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Abstract
Background Identifying key variables is essential for developing clinical outcome prediction models based on high-
dimensional electronic medical records (EMR). However, despite the abundance of feature selection (FS) methods 
available, challenges remain in choosing the most appropriate method, deciding how many top-ranked variables to 
include, and ensuring these selections are meaningful from a medical perspective.

Methods We developed a practical multi-step feature selection (FS) framework that integrates data-driven statistical 
inference with a knowledge verification strategy. This framework was validated using two distinct EMR datasets 
targeting different clinical outcomes. The first cohort, sourced from the Medical Information Mart for Intensive Care 
III (MIMIC-III), focused on predicting acute kidney injury (AKI) in ICU patients. The second cohort, drawn from the 
MIMIC-IV Emergency Department (MIMIC-IV-ED), aimed to estimate in-hospital mortality (IHM) for patients transferred 
from the ED to the ICU. We employed various machine learning (ML) methods and conducted a comparative analysis 
considering accuracy, stability, similarity, and interpretability. The effectiveness of our FS framework was evaluated 
using discrimination and calibration metrics, with SHAP applied to enhance the interpretability of model decisions.

Results Cohort 1 comprised 48,780 ICU encounters, of which 8,883 (18.21%) developed AKI. Cohort 2 included 
29,197 transfers from the ED to the ICU, with 3,219 (11.03%) resulting in IHM. Among the ten ML methods evaluated, 
the tree-based ensemble method achieved the highest accuracy. As the number of top-ranking features increased, 
the models’ accuracy began to stabilize, while feature subset stability (considering sample variations) and inter-
method feature similarity reached optimal levels, confirming the validity of the FS framework. The integration of 
interpretative methods and expert knowledge in the final step further improved feature interpretability. The FS 
framework effectively reduced the number of features (e.g., from 380 to 35 for Cohort 1, and from 273 to 54 for Cohort 
2) without significantly affecting prediction performance (Delong test, p > 0.05).
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Background
The development of clinical outcome prediction models 
from electronic medical records (EMR) represents a sig-
nificant advancement in healthcare, providing valuable 
insights into patient management and treatment strate-
gies. This is especially crucial for conditions such as acute 
kidney injury (AKI) and in-hospital mortality (IHM), 
where timely and accurate predictions can profoundly 
impact patient outcomes. Leveraging large-scale EMR 
data for these predictions enables early detection and 
intervention, which are essential for enhancing patient 
care in acute medical settings.

AKI is a serious medical condition characterized by 
a rapid decline in kidney function, leading to elevated 
rates of morbidity and mortality [1, 2]. The Kidney Dis-
ease Improving Global Outcomes (KDIGO) guidelines 
define AKI by increases in serum creatinine (SCr) levels 
or decreases in urine output, both of which are late indi-
cators of the condition [3]. The data-driven approach that 
utilizes extensive EMR datasets offers a unique analytical 
opportunity to facilitate the early detection of AKI [4, 5], 
thereby allowing for timely interventions from specialists 
or pharmacists aimed at improving patient outcomes [6].

IHM among patients transferred from the emer-
gency department (ED) to the intensive care unit (ICU) 
is another critical outcome that stands to benefit from 
predictive modeling [7]. These patients often present in 
severe condition, and accurately predicting IHM can aid 
clinicians in making informed decisions regarding patient 
care, resource allocation, and treatment strategies [8]. 
Early identification of high-risk patients enables prompt 
interventions that may lower mortality rates and enhance 
overall healthcare efficiency [9].

Despite these potential benefits, the high dimen-
sionality of EMR data presents significant challenges 
in identifying the most informative and relevant fea-
tures for accurate prediction [10]. Including irrelevant 
or redundant variables can lead to overfitting, increased 
computational complexity, and decreased predictive 
performance [11]. Feature selection (FS) emerges as an 
effective approach to identify the most pertinent fea-
tures from high-dimensional EMR datasets. FS has 
been widely applied in disease risk prediction models 
to reduce dimensionality, enhance model performance, 
and improve interpretability [12]. Additionally, FS can 
provide valuable insights into the underlying mecha-
nisms and risk factors associated with diseases, thereby 

assisting clinicians in diagnosis, treatment, and preven-
tion strategies [13–16].

However, several common issues persist in applying FS 
methods to high-dimensional EMR data:

a) Which FS methods should be prioritized? The vast 
array of feature selection methods often complicates 
the process of making an optimal choice. These 
methods can be broadly categorized into three 
types [12]: simple filter methods based on statistical 
measures and correlation (e.g., Chi-square test), 
wrapper methods that assess feature contributions by 
training predictive models (e.g., stepwise regression), 
and embedded methods that integrate feature 
selection with model training processes (e.g., random 
forest).

b) How many top-ranked variables should be 
selected? While many FS methods provide insights 
into variable importance, previous research has 
highlighted significant discrepancies in the risk 
factor importance derived from different FS methods 
due to varying criteria [13]. However, most existing 
studies tend to overlook the stability of selected 
features influenced by sample variations and the 
similarity of features identified by multiple methods 
[17, 18].

c) Do the selected factors align with medical 
interpretation? Factors identified by FS methods 
indicate correlations with clinical outcomes but 
do not necessarily imply causation [16, 19]. Some 
studies prioritize prediction accuracy over ensuring 
that the selected features align with clinical 
interpretation [20]. Given the impracticality of 
manually filtering features in high-dimensional 
EMR data, some research has focused on developing 
transparent risk-scoring models using a limited 
number of known risk factors, often tailored to 
specific situations [21].

To address these challenges, we introduce a practical 
multi-step FS framework that combines statistical infer-
ence with expert knowledge validation. This innovative 
approach is designed to prioritize the most effective FS 
methods, determine the optimal number of top-ranked 
variables, and ensure that the selected factors are medi-
cally interpretable. By focusing on accuracy, stabil-
ity, similarity, and interpretability, key attributes that 

Conclusion The multi-step FS method developed in this study successfully reduces the dimensionality of features in 
EMR while preserving the accuracy of clinical outcome prediction. Furthermore, it improves the interpretability of risk 
factors by incorporating expert knowledge validation.

Keywords Electronic medical records, Feature selection, Machine learning, Clinical outcomes, Risk prediction, 
Interpretability
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enhance the reliability and generalizability of clinical 
outcome prediction models—our primary objectives are 
twofold: (1) to identify cost-effective and significant pre-
dictors while maintaining high predictive performance; 
and (2) to select EMR features that offer reasonable 
medical interpretability, enabling a better understanding 
of the underlying factors that contribute to clinical out-
comes. The effectiveness of this multi-step FS framework 
was validated using two de-identified EMR datasets cor-
responding to distinct clinical outcomes. By providing 
a more stable and reliable feature selection approach, 
this method has the potential to enhance the credibil-
ity and interpretability of predictive models in clinical 
applications.

Methods
Ethics
The clinical data repository utilized in this study includes 
the Medical Information Mart for Intensive Care III 
(MIMIC-III, version 1.4) [22] and the MIMIC-IV Emer-
gency Department (MIMIC-IV-ED, version 2.0) [23]. We 
obtained permission to extract data from both datasets 
(certification number: 34034170).

Study participants
Cohort 1 comprised 46,520 ICU patients across 61,051 
encounters sourced from the MIMIC-III database, cover-
ing the timeframe from 2001 to 2012. The objective was 
to predict AKI within 48 h of ICU admission, with AKI 
defined according to the KDIGO SCr criteria [24] (see 
Supplementary Table S1). Baseline SCr was determined 
using the last measurement within two days preced-
ing admission, if available, otherwise, the first measure-
ment post-admission was utilized. Exclusion criteria 
included patients younger than 18 years, those with an 
initial SCr ≥ 4  mg/dL, and individuals with a history of 
end-stage renal disease or chronic dialysis [25]. Cohort 2 
consisted of patients from the MIMIC-IV-ED database, 
which documented 447,712 ED visits from 2011 to 2019. 
The focus here was on predicting IHM for patients tran-
sitioned from the ED to the ICU. Exclusions were applied 
to patients under 18 years of age; those lacking critical 
emergency records; and individuals with illogical tem-
poral recording sequences, and patients who were not 
transferred to the ICU.

Data extraction and processing
Table 1 provides a detailed overview of patient character-
istics for both cohorts. Cohort 1 includes demographic 
information (age, gender, race), details of admission (e.g., 

Table 1 Patient characteristics used in both cohorts
Feature Category Number of 

Variables
Details/Examples

The 380 features from Cohort 1
Demographics 3 Age, Gender, Race;
Admission information 3 Admission type, Admission location, First care unit;
Vital signs 9 Heart rate, Systolic blood pressure, Diastolic blood pressure, Mean arterial pressure, Respiratory rate, Tempera-

ture, SpO2, Height, weight;
Lab tests 19 Anion gap, Albumin test, Band neutrophils test, Bicarbonate test, Bilirubin test, Creatinine test, Chloride test, 

Glucose test, Hematocrit (red blood cells) test, Hemoglobin test, Lactate test, Platelet count blood test, Potas-
sium blood test, Partial thromboplastin time (PTT), International normalized ratio (INR), Prothrombin time (PT), 
Sodium blood test, Blood urea nitrogen (BUN), White blood count (WBC);

Intervention 346 Information from Tables INPUTEVENTS and PROCEDUREVENTS, for example, medications, vasopressor, ventila-
tion, etc.

The 273 features from Cohort 2
Demographics 3 Age, Gender, Race;
Admission information 2 Insurance, Arrival transport;
Triage observations 7 Temperature, Heart rate, Respiratory Rate, SpO2, Systolic blood pressure, Diastolic blood pressure, Acuity Level;
Vital signs 6 Temperature, Heart rate, Respiratory Rate, SpO2, Systolic blood pressure, Diastolic blood pressure;
Lab tests 45 Anion gap, Albumin test, Bicarbonate test, Bilirubin test, Creatinine test, Chloride test, Glucose test etc.;
Medications 160 Grouped using the hierarchical ontology of the Enhanced Therapeutic Class (ETC), e.g., Analgesic Opioid 

Agonists, Antiemetics, Diuretics, etc.;
Diagnosis* 48 Defined by the International Statistical Classification of Diseases and Related Health Problems, 9th and 10th 

Revision (ICD-9 and ICD-10), e.g., Gastrointestinal Hemorrhage, Pneumonia, Shortness of Breath, etc.;
Time-Related 
information

2 EDLOS (the time from arrival to departure from the ED), EDBT (the time spent in the ED waiting for an inpa-
tient bed after admission decision);

Notes: In Cohort 1, some tables that do not have accurate timestamps, such as DIAGNOSES_ICD, CPTEVENTS, DRGCODES, PROCEDURES_ICD, CAREGIVERS, and 
PRESCRIPTIONS, were not used in the analysis. Additionally, NOTEEVENTS containing unstructured data was also excluded

*Diagnosis codes represent only the first three digits of ICD codes, as the dataset is specific to ED patients
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admission type and location), vital signs, laboratory tests, 
and interventions derived from the “INPUTEVENTS” 
and “PROCEDUREEVENTS” tables. The most recent 
values of vital signs and laboratory tests recorded prior 
to ICU admission were employed. In Cohort 2, patient 
characteristics encompass demographics, specifics of 
admission (such as insurance and arrival mode), triage 
observations, vital signs, laboratory tests, medications 
organized by Enhanced Therapeutic Class (ETC), and 
diagnoses coded using ICD-9 and ICD-10 classifications. 
Time-related information, including emergency depart-
ment length of stay (EDLOS) and boarding time (EDBT), 
were also extracted and computed. For vital signs and 
laboratory values, the most recent measurements before 
the patient’s transfer to the ICU were used. During the 
data processing phase, essential procedures such as unit 
conversion, outlier handling, and aggregation of seman-
tically similar features were conducted to minimize 
missing data and enhance the overall robustness of the 
analysis [22]. The median value was utilized to impute 
missing data when training traditional models (KNN, 
NB, LR, and DTC), whereas no imputation was applied 
for tree-based ensemble models (RF, XGBoost, Light-
GBM, and CatBoost) because tree-based methods inher-
ently handle missing values by splitting on available data, 
allowing them to make use of the information from other 
features without the need for explicit imputation.

Multi-step feature selection framework
To identify an optimal subset of features that prioritizes 
accuracy, stability, and interpretability, we developed a 
multi-step FS framework that integrates data-driven sta-
tistical inference through expert knowledge verification 
(see Fig. 1). The process is detailed below:

Step 1: Univariate feature selection. In this initial 
step, we independently assess the correlation between 
each feature xi (1 ≤ i ≤ N) and the target variable y
. Features demonstrating a significant statistical correla-
tion with the target variable (e.g., p < 0.05) are selected 
based on specific evaluation metrics, such as t-test, Chi-
square test, and Wilcoxon rank-sum test. This helps elim-
inate many redundant variables.

Step 2: Multivariate feature selection. This step 
focuses on selecting the most predictive subset of fea-
tures by capturing potential interactions and dependen-
cies among them. To ensure consistent selection results, 
we conducted additional analyses to evaluate the stability 
of selection outcomes across sample variations [26], and 
the similarity of feature importance rankings generated 
by different FS methods [27].

First, we identified suitable embedded FS methods that 
effectively combine feature selection with model train-
ing processes. Selecting an appropriate classifier model 
with strong discriminatory power for the current data 

and research problem is essential. Thus, we compared 
ten ML methods, including Logistic Regression (LR), 
Support Vector Machines (SVM), K-Nearest Neighbors 
(KNN), Decision Trees Classifier (DTC), Naive Bayes 
(NB), Multi-Layer Perceptron (MLP), Random Forest 
(RF), XGBoost [28], Catboost [29], and LightGBM [30].

Subsequently, these ML models, along with post-hoc 
interpretation techniques such as SHAP [31], were uti-
lized to derive inherent feature importance. A forward FS 
strategy [32] was employed to identify the top K ranked 
features 

{
X[1:top1], X[1:top2], . . . , X[1:topK]

}
 (where 

1 ≤ K ≤ N ). The value of K was determined by observ-
ing the stability of the predicted performance curve as 
the number of top-ranking features increases.

We then characterized the stability and similarity trend 
of the selected top K features. The Similarity Index [27] 
can be defined as

 
Similarity IndexMi,Mj

= 1
h

∑ h

n=1

∣∣∣S(i)
n ∩ S

(j)
n

∣∣∣
K

, (1)

where h denotes the number of cross-validation folds 
(e.g., h=10 for ten-fold cross-validation), S

(i)
n  and S

(j)
n  

are the corresponding subsets of top K ranked features 
obtained by the different methods Mi and Mj  in the n
-th fold, respectively. The average similarity index for 
the method Mi across all other methods is calculated 
as: 1

M−1
∑ M

j=1,j ̸= iSimilarity IndexMi,Mj . This formula 
averages the similarity indices between method Mi and 
each other method Mj  (where j encompasses all meth-
ods except i).

The Stability Index is computed as follows:

 
Stability Index = 2

h(h − 1)
∑ (h−1)

(i=1)

∑
h
(j=i+1)IC(Si, Sj), (2)

where IC (Si, Sj) = |Si∩ Sj |
|Si∪ Sj |  stands for the consistency 

index between two feature subsets [26], | · | denotes car-
dinality, ‘ ∩ ’denotes intersection, and ‘ ∪ ’denotes union 
of sets.

Once the measurement criteria for accuracy (as repre-
sented by AUROC), similarity, and stability, were estab-
lished, we determined the optimal K values for each 
criterion by applying the elbow method to their respective 
curves, identifying points at which performance improve-
ments plateau. We derived Kaccuracy from the AUROC 
curve, Ksimilarity from the similarity index curve, and 
Kstability from the stability index curve. Ultimately, 
Koptimal = max (Kaccuracy, Ksimilarity, Kstability). This 
selection ensures that all three metrics reach stable and 
optimal levels, facilitating a robust and reliable feature 
selection process.
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Fig. 1 Overview of the multi-step FS framework for clinical risk assessment
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Finally, the data-driven method aids not only in the 
interpretability analysis of risk features (e.g., significance 
or weight), but also filters out a feasible subset of fea-
tures for expert knowledge validation. This systematic 

selection process enables the identification of a reliable 
and stable predictor subset (i.e., top K features) that sig-
nificantly impacts the target variable.

Step 3: Medical interpretability verification. Consid-
ering the complexity of medical features, ensuring medi-
cal interpretability is essential during the final screening 
of the important feature subsets identified through data-
driven methods. The initial two steps provide interpret-
ability analysis (e.g., SHAP value or feature weights) of 
significant risk features while filtering out a limited num-
ber of features that facilitate expert knowledge validation. 
In this study, we primarily verified the correlation and 
rationality of the selected features by referring existing 
medical literature and consulting two experienced clini-
cians for evaluation.

Statistical analysis
Population characteristics were presented as median 
[IQR] for continuous variables and as proportions for 
categorical variables. The t-test was employed for nor-
mally distributed continuous variables, while the Wil-
coxon rank sum test was used for non-parametric 
continuous variables, and the Chi-square test assessed 
categorical variables. For model development, the dataset 
was divided into 80% training set and 20% test set using 
stratified random sampling; at the training stage, we used 
10-fold cross-validation to evaluate the model’s perfor-
mance. Discrimination performance was evaluated using 
the area under the receiver operating characteristic curve 
(AUROC) and the area under the precision-recall curve 
(AUPRC). Individual class metrics were assessed using 
precision, recall, and F1 score. The optimal classification 
threshold was determined using the Youden index [33]. 
Calibration was assessed via the Brier score and calibra-
tion chart, using observed and expected event rates per 
deciles as specified by the Hosmer-Lemeshow C statistic. 
Delong’s test was applied to calculate the statistical sig-
nificance of differences between two or more ROC curves 
[34]. Augmented Dickey-Fuller (ADF) test [35] was uti-
lized to verify when the predictive performance of the 
top K feature model began to plateau. Two-tailed p < 0.05 
denoted statistical significance for all comparisons. 95% 
confidence interval (CI) was calculated using bootstrap-
ping (n = 1,000). Data extraction was conducted using 
PostgreSQL, while data processing and analysis were 
performed using Python 3.7 with open-source packages 
(e.g., ‘lightgbm’ and ‘shap’) and scikit-learn library.

Results
Characteristics of two study cohorts
Table 2 presents the demographics and admission infor-
mation for the two cohorts after applying the exclusion 
criteria. Cohort 1 included 48,780 patient encounters, 
with an AKI incidence of 18.21%. Notably, AKI was more 

Table 2 Demographics and admission information of two 
cohorts
Characteristics Negative Positive P 

values
In Cohort 1, n (%) 39,897 

(81.79)
8,883 
(18.21)

Age, year, median [Q1, Q3] 65 [52, 78] 69 [58, 79] <0.001
Gender, male, n (%) 22,090(55.37) 5314(59.82) < 0.001
Race, n (%) < 0.001
 Unknown 4126(10.34) 1147(12.91)
 White 29,161(73.09) 6357(71.56)
 Black 3232(8.1) 707(7.96)
 Hispanic 1365(3.42) 235(2.65)
 Asian 916(2.3) 207(2.33)
 Other 1097(2.75) 230(2.59)
Type of hospital admission, n (%) < 0.001
 Elective 5473(13.72) 1726(19.43)
 Urgent 976(2.45) 269(3.03)
 Emergency 33,448(83.84) 6888(77.54)
Type of ICU when first admitted, n (%) < 0.001
 Coronary Care Unit 5659(14.18) 1394(15.69)
 Cardiac Surgery Recovery 
Unit

6032(15.12) 2889(32.52)

 Medical Intensive Care Unit 15,855(39.74) 2693(30.32)
 Surgical Intensive Care Unit 6970(17.47) 1171(13.18)
 Trauma/Surgical Intensive 
Care Unit

5381(13.49) 736(8.29)

In Cohort 2, n (%) 25,978 
(88.97)

3,219 
(11.03)

Age, year, median [Q1, Q3] 67 [54, 79] 74 [62, 84] < 0.001
Gender, male, n (%) 13,950 (53.7) 1715 (53.3) 0.664
Race, n (%) < 0.001
 Unknown 1671 (6.4) 378 (11.7)
 White 17,247 (66.4) 2100 (65.2)
 Black 3835 (14.8) 378 (11.7)
 Hispanic 1122 (4.3) 99 (3.1)
 Asian 916 (3.5) 137 (4.3)
 Other 1187 (4.6) 127 (3.9)
Type of arrival transport, n (%) < 0.001
 Unknown 3106 (11.96) 550 (17.09)
 Ambulance 16,100 (61.98) 2057 (63.90)
 Walk-in 6397 (24.62) 550 (17.09)
 Helicopter 319 (1.23) 54 (1.68)
 Other 56 (0.22) 8 (0.25)
Insurance, Medicare or Medic-
aid, n (%)

13,792 (53.09) 1940 (60.27) < 0.001

Abbreviations: Q1, first quartile (25th percentile); Q3, third quartile (75th 
percentile); Patient characteristics were compared between the positive 
and negative cases in both the AKI and IHM cohorts using the t-test for 
normally distributed continuous variables, the Wilcoxon rank-sum test for 
non-parametric continuous variables, and the Chi-square test for categorical 
variables.
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prevalent among male patients than female patients 
(p < 0.001) and predominantly affected older individuals, 
with a median age of 69 years [IQR: 58–79] compared to 
65 years [IQR: 52–78] for non-AKI patients (p < 0.001). 
Additionally, patients initially admitted to the Cardiac 
Surgery Recovery Unit (CSRU) showed a significantly 
higher occurrence of AKI (32.52%) relative to those with-
out AKI (15.12%; p < 0.001). Furthermore, the median 
creatinine levels recorded in the last test before the onset 
of AKI were significantly elevated in the AKI group, mea-
suring 1.20  mg/dL [IQR: 0.90–1.80], in contrast to the 
non-AKI group, which had a median level of 1.00  mg/
dL [IQR: 0.70–1.30] (p < 0.001) (see Supplementary Table 
S2).

Cohort 2 comprised 29,197 ICU admissions from the 
ED, with a mortality rate of 11.03%. Deceased patients 
were generally older than survivors, with a median age of 
74 years [IQR: 62–84] compared to 67 years [IQR: 54–79] 
for those who survived (p < 0.001). Moreover, there were 
distinct differences in racial distribution and modes of 
arrival among deceased and surviving patients (p < 0.001), 
although no significant gender disparity was observed 
(p = 0.664). Insurance coverage by Medicare or Medicaid 
was more prevalent among deceased patients, with rates 
of 60.27% compared to 53.09% for survivors (p < 0.001). 
Additionally, deceased patients exhibited lower median 
albumin levels (3.2  g/dL [IQR: 2.6–3.7]) in contrast to 
survivors, who had median level of 3.7  g/dL [IQR: 3.2–
4.1] (p < 0.001) (see Supplementary Table S2).

Comparison of accuracy, similarity and stability
Regarding the predictive performance of the 10 ML 
models (see Fig.  2), the tree-based ensemble models, 
including LightGBM, XGBoost, and CatBoost, exhibited 
superior results compared to other models, with Light-
GBM achieving the best overall performance. Specifi-
cally, the AUROC (95% CI) achieved by LR, SVM, KNN, 
DTC, NB, MLP, RF, XGBoost, CatBoost, and LightGBM 
in Cohort 1 were 0.671 (0.665–0.677), 0.560 (0.553–
0.566), 0.640 (0.633–0.646), 0.683 (0.677–0.690), 0.645 
(0.639–0.652), 0.677 (0.671–0.684), 0.722 (0.715–0.727), 
0.735 (0.729–0.741), 0.730 (0.724–0.736), and 0.738 
(0.732–0.744), respectively. In Cohort 2, the AUROC 
(95% CI) achieved by LR, SVM, KNN, DTC, NB, MLP, 
RF, XGBoost, CatBoost, and LightGBM were 0.770 
(0.762–0.779), 0.640 (0.630–0.651), 0.683 (0.674–0.692), 
0.702 (0.692–0.711), 0.706 (0.696–0.716), 0.716 (0.707–
0.726), 0.774 (0.766–0.783), 0.796 (0.789–0.804), 0.798 
(0.791–0.806), and 0.800 (0.793–0.808), respectively.

Figure  3 illustrates the variability in feature impor-
tance for outcomes prediction across the two cohorts, 
influenced by discrepancies in methods and samples. 
The figure clearly demonstrates substantial differences 
in the ranking of feature importance obtained through 

various FS methods. Notably, in Fig.  3(a), the XGBoost 
model identifies the “Hematocrit test” as the most criti-
cal feature, which contrasts significantly with findings 
from other methods. This variation raises the question of 
which feature importance ranking method is superior—
whether the model’s inherent ranking or the ranking 
derived from the combination with SHAP method. To 
address this, we selected three high-precision ML models 
(i.e., LightGBM, XGBoost and Catboost), and compared 
the results of six different FS approaches (i.e., the three 
models’ own rankings and their rankings combined with 
the SHAP method).

Figure  4(a-d) depict the trend of feature importance 
and the prediction performance in the two cohorts as 
the number of top-ranking features increases. The graphs 
reveal an exponential decline in feature importance, 
while the performance curve stabilizes after reaching a 
certain value of K, indicating that adding more features 
beyond this point does not significantly improve predic-
tion accuracy. Figure 4(e-h) demonstrate noticeable fluc-
tuations in both similarity and stability of the important 
features identified by different FS methods when only 
a limited number are selected. However, once a certain 
threshold is surpassed, these features exhibit reasonable 
levels of stability and similarity. These findings suggest 
that selecting an optimal number of top-ranked fea-
tures can help reduce discrepancies among different FS 
methods. Supplementary Figures S1 and S2 present the 
accuracy (AUROC), similarity, and stability of the six FS 
methods at various top K values, indicating where each 
metric reaches stability. Notably, accuracy stabilizes at 
a lower value of K compared to similarity and stability, 
which do not achieve optimal levels at this stage. Conse-
quently, we selected the maximum K value at which all 
three metrics are stable for the FS step 2 (see Supplemen-
tary Table S3).

Effectiveness of the multi-step FS framework
In the first step of the FS process, univariate correlation 
tests (i.e., p < 0.05) were employed to screen features, 
resulting in the selection of 52 features from a total of 380 
in Cohort 1 and 168 features from 273 in Cohort 2. In FS 
step 2, the performance curves (including accuracy, simi-
larity and stability) began to stabilize at a certain num-
ber of top K features. This analysis utilized the LightGBM 
model combined with SHAP, leading to the selection of 
35 features for Cohort 1 and 79 features for Cohort 2. In 
FS step 3, final selections were made based on literature, 
expert opinions, and the clarity of the features, yielding 
35 predictors for Cohort 1 predictors (see Supplemen-
tary Table S5) and 54 predictors for Cohort 2 (see Sup-
plementary Table S6). This approach enhances both the 
clarity and clinical rationale for each feature. Figure 5(g) 
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illustrates the variation in feature count at each stage of 
the selection process.

To assess the effectiveness of the multi-step FS frame-
work, we compared the performance of four outcome 
prediction models developed at different FS stages: BFSM 
(before-FS model), AFSM-1 (after-FS-step-1 model), 
AFSM-2 (after-FS-step-2 model), and AFSM-3 (after-FS-
step-3 model). Figure 5 presents the ROC curves, preci-
sion-recall curves, calibration plots, and decision curves 
for these models across both cohorts. The results indicate 
that the FS framework effectively reduced feature dimen-
sionality while maintaining the predictive performance of 

the models. For instance, in Cohort 2, the AUROC values 
for BFSM and AFSM-3 were 0.800 (95% CI, 0.784–0.817) 
and 0.804 (95% CI, 0.789–0.821) (p = 0.09, Delong’s test), 
respectively. Furthermore, the prediction performances 
of the four models in Cohort 1 did not show significant 
differences, averaging around 0.744 (95% CI, 0.731–
0.756) (see Supplementary Figure S3). To evaluate the 
performance of individual class metrics in our predictive 
models, we calculated precision, recall, and F1 score, with 
the optimal classification threshold determined using the 
Youden Index (see Supplementary Table S4).

Fig. 2 The receiver operating characteristic (ROC) curves and precision-recall (PR) curves of 10 machine learning methods. (LR, Logistic Regression; SVM, 
Support Vector Machines; KNN, K-Nearest Neighbors; DTC, Decision Trees Classifier; NB, Naive Bayes; MLP, Multi-Layer Perceptron; RF, Random Forest; 
XGBoost, eXtreme Gradient Boosting; Catboost Categorical Boosting; LightGBM, Light Gradient Boosting Machine)
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Interpretability of clinical outcome predictions
Supplementary Figure S4 highlights the top 15 predic-
tors for both cohorts, while Fig.  6 shows the influence 
of the most significant predictors on the predicted out-
comes. In Cohort 1, focused on predicting AKI, higher 
creatinine levels are associated with an increased risk of 

AKI (Fig.  6a). Admission to the cardiac surgery recov-
ery unit (CSRU) is associated with the highest AKI risk 
(Fig. 6b), and advancing age significantly raises the AKI 
risk, especially for individuals over 60, underscoring 
the vulnerability of older adults (Fig.  6c). Interestingly, 
glucose levels demonstrate a protective effect within a 

Fig. 3 Comparison of feature importance rankings across different feature selection methods (a-b) and sample variations (c-d). (The diversity of samples 
arises from the re-randomization of training and testing datasets, which introduces variability and helps assess the stability of feature importance rankings)
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moderate range, but when they fall below or exceed this 
range, they are associated with an increased risk (Fig. 6d). 
In Cohort 2, which evaluates IHM, both increasing age 
and elevated red cell distribution width (RDW) show a 

strong correlation with higher mortality risks (Fig. 6e and 
f ). Additionally, lower levels of lymphocytes and albumin 
are associated with increased mortality risks, highlight-
ing their critical prognostic importance (Fig. 6g and h).

Fig. 4 Trends in feature importance (a-b), prediction performance (c-d), similarity among selected features (e-f), and stability of top-ranking features (g-
h) across increasing numbers of features in the two cohorts
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Fig. 5 Validation of the effectiveness of multi-step feature selection, including receiver operating characteristic curves (a, d), precision-recall curves (b, e), 
and calibration plots (c, f), feature number (g), and decision curves (h, i) based on different feature selection steps. (FS, feature selection; BFSM, before-FS 
model; AFSM-1, after-FS-step-1 model; AFSM-2, after-FS-step-2 model; AFSM-3, after-FS-step-3 model)
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Discussion
Identifying important variables is a critical step in devel-
oping accurate prediction models using high-dimen-
sional EMR data [13, 36]. Minor variations in training 
samples or differences in criteria for assessing feature 
importance can lead to divergent feature rankings and 
sets, complicating decision-making and reducing clini-
cians’ trust in machine learning models [37, 38]. In this 

study, we developed and validated a comprehensive 
multi-step FS framework that not only achieves high pre-
dictive accuracy but also ensures the stability and clinical 
interpretability of the selected feature sets. By incorpo-
rating interpretability methods and validating findings 
with expert knowledge, we gained valuable insights 
into the underlying factors influencing risk prediction, 

Fig. 6 Effect of varying individual feature values. (These plots show the changes in predicted outcomes across all values of a given feature. The olive 
line or red dot represents the average predicted outcome for all samples with a given feature value, while the light green area shows the correspond-
ing standard deviation. The orange bars depict the distribution of the feature values. Individuals older than 89 are uniformly classified in the 91-year-old 
group. CCS, coronary care unit; CSRU, cardiac surgery recovery unit; MICU, medical intensive care unit; SICU, surgical intensive care unit; TSICU, trauma/
surgical intensive care unit)
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making the selected features more understandable and 
trustworthy for researchers and clinicians.

The multi-step FS framework employed in this study is 
both reasonable and practical. In Step 1, we implemented 
univariate FS methods to filter out a substantial amount 
of redundant EMR information, a widely accepted 
approach [13]; in Step 2, we applied advanced multivari-
ate FS techniques to identify the top K features based 
on accuracy, similarity, and stability, thereby enhancing 
prediction reliability. This stage further reduced dimen-
sionality, enabling effective subsequent expert validation 
and screening. In Step 3, by applying artificial intelligence 
interpretability methods and involving clinicians, we suc-
cessfully eliminated ambiguously defined features and 
unexplained variables that could arise from confusion or 
statistical artifacts. This collaborative approach enhanced 
the medical interpretation of the final set of selected fac-
tors, thereby increasing the likelihood of clinician trust 
and utilization of the predictive model.

To ensure a robust and reliable approach for select-
ing the most relevant and dependable feature subset, we 
employed efficient embedded FS methods that combine 
feature selection with model training processes and con-
ducted comparative analyses focusing on accuracy, simi-
larity, and stability in Step 2. It was imperative to select 
a classifier model that demonstrated excellent discrimi-
nation for our data and specific problem; we evaluated 
ten machine learning methods and found that tree-based 
ensemble models exhibited superior predictive perfor-
mance (see Fig.  2). Although noticeable fluctuations 
existed in the similarity between the important features 
identified by different FS methods and in the stability of 
these features across varying samples, selecting an appro-
priate number of top-ranked features mitigated these 
discrepancies (see Fig.  4). In two cohorts, predictive 
accuracy stabilized at a lower top K value compared to 
similarity and stability. This suggests that including more 
features can enhance interpretability without sacrificing 
performance. We employed a conservative strategy by 
selecting the maximum top K value where all three met-
rics remained stable (see Supplementary Figure S1, S2 
and Table S3).

To address this trade-off, we incorporated expert 
knowledge verification in Step 3. The small number of 
important feature subsets screened in the first two steps 
allows for effective final expert review. Through assess-
ment by clinical experts and consideration of existing 
medical evidence, we optimized the feature set to achieve 
a balance between feature quantity and interpretability. 
Involving clinical experts enabled us to refine the feature 
set to include variables that were both statistically sig-
nificant and relevant to clinical practice. Experts evalu-
ated the selected features for clinical importance and 
removed those lacking relevance or deemed redundant. 

This process reduced the total number of features while 
maintaining or enhancing interpretability and predictive 
performance (see Supplementary Table S6).

Most of the risk factors identified aligned with estab-
lished clinical knowledge and literature (see Supplemen-
tary Tables S5 and S6). For instance, in predicting AKI 
in Cohort 1, age emerged as a significant factor due to 
reduced kidney reserve in older individuals [39], while 
laboratory tests such as albumin and bilirubin levels 
indicated liver function issues known to interact with 
kidney function [40]. Cardiovascular measurements, 
including heart rate and blood pressure, were also criti-
cal due to their direct impact on renal health. It is impor-
tant to note that factors selected through data-driven 
methods have strong predictive power but are not nec-
essarily direct causal triggers [19]. For example, “Race” 
frequently appears as a strong predictor in healthcare 
models, reflecting underlying demographic, social, and 
environmental factors rather than being a direct cause of 
health outcomes [15]. Similarly, “Med_2747 [Antihyper-
lipidemic—HMG CoA Reductase Inhibitors (statins)]” is 
connected to hospitalization outcomes primarily due to 
pre-existing cardiovascular conditions, rather than being 
a direct cause hospitalization or mortality [41].

It is essential to acknowledge that, due to the complex-
ity of medical events and the cumbersome nature of EMR 
data, the features selected through data-driven methods 
for high-risk prediction may not always be perfect. For 
example, some ambiguous or poorly defined features, 
such as “Med_320 [Antitussives - Non-Opioid]” may 
be selected by data-driven methods, but experts might 
remove them due to broad variability in ingredients and 
effects, complicating consistent impact assessment [42]. 
Additionally, data-driven methods may not capture all 
relevant risk factors accurately, and issues such as missing 
data and biases can undermine their reliability [43]. To 
overcome these limitations, it is crucial to complement 
data-driven approaches with expert knowledge validation 
[44]. Involving healthcare professionals and subject mat-
ter experts helps incorporate contextual understanding 
and ensures that the selected features are meaningful.

Interpretability in our framework encompasses three 
key aspects: (1) A stable and consistent feature set 
enhances clinical interpretability by providing reliable 
and understandable predictors [37, 38]. (2) Ensuring 
that selected features are consistent with existing medi-
cal evidence and manifest clear medical significance 
helps reduce biases inherent in purely data-driven meth-
ods, thereby enhancing the model’s clinical validity and 
trustworthiness (see Supplementary Tables S5 and S6). 
(3) Utilizing SHAP values provided additional interpret-
ability by quantifying each feature’s contribution to the 
model’s predictions (see Fig. 5 and Supplementary Figure 
S4). This approach aligns with high standards required 
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in the medical field for model transparency, enabling cli-
nicians to understand how individual features influence 
outcomes, which ultimately improves the credibility and 
utility of machine learning models in healthcare.

There are several limitations to our study. First, it 
was validated with only two cohorts, highlighting the 
need for additional testing across a wider range of clini-
cal outcomes in future research. However, the diversity 
represented by these cohorts suggests the generalizabil-
ity of our FS framework. Second, not all available EMR 
variables were utilized due to the absence of detailed 
timestamps for certain data categories, such as diagno-
sis information and surgical procedures. Including more 
comprehensive feature data could potentially improve 
prediction performance, although it is unlikely to alter 
the primary conclusions of this study. Third, our analysis 
was restricted to tabular-style data, and we observed that 
tree-based ensemble methods (such as LightGBM) out-
performed standard deep neural networks, which aligns 
with previous research findings [45]. Finally, the knowl-
edge validation of AKI risk factors in Cohort 1 was con-
ducted by two doctors only; expanding the expert panel 
would enhance the reliability of our findings. To mitigate 
potential individual biases, we supplemented our conclu-
sions with a comprehensive literature review. For IHM in 
Cohort 2, validation was based solely on literature, incor-
porating expert evaluations could further strengthen the 
robustness of the results.

Conclusions
This study presents an effective multi-step FS frame-
work that integrates data-driven statistical inference 
with validation grounded in clinical domain knowledge. 
The effectiveness of this framework was validated using 
two large EMR datasets, illustrating its capability to yield 
consistent results across diverse scenarios. This frame-
work enhances feature selection reliability and enables 
more accurate analysis in clinical outcome predictions. 
Our findings demonstrate its potential to advance clini-
cal decision support systems and lay the groundwork for 
developing more reliable healthcare prediction models.
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