to traditional statis-
tical methods, such as the ability to learn from multiple 
data sources, improved identification of variables asso-
ciated with clinical outcomes, enhanced predictive per-
formance, better modeling of complex relationships, and 
resilience against data noise [23]. The objective of this 
study is to develop a straightforward ML-based screening 
model for DPN that integrates clinical signs from TCM 
and laboratory indicators. We analyzed data from 4723 
subjects in order to achieve this goal.

Materials and methods
Study Population
This cross-sectional study was conducted between Janu-
ary 2019 and October 2020 at the Endocrinology Depart-
ment and TCM Surgery Department of The Second 
Affiliated Hospital of Tianjin University of TCM, Tian-
jin, China. Prior to inclusion in the study, all participants 
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provided written informed consent. T2DM was con-
firmed based on a previous diagnosis reported at the Sec-
ond Affiliated Hospital of Tianjin University of TCM, or 
fasting plasma glucose (FPG) levels ≥ 7.0  mmol/L and/
or random plasma glucose (RPG) levels ≥ 11.1  mmol/L. 
DPN was confirmed based on screening methods using 
a 128  Hz tuning fork and 10  g monofilaments [6, 10]. 
Exclusion criteria for the study included the following: (1) 
age below 18 years old; (2) failure to complete the ques-
tionnaire; (3) pregnant or lactating women; (4) inability 
to cooperate with the complete tongue image collector; 
(5) incomplete clinical data. After rigorous data filtration, 
a total of 4723 subjects were included in the study. Clini-
cal trial number: not applicable.

Data Collection
During the interview, trained investigators from the 
School of Health Sciences and Engineering at Tianjin 
University of TCM administered the standardized ques-
tionnaire (Information Record Form of TCM Clinical 
Four Diagnostics) developed by Shanghai University of 
TCM [24]. Studies related to the use of this questionnaire 
have been published [21]. The questionnaire included 
seven physicochemical indexes: age, sex, BMI, FPG, ran-
dom plasma glucose, and smoking status. BMI was cal-
culated by dividing weight in kilograms by the square of 
height in meters. Clinical symptom information, such 
as "fatigue", "sigh", "irritability", "forgetfulness", "insom-
nia", "sweating", "loose teeth", "dry skin", "dry mouth", 
"polydipsia", "thirst without drinking much", "polyuria", 
and "frequency of urine", was gathered using the ques-
tionnaire, which was filled out by the investigators with 
responses coded as "yes" (1) or "no" (0). Figure  1 illus-
trates the flowchart for the study.

Collection of tongue features
Two investigators identified tongue features and recorded 
the findings in the questionnaires. Using the Tongue 
Diagnosis Analysis-1 (TFDA-1) instrument developed 
by the national key research and development plan, 
tongue images were collected [25]. Tongue images were 
taken in the morning (8 a.m. to 9:30 a.m.) when there 
was no food and in a fixed light source room, where sub-
jects were asked to rinse their mouths before they were 
taken. The researchers first set the shooting parameters, 
instructed the subjects to maintain emotional stability, 
rested their chin on the corresponding position on the 
tongue diagnostic machine, and easily stretched out their 
tongue to relax. The researcher then clicked on the mid-
dle of the tongue on the instrument screen to complete 
the acquisition. Two experienced TCM experts were 
invited to review the images back-to-back. In case of dis-
agreement, the final decision would be made by a third 

expert. Crimson tongue, purple tongue, dark red tongue, 
enlarged tongue, spotted tongue, teeth-marked tongue, 
fissured tongue, yellow coating, less coating, thick coat-
ing, and greasy coating were the tongue variables. Crim-
son tongue, purple tongue and dark red tongue are the 
color of the tongue; enlarged tongue, spotted tongue, 
teeth marked tongue and fissured tongue are the state of 
the tongue; yellow coating, less coating, thick coating and 
greasy coating are the state of tongue coating.

Statistical analysis
SPSS (version 26.0), R (version 4.1.3), Python (version 
3.7.3), and STATA (version 15.0) were utilized for statis-
tical analysis. Normally distributed continuous variables 
were presented as means ± standard deviation. As appro-
priate, the chi-squared test or Fisher’s exact test was used 
to compare differences between categorical variables. 
All reported statistical significance levels were two-
sided, with statistical significance set at 0.05. This study 
used the least absolute shrinkage and selection operator 
(LASSO) to select the most valuable candidate variables, 
which were then used to build the ML models. T2DM 
was more prevalent than DPN, resulting in class imbal-
ances. The synthetic minority over-sampling technique 
(SMOTE) algorithm was employed to address this prob-
lem. Using the area under the receiver operating charac-
teristic curve (AUC), we compared the performance of 
the four constructed models. The model with the highest 
AUC was considered the optimal model. Finally, the vari-
able importance ranking of the optimal model was then 
displayed, and a nomogram model was constructed to 
identify T2DM patients at risk of developing DPN.

Feature selection
The LASSO regression model was utilized to screen the 
final input features for ML models. This method mini-
mizes the LASSO cost function and selects features with 
non-zero coefficients to produce a subset of variables 
for further analysis. Additionally, best subset selection 
was applied to all 29 variables. The SMOTE algorithm 
was utilized to address the class imbalance caused by the 
larger number of subjects with T2DM compared to DPN.

Data imbalance processing
The SMOTE algorithm synthesizes new samples by ana-
lyzing a small number of samples and adding them to the 
dataset, effectively resolving the problem of model over-
fitting associated with random oversampling [26]. The 
fundamental concept of the SMOTE algorithm is to syn-
thesize new samples by analyzing a small number of sam-
ples and adding them to the dataset [27]. This algorithm 
addresses the class imbalance caused by model overfit-
ting [23].
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Machine learning algorithms
Four supervised machine learning algorithms, namely 
logistic regression (LR), random forest (RF), support vec-
tor classifier (SVC), and light gradient boosting machine 
(LGBM), were utilized to establish DPN prediction 

models. The model with the optimal performance was 
chosen for further analysis. LR is a classification algo-
rithm that provides probabilities between 0 and 1 and 
establishes a relationship between features and outcome 
probabilities. In addition, it provides baseline accuracy 

Fig. 1 The flowchart of this study. LASSO, least absolute shrinkage and selection operator; LGBM, light gradient boosting machine; SVC, supporting 
vector classifier; LR, logistic regression; RF, random forest
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scores relative to other non-parametric ML models [28]. 
LR provides baseline accuracy scores compared to other 
non-parametric ML models [29]. RF is an ensemble algo-
rithm that combines multiple decision trees and can be 
used for regression and classification tasks [30]. SVC is 
used for finding hyperplanes in N-dimensional spaces 
and is particularly effective for distinguishing data points 
with a hyperplane that maximizes the edge distance 
[31]. Based on decision trees, LGBM is used for various 
ML tasks; it applies gradient-based one-side sampling 
(GOSS) to estimate information gain and reduce the 
number of data instances during training without com-
promising accuracy [32].

Performance measurement
Using a balanced dataset generated by the SMOTE algo-
rithm, we conducted a comprehensive and quantitative 
evaluation of the performance of our machine learning 
models, The dataset was randomly divided into train-
ing and validation sets for binary classification tasks. 
We used a confusion matrix and five standard met-
rics, including accuracy, precision, recall, F-1 score, and 
receiver operating characteristic (ROC), which were cal-
culated using Eqs. (1)– (4) to evaluate the recognition 
ability of the models.

Feature ranking algorithms
The features were independently ranked through feature 
ranking algorithms without using ML algorithms. The 
distinct and stable features were selected based on their 
rank scores [33, 34]. Feature ranking is a filtering method 
that can be affected by the classification algorithm. How-
ever, it can also generate hypotheses to gain insight into 
the factors influencing the prediction [34, 35].

Results
Baseline characteristics
This study included 4723 eligible diabetic participants, 
including 4430 T2DM patients and 293 DPN patients. 
Three clinical variables, including physicochemical 

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)Precision =
TP

TP + FN

(3)Recall =
TP

TP + FP

(4)F − 1 =
2× Precision× Recall

Precision+ Recall

indexes, TCM symptoms, and tongue features, were ana-
lyzed using a standardized questionnaire with categorical 
variables between 2019 and 2020. The participants’ base-
line characteristics are listed in Table 1. The DPN group 
had more participants aged > 60 than the T2DM group. 
The most common BMI range was 24.6–28 (42.3%), and 
the proportion of males (57.3%) in the DPN group was 
greater than that of females (42.7%). Significantly more 

Table 1 Baseline characteristics of the participants

Clinical characteristics
N (%)

T2DM
(4430)

DPN
(293)

P value

Age 0.000

     18–44 256(5.8) 9(3.1)

     45–59 1280(28.9) 66(22.5)

     60–89 2687(60.7) 185(63.1)

      > 90 207(4.7) 33(11.3)

BMI 0.023

     < 18.5 39(0.9) 6(2)

     18.5 ~ 24.5 1806(40.8) 110(37.5)

     24.6 ~ 28 1990(44.9) 124(42.3)

      > 28 539(13.4) 53(18.1)

sex 0.000

male 2028(45.8) 168(57.3)

female 2402(54.2) 125(42.7)

smoke 971(21.9) 130(44.4) 0.000

fatigue 2594(58.6) 169(57.7) 0.768

irritable 1739(39.3) 113(38.6) 0.815

forgetfulness 181(4.1) 9(3.1) 0.392

insomnia 2061(46.5) 108(36.9) 0.001

sweating 1199(27.1) 45(15.4) 0.000

loose teeth 1127(25.4) 108(36.9) 0.000

dry skin 717(16.2) 86(29.4) 0.000

dry mouth 1820(41.1) 120(41) 0.966

polydipsia 701(15.8) 54(18.4) 0.238

thirst does not drink much 114(2.6) 12(4.1) 0.117

polyuria 162(3.7) 20(6.8) 0.006

frequency of urine 562(12.7) 34(11.6) 0.589

crimson tongue 700(15.8) 55(18.8) 0.179

purple tongue 329(7.4) 44(15) 0.000

dark red tongue 513(11.6) 3(1) 0.000

enlarged tongue 449(10.1) 21(7.2) 0.100

spotted tongue 285(6.4) 21(7.2) 0.621

teeth marked tongue 1119(25.3) 62(21.2) 0.117

fissured tongue 1658(37.4) 101(34.5) 0.311

yellow coating 1162(26.2) 103(35.2) 0.001

less coating 305(6.8) 23(7.8) 0.529

thick coating 1040(23.5) 55(18.8) 0.065

greasy coating 1149(25.9) 51(17.4) 0.001

FPG (mmol/L) 7.79(1.63) 7.77(1.40) 0.838

RPG (mmol/L) 11.16(2.41) 11.32(1.55) 0.273
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smokers were present in the DPN group (44.4%) than 
in the T2DM group (21.9%). Age, BMI, gender, smoking 
status, insomnia, sweating, loose teeth, dry skin, polyu-
ria, purple tongue, dark red tongue, yellow coating, and 
greasy coating were significantly associated with DPN 
incidence (p < 0.05).

Features selected by LASSO regression
Using a balanced dataset generated by the SMOTE algo-
rithm, the performance of the proposed ML models was 
evaluated thoroughly and quantitatively (Table  2). The 
dataset consisted of 8840 samples, evenly balanced at 1:1 
for positive and negative cases, with 6202 samples used for 
training and 2658 samples for validation (7:3). All dataset 
attributes were found to be statistically significant (p < 0.05).

As shown in Table 2 and Fig. 2, we used LASSO regres-
sion to reduce the number of features from 29 to 12 and 
identify the most significant features associated with 
DPN incidence. Among these 12 features, age, smoke, 
insomnia, sweating, loose teeth, dry skin, polyuria, pur-
ple tongue, dark red tongue, yellow coating, thick coating, 
and greasy coating were found to be significantly associ-
ated with DPN (Fig.  2 and Supplemental Fig.  1). Using 
the best subset selection method, we narrowed the selec-
tion of features further, resulting in eight features, includ-
ing age, smoking, sweating, loose teeth, dry skin, purple 
tongue, dark red tongue, and greasy coating, as visualized 
in the Nomogram diagram (Supplemental Fig. 2). Consid-
ering the clinical significance of TCM, we obtained a pre-
diction model containing 12 DPN-related features.

SMOTE algorithm validation
Using the SMOTE algorithm, we obtained a dataset contain-
ing 8840 samples that was balanced in a 1:1 ratio (Table 2), 

Table 2 Dataset description by SMOTE algorithm

Clinical 
characteristics N (%)

T2DM
(4430)

DPN
(4430)

P value

Age 0.000

     18–44 256(5.8) 143(3.2)

     45–59 1280(28.9) 1069(24.1)

     60–89 2687(60.7) 2809(63.4)

      > 90 207(4.7) 409(9.2)

smoke 971(21.9) 1668(37.7) 0.000

insomnia 2061(46.5) 1342(30.3) 0.000

sweating 1199(27.1) 403(9.1) 0.000

loose teeth 1127(25.4) 1293(29.2) 0.000

dry skin 717(16.2) 995(22.5) 0.000

polyuria 162(3.7) 99(2.2) 0.000

purple tongue 329(7.4) 382(8.6) 0.038

dark red tongue 513(11.6) 3(0.1) 0.000

yellow coating 1162(26.2) 1278(28.8) 0.006

thick coating 1040(23.5) 534(12.1) 0.000

greasy coating 1149(25.9) 510(11.5) 0.000

Fig. 2 LASSO for feature selection. a The LASSO plot was produced based on the log (λ) sequence and according to the fivefold cross-validation 
that resulted in 12 nonzero coefficients. b Dotted vertical lines were drawn at the optimal values using fivefold cross-validation using the minimum 
criteria and 1-SE criteria
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with 6202 training subjects and 2658 validation subjects 
(7:3). All attributes were statistically significant (p < 0.05).

Model performance comparison
As shown in Table  3, we compared the performance of 
four ML models, namely RF, LGBM, SVC, and LR. The 

RF model achieved the highest accuracy of all mod-
els with 0.767, followed by LGBM with 0.758, SVC with 
0.714, and LR with 0.674. Similar trends were observed 
for other performance metrics, including precision, F-1 
score, and AUC, except for recall, where RF consistently 
outperformed the other models. Regarding recall, LGBM 
demonstrated the highest predictive power with a value 
of 0.879, followed by RF with 0.874, SVC with 0.855, 
and LR with 0.709. The confusion matrix in Fig. 3 visu-
ally depicted the performance of the models, with darker 
colors indicating higher true negatives and true positives. 
Overall, the RF model showed the best performance, 
with an accuracy of 0.767, precision of 0.718, recall of 
0.874, F-1 score of 0.789, and AUC of 0.77 (Fig. 4).

Table 3 Performance comparison of the four ML models

Model Accuracy Precision Recall F-1 AUC 

LR 0.674 0.660 0.709 0.684 0.684

RF 0.767 0.718 0.874 0.789 0.768

SVC 0.714 0.665 0.855 0.748 0.715

LGBM 0.758 0.707 0.879 0.783 0.759

Fig. 3 The confusion matrix of the four ML models
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Feature importance
Further analysis of feature importance using relative 
importance value or feature importance score revealed 
that age, sweating, dark red tongue, insomnia, and smok-
ing were the top five most important features in the RF 
model. In contrast, the top five most essential features in 
the LGBM model were age, yellow coating, loose teeth, 
smoking, and insomnia (Fig. 5). In summary, the results 
of this study demonstrated that the RF and the LGBM 
models performed the best in classification performance, 
with age, sweating, dark red tongue, insomnia, and smok-
ing identified as the top important features associated 
with DPN in both models.

Discussion
In this cross-sectional study involving individu-
als with T2DM, we employed four different machine 
learning algorithms to predict the risk of developing 
DPN. Among these models, the RF algorithm utiliz-
ing 12 features demonstrated the highest accuracy in 
predicting DPN incidence. Its performance metrics 
were as follows: accuracy = 0.767, precision = 0.718, 
recall = 0.874, F-1 score = 0.789, and AUC = 0.768. 
These results suggest that our developed predictive 
model can effectively screen individuals at high risk 
for DPN and contribute towards preventing and man-
aging diabetes complications. This finding aligns with 
previous studies [36, 37] and serves as a successful 
application of ML in predicting DPN risk within TCM 
research context.

Previous research on prediction models for DPN has 
primarily focused on laboratory indicators while neglect-
ing TCM symptoms and tongue features [38]. Our study 
stands out as the first in China to specifically target 
TCM-related indicators and employ machine learning 
techniques for building predictive models based on TCM 
symptoms and tongue features when it comes to DPN 
prediction among individuals with diabetes mellitus type 
2 (T2DM). With advancements in artificial intelligence 
technology, unsupervised and supervised machine learn-
ing approaches have gained popularity within the medi-
cal field especially for predicting diabetes complications 
[39–41].

The analysis of feature importance revealed the signifi-
cant contributions of various model features. The study 
identified age and smoking as potential risk factors for 
DPN. Previous research conducted in Beijing, China 
found that individuals aged 40  years or older were at a 
higher risk for DPN among diabetic patients [42]. In a 
Chinese cross-sectional study of diabetic patients, the 
prevalence of DPN increased with age [43, 44]. Similarly, 
a cohort study in Bangladesh demonstrated that smok-
ing was associated with microvascular complications 
in diabetic patients [36]. Another study suggested that 
impaired sweat secretion could increase the likelihood 
of foot ulcers among those with diabetes and DPN [45]. 
Patients with DPN and abnormal sweating function had 
a 15-fold increased risk of foot ulcers [46]. A visual indi-
cator plaster method has been used to diagnose DPN by 
assessing foot skin dryness [47]. while Sudoscan tech-
nology can quantitatively analyze sweating function to 
assess neurological impairment of sweat glands [48]. 
Patients with diabetes often exhibit oral manifestations 
such as periodontal disease, tooth loss, dental caries, 
dry mouth, delayed wound healing, and taste dysfunc-
tion [49]. The bidirectional relationship between peri-
odontitis and diabetes mellitus is well-established [50]. 
Thus, it is essential to promote proper dental care and 
tooth retention among adults with diabetes mellitus [51]. 
Insomnia has been linked to an increased risk of type 2 
diabetes according to observational studies and Mende-
lian randomization studies [52–54]. This study confirmed 
an association between loose teeth and insomnia in 
older patients with DPN. Additionally, a previous epide-
miological study conducted in Japan found a correlation 
between yellow tongue coating and a higher prevalence 
of diabetes mellitus [55]. According to traditional Chi-
nese medicine (TCM), DPN is often accompanied by 
blood stasis [56]. Additionally, Morita A et  al. objec-
tively evaluated the relationship between blood stasis 
and patients with a dark purple tongue [57]. As demon-
strated by previous studies, tongue performance is cru-
cial for detecting blood stasis [58]. Specifically, patients 

Fig. 4 The receiver operating characteristics (ROC) curves of all 
algorithms. Logistic, logistic regression; SVC, supporting vector 
classifier; LGBM, light gradient boosting machine
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with T2DM exhibit increased tongue manifestations 
of blood stasis associated with severe arterial stiffness 
[59]. Consistent with previous findings, we observed a 
preference for dark red tongue color and yellow coating 
in patients with DPN in our study. Our study is the first 
to develop four classical machine learning methods for 
predicting DPN using TCM-related features. Xia et  al. 

compared three classical ML methods and found that the 
RF model best diagnosed metabolic syndrome [60]. Some 
Traditional Chinese Medicine (TCM) indicators, such as 
chest constriction, spontaneous sweating, wiry pulse, and 
tongue coating with a greasy appearance, have also dem-
onstrated improved diagnostic accuracy for metabolic 
syndrome. The RF algorithm employs random samples 

Fig. 5 The importance rankings. a The relative importance ranking of RF; the top ten were age, sweating, dark red tongue, insomnia, smoke, greasy 
coating, thick coating, yellow coating, dry skin, loose teeth, purple tongue, and polyuria. b The importance ranking of LGBM; the top ten were age, 
yellow coating, loose teeth, smoke, insomnia, dry skin, thick coating, purple tongue, greasy coating, sweating, polyuria, and dark red tongue
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and variables to generate decision trees, where the final 
prediction of its model is based on the category predicted 
by these decision trees [61]. In our study, we established 
an RF prediction model that exhibited favorable perfor-
mance as well. This model could assist TCM practitioners 
in identifying individuals with type 2 diabetes at a height-
ened risk of developing diabetic peripheral neuropathy 
(DPN). Our study identified TCM-related characteris-
tics that encompassed not only physicochemical indica-
tors but also TCM symptoms and tongue features. These 
findings can effectively contribute to the development 
and implementation of TCM-based strategies aimed at 
preventing DPN in individuals diagnosed with type 2 
diabetes.

Strengths and limitations
There are certain limitations to our study that should be 
acknowledged. Firstly, the generalizability of our findings 
to other cities or countries may be uncertain as the study 
population was recruited solely from a single center in 
Tianjin. Secondly, it is important to note that our study 
employed a cross-sectional design and further research 
is required to validate the reliability of the established 
prediction models. In future investigations, we aim to 
incorporate additional indicators in order to enhance 
the predictive accuracy of these models. Thirdly, due to 
insufficient data availability, significant risk factors such 
as low-density lipoprotein cholesterol (LDL-C) and gly-
cosylated hemoglobin (HbA1c) were not included in our 
prediction model. Lastly, while our study focused on 
analyzing tongue features alone, we believe that incorpo-
rating data on specific tongue flora and integrating infor-
mation from various dimensions will contribute towards 
developing more advanced prediction models for dia-
betic peripheral neuropathy (DPN) in future studies.
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