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Abstract 

This study aims at exploring a general and adaptive control strategy to confront the rapid evolution of an emerging 
infectious disease (‘Disease X’), drawing lessons from the management of COVID-19 in China. We employ a dynamic 
model incorporating age structures and vaccination statuses, which is calibrated using epidemic data. We therefore 
estimate the cumulative infection rate (CIR) during the first epidemic wave of Omicron variant after China relaxed 
its zero-COVID policy to be 82.9% (95% CI: 82.3%, 83.5%), with a case fatality rate (CFR) of 0.25% (95% CI: 0.248%, 
0.253%). We further show that if the zero-COVID policy had been eased in January 2022, the CIR and CFR would have 
decreased to 81.64% and 0.205%, respectively, due to a higher level of immunity from vaccination. However, if we 
ease the zero-COVID policy during the circulation of Delta variant from June 2021, the CIR would decrease to 74.06% 
while the CFR would significantly increase to 1.065%. Therefore, in the face of a ‘Disease X’, the adaptive strategies 
should be guided by multiple factors, the ‘zero-COVID-like’ policy could be a feasible and effective way for the control 
of a variant with relative low transmissibility. However, we should ease the strategy as the virus matures into a new 
variant with much higher transmissibility, particularly when the population is at a high level of immunity.
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Main
Throughout human history, there have been lots of alarm-
ing epidemics, such as the Plague of Justinian and the 
Black Death, all of which resulted in enormous losses 
and fatalities [1, 2]. While human public health standards 
advance with the development of society, the terrifying 

specter of devastating pandemics has never truly departed 
from humanity. The severe acute respiratory syndrome 
(SARS) that emerged in 2002 was caused by the SARS 
coronavirus, resulted in approximately 8,000 cases and 
774 deaths [3, 4]. The H1N1 influenza pandemic in 2009, 
also known as swine flu, was caused by the H1N1 influ-
enza virus, also caused approximately 200,000 deaths 
worldwide [5–7]. The Middle East Respiratory Syndrome 
(MERS), which emerged in 2012, is caused by the Middle 
East Respiratory Syndrome Coronavirus (MERS-CoV), 
first discovered in Saudi Arabia. It has continued to cause 
sporadic cases and outbreaks, and remains widely studied 
[8, 9]. The 2014 West African Ebola epidemic, while not a 
traditional pandemic, resulted in more than 28,000 cases 
and 11,000 deaths. It was classified by the World Health 
Organization as one of the most serious viruses in terms 
of its high fatality rate [10–12]. Lastly, there is COVID-19, 
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which was discovered at the end of 2019 and has rapidly 
spread worldwide. Its impact on the world remains pro-
found and enduring [13–17].

In recent times, an escalating awareness has emerged 
that a more perilous pandemic than COVID-19 may 
swiftly arise in the near future. The World Health Organi-
zation (WHO) refers to this potential threat as ‘Disease 
X’ [18]. ‘Disease X’ does not represent a specific exist-
ing ailment but symbolizes a novel, unknown disease to 
humanity. When it initially emerges, little is known about 
its characteristics. Whether it is lethal, highly contagious, 
or poses a threat to human lifestyles remains unclear. 
However, an increasing number of people are reaching a 
consensus: COVID-19 may be the first instance of ‘Dis-
ease X’, and the next ONE might already be circulating as 
a respiratory virus in animals [19–22]. It is both urgent 
and critical to prepare for the management of emerging 
infectious diseases. Developing a general and adaptive 
strategy based on our experience with existing epidemics 
would be a feasible and effective approach.

During the 4  years of the COVID-19 pandemic, we 
have developed a global toolkit of non-pharmaceutical 
interventions (NPIs), including wearing masks, social 
distancing, personal hygiene, testing, contact tracing, 
and isolating infected individuals [23]. Equipped with the 
NPI toolkit, the key question is how to design a proper 
or an improved strategy that controls the disease’s spread 
in the most cost-effective manner [24–37]. To be con-
cluded, during the COVID-19 pandemic, there are two 
distinguished strategies adapted by different countries. 
Many countries implemented strict control measures 
during the early phase of the pandemic, and began to 
relax the strict policies to restore socio-economic activi-
ties [38–40]. And the focus of the strategy is to flatten the 
epidemic curve instead of clearing the case using NPIs. 
In contrast, China has implemented strict control policy 
(i.e., zero-COVID policy) for a long period till the end of 
2022, where the original/Alpha variant and the Delta var-
iant were circulating. The target of zero-COVID policy is 
to clear the case of each local outbreak in a short period, 
which has been demonstrated to be a feasible way [14, 
27, 29, 33, 35, 41–46]. Some concise and useful mathe-
matical models have been established to discuss China’s 
strict social restriction measures. For example, [43] esti-
mated the 95% credible interval of epidemic parameters 
in China using data from January 21 to August 7, 2020. 
They also demonstrated the success and effectiveness of 
China’s strict measures. However, after the emergence of 
the Omicron variant, localized outbreaks in places like 
Shanghai, China, have indicated that even stringent inter-
vention measures may reach their effectiveness limit [47–
58]. Consequently, the Chinese government announced 
major changes to the country’s policies on COVID-19 

(i.e., the ease of zero-COVID policy). However, there is 
still a lack of systematic quantitative evaluation of the 
COVID-19 control strategies used in China, including 
policy shifts and their optimization. Such evaluation is 
essential for providing robust qualitative support for the 
design of general and adaptive control strategies for an 
emerging infectious disease. Incorporating insights into 
this aspect falls within the scope of this study.

In conclusion, China, one of the world’s most populous 
countries, followed a zero-COVID policy for three years 
until the end of 2022. With a national vaccination rate 
of 92.48% among its 1.4 billion people [59], China then 
shifted from strict control measures to more normalized 
interventions. Therefore, China’s approach to control-
ling COVID-19 can serve as a foundational case study for 
developing a general and adaptive strategy for respond-
ing to rapidly evolving diseases like Disease X. The main 
purpose of this study is to generalize an improved and 
adaptive strategy from the control of the COVID-19 
pandemic in China, by using the compartment model to 
conduct the retrospective analysis during the circulation 
of different variants of SARS-CoV-2. The key aspects for 
searching improved control strategies include if we can 
try to relax the strict control interventions at the much 
earlier phase (such as since the emerges of the Delta vari-
ant)? And which time would be the more proper for the 
ease of the zero-COVID policy when we face the Omi-
cron variant with such high transmissibility?

Results
We established a mechanistic dynamic model for the 
transmission of COIVD-19 in the entire population of 
China. The model is a modified version of the classical 
SEIR model, designed to specifically reflect the entire 
process of epidemic transmission [60–62]. The proposed 
model includes age-based structures and immunity lev-
els for different vaccine doses, covering susceptibility 
from the latent phase through mild to severe conditions, 
and including isolation or hospitalization (illustrated in 
Fig. 1(a, b), detailed in the Methods section).

Model calibration and epidemic projection
The model fitting results for the epidemic data during 
the time window before the announcement of the “20 
Measures” are shown in Fig.  2(b). This announcement 
marked the end of the dynamic zero-COVID policy in 
China. It is important to note that the “20 Measures” 
relaxed policies on case isolation, mass PCR testing, con-
tact tracing, social distancing, and travel restrictions. The 
“10 Measures” released on December 7, further relaxed 
these policies. Therefore, the control measures changed 
progressively rather than disappearing all at once. The 
relaxation of mass PCR testing policies directly led to 
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inaccuracies in the reported number of new cases—these 
numbers were certainly lower than the actual number 
of new infections. Therefore, data after November 10 
were not fitted. The estimated values of the key epidemic 
parameters are presented in Supplementary Informa-
tion Table S1. Additionally, for some parameters directly 
assumed, we also conducted uncertainty and sensitiv-
ity analyses. Please refer to the supplementary informa-
tion, Figure S2, for details. We then project the epidemic 
waves of the Omicron variant after the adjustment of the 
dynamic zero-COVID policy. Note that, as we only con-
sidered three age groups, we firstly adjusted the contact 
matrix obtained in [63] to our setting (see the details in 
method section). We assume that the easing of the strict 
control strategy results in the free transmission of the 
virus, hence deduce the transmission rate by setting the 
reproduction number as 8.2 for Omicron variant [64]. 

Consequently, we show the subsequent epidemic waves 
in Fig. 2(a) after the adjustment of the zero-COVID pol-
icy. The projection shows that the first epidemic waves 
reach the peak at December 24, 2022.

Further, we show the daily new infections, daily new 
incidence of severe illness and death in the three age 
groups in Fig.  2(d, f, h), respectively. And the statis-
tic results of the key epidemic indexes in the three age 
groups and the whole population are concluded in 
Table 1. Figure 2 and Table 1 show that the peak of daily 
new infections reached 46.63 million. By the end of Janu-
ary 2023, about 82.9% ( 95%CI : 82.3%, 83.5% ) of China’s 
population had been infected, representing the cumula-
tive infection rate of the first epidemic wave. This is con-
sistent with the results of cumulative infection rate (CIR) 
from reference [65]. In addition, we can find that the 
peak number of daily incidences of severe infections was 

Fig. 1  Model framework schematic. a Changes in population immunity levels. The immunity level ranks from low to high as low-level immunity, 
basic immunity and boosted immunity. Immunity enhancement through vaccination is considered from low immunity level to high immunity level 
and immunity wanning is considered from high immunity level to low immunity level. Specifically, for individuals who have never been infected, 
immunity can only be obtained through vaccination and for individuals who have been infected, natural immunity are acquired at the boosted 
immunity level. b Flowchart describing COVID-19 transmission, immunity waning considering primary and reinfection
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projected as 270,435 ( 95%CI : 248722, 294635 ), which 
would result in high pressure on medical resources. To 
specific, incidence of the elderly ranked as the highest, 
aligning with the observations. This contrast becomes 

even more pronounced in the case of fatalities. Similarly, 
the overall CFR during the first epidemic wave in China 
was estimated at 0.25%(95%CI : 0.248%, 0.253%) , with an 
estimated cumulative death toll of around 2.93 million 

Fig. 2  Model calibration and simulations. a Daily new infections from November 1, 2022, to the end of June 2023. The lighter shaded 
portion represents 95% confidence interval. b Effective reproduction number Re(t) . The shaded area represents a 10% perturbation. It drops 
below the threshold of 1 on December 29, 2022. c The early-stage epidemic curve of the initial impact wave. Three durations are divided according 
to the policies enforced in China. Data points represent actual data, the curve reflects the model’s fitting results, and the shaded area represents 
a 10% data perturbation. d, f, h. Daily new infection curves (d), daily new severe infection curves (f), and daily new death curves (h) in 0–2, 3–59 
and 60 + age groups, respectively. The lighter shaded portion represents 95% confidence interval. e, g, i. The proportions of total infections (TI), total 
severe infections (TSI), and total deaths (TD) to the total population in age group 0–2 (e), 3–59 (g) and 60 + (i), respectively

Table 1  Statistic results of the key epidemic indexes for the first epidemic wave

Value (95%CI)

0–2 3–59 60 +  Total

Peak value of new infection 867,444
(780,621, 966,363)

46,636,926
(42,544,942, 51,284,010)

9,294,430
(8,391,309, 10,319,679)

55,929,128
(50,879,877, 61,742,679)

Cumulative infection 21,332,149
(20,841,464, 21,836,068)

1,036,537,492
(1,031,567,340, 1,041,115,520)

223,889,591
(220,029,338, 227,797,335)

1,170,444,136
(1,161,295,975, 1,179,232,581)

Cumulative infection rate (CIR) 80.8%
(78.9%, 82.7%)

92.4%
(92%, 92.8%)

84.8%
(83.3%, 86.3%)

82.9%
(82.3%, 83.5%)

Peak incidence number of severe 
illness

5602
(5091, 6168)

119,466
(110,284, 129,465)

148,138
(135,521, 162,091)

270,435
(248,722, 294,635)

Cumulative Severe infection 144,388
(141,091, 147,752)

2,873,405
(2,851,114, 2,894,974)

3,810,163
(3,726,926, 3,896,394)

6,827,956
(6,731,480, 6,925,939)

Severe infection rate 0.677%
(0.676%, 0.677%)

0.277%
(0.275%, 0.279%)

0.17%
(0.168%, 0.173%)

0.583%
(0.578%, 0.589%)

Peak incidence number of death 377
(352, 403)

21,491
(20,347, 22,693)

76,083
(70,551, 82,183)

97,918
(91,247, 105,212)

Cumulative deaths 13,694
(13,409, 13,978)

679,987
(676,095, 683,839)

2,235,119
(2,190,688, 2,280,937)

2,928,799
(2,882,338, 2,976,396)

Case fatality rate
(CFR)

0.0642%
(0.064%, 0.0643%)

0.0656%
(0.0652%, 0.066%)

0.998%
(0.986%, 1.01%)

0.25%
(0.248%, 0.253%)
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(95%CI : 2.88million− 2.98million) . The elderly was the 
most affected group, with a CFR of 1%, which is 15 times 
higher than that of other age groups. This conclusion is 
also evident from Fig. 2 (e, g, i), which shows the propor-
tions of total infections, severe infections, and deaths for 
specific age groups compared to the entire population 
during the first wave.

The first wave of shocks indeed caused a fairly large 
wave of infections, which far exceeded the casualties 
caused by all local epidemics in China in the past three 
years. From another standpoint, the sustained implemen-
tation of the zero-COVID policy delayed this impact by 
three years, providing three years of health protection for 
many individuals. This also allowed for better preparation 
of medical resources (such as ICU beds), thereby pre-
venting medical overload to some extent. After decon-
structing the real-world impact of policy relaxation, our 
subsequent task is to analyze an improved timing for eas-
ing the zero-COVID policy.

Improving the shifting of control policies
In this section, we focus on determining an improved 
timing for the adjustment of policy in balancing the 
control of epidemics and the economic development. 
To this end, we firstly search a better timing for eas-
ing the zero-COVID policy during the circulation of 
Omicron variant, given the shifting of the immunity in 
the population in China. In detail, Fig.  3 (a, b) shows 
the time series of daily new vaccination doses and the 
cumulative vaccination doses in China, indicating an 
increase in population immunity. However, a lot of 
clinical evidence has been well documented showing 
that individuals quickly lose their immunity against 
infection and severe illness after vaccination [66–68], 
indicating a decrease in immunity in the population. 
This motivates us to search an improved timing for the 
easing of zero-COVID policy by leveraging the protec-
tion of the mass vaccination program. To this end, we 
simulate the outcomes of the first large-scale epidemic 
wave of Omicron variant when we try to relax the zero-
COVID policy in January 2022. The setting of vacci-
nation-related parameters and the initial conditions 

Fig. 3  a Data on new vaccination doses in China obtained from OWID. The start time of the simulation in the three scenarios is marked 
with a vertical dotted line. b Data on cumulative vaccination doses in China obtained from OWID. The start time of the simulation in the three 
scenarios is marked with a vertical dotted line. Histogram of c. CIR, e severe infection rate, and g CFR in three scenarios. d The collected data 
on China’s vaccination coverage at different time points played a crucial role in calibrating the model under baseline conditions and in setting 
the initial population distribution for various scenarios. f Simulated outbreak curves (daily infections) for China easing its zero-COVID policy 
under three scenarios
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of the vaccination are shown in Table  2. It should be 
mentioned that around 579 million doses have been 
additionally vaccinated to the population during Janu-
ary 2022 to November 2022. Specifically, 41,568,000 
were first doses, 59,227,000 were second doses, and 
478,299,000 were booster doses.

The simulation results are shown in Fig. 3 and Table 3. 
It follows from Fig. 3(f ) that there will also a large-scale 
epidemic wave when we try to ease the strict control 
strategies under zero-COVID policy. It can be seen that 
the first epidemic wave peaks a little bit later (by 5 days) 
compared to the baseline scenario (the estimation of the 
real case considered in last section, that the zero-COVID 
policy is eased in November 2022). The CIR is estimated 
as 81.64%, representing an 1% decrease compared to the 
baseline scenario. The peak size is 52,208,764, which is 
7% less than the baseline scenario in terms of popula-
tion. Moreover, we find that the peak incidence number 
of daily severe infections significantly decreased 68,615, 
where the cumulative number of severe infections is 
estimated as 4,999,293 with a severe infection rate of 
0.434% (compare to 0.484% in the baseline scenarios). 

The situation regarding deaths during the first large-scale 
epidemic wave has improved. Specifically, the peak daily 
deaths decreased to 80,886, cumulative deaths fell from 
2.929 million to 2.336 million, and the CFR decreased 
from 0.25% to 0.203%.

We further evaluate if the strict control interventions 
under the zero-COVID policy can be relaxed much ear-
lier before the emerging of the variant with high trans-
missibility (i.e., the Omicron variant).

To this end, we simulated in Fig. 3(f ) the outcomes of 
the epidemic wave considering that the zero-COVID 
policy was relaxed in June 2021, while the Delta variant 
was circulating in China. Figure 3(f ) shows that, despite 
the Delta variant’s lower transmissibility compared to 
the Omicron variant, there is still a potential for a large-
scale epidemic wave with a cumulative infection rate of 
74.06%. However, the epidemic characteristics changed 
significantly compared to the baseline scenario. For 
example, the first epidemic wave reached its peak with 
29.71 million daily new infections approximately 44 days 
later than in the baseline scenario. Although with a 
much small CIR, the peak incidence of severe illness was 

Table 2  Parameter settings for three scenarios

Easing time Dominant variant Transmission 
rate β

Death rate d Setting of initial conditions Si,j,0(0)

Baseline 2022–11-1 Omicron β0 d0 26400286

0

55040710

1018336977

24724860

206101342

0 9528481 12833072

0 38470686 20343586

Scenario 1 2021–6-1 Delta Rδ
R0

∗ β0 3 ∗ d0






26400286 623139507 146704126

0 498237346 117298733

0

0

0

0

0

0







Scenario 2 2022–1-1 Omicron β0 d0






26400286 110046459 25907954

0 39996117 9416182

0

0

971334276

0

228678723

0







Table 3  Comparison of main simulation results of the first wave infection in three scenarios

Baseline Scenario 1 Scenario 2

Value Value Increment Value Increment

Peak value of new infection 55,929,128 29,714,209 0.53 52,208,764 0.93
Cumulative infection 1,170,444,136 1,045,530,316 0.89 1,152,632,155 0.99
Cumulative infection rate (CIR) 82.9% 74.06% 0.89 81.64% 0.99
Peak incidence number of severe illness 270,435 368,397 1.36 201,820 0.75
Cumulative Severe infection 6,827,956 13,805,255 2.02 4,999,293 0.73
Severe infection rate 0.484% 1.32% 2.73 0.434% 0.9
Peak incidence number of death 97,918 289,637 2.96 80,886 0.83
Cumulative deaths 2,928,799 11,132,724 3.8 2,335,700 0.8
Case fatality rate (CFR) 0.25% 1.065% 4.26 0.203% 0.81
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approximately 6.98 million higher than that of the base-
line case for the Omicron variant, while the severe infec-
tion rate increased from 0.484% to 1.32%. Regarding of 
the deaths, we find that the peak number of daily deaths 
can increase to around 289 thousand, while the cumula-
tive death reaches 11.13 million, which is 280% higher 
than the baseline scenario. The CFR has increased from 
0.25% to 1.065%, which is 326% higher than the baseline 
scenario.

Discussion
Since the beginning of the twenty-first century, emerg-
ing infectious diseases have surfaced intermittently, pos-
ing major challenges to society. It is anticipated that new 
infectious diseases, referred to as “Disease X”, will con-
tinue to arise in the near future. Common characteristics 
have been identified among various infectious disease 
epidemics, notably the rapid evolution of viruses and the 
successive emergence of new variants. Throughout the 
long history of infectious disease control, we have devel-
oped a suite of measures, including non-pharmaceutical 
interventions (NPIs) and vaccination, to curb the spread 
of emerging infections. However, vaccinations alone 
often fail to halt the spread of these diseases, either due 
to difficulties in vaccine development or because mass 
vaccination does not achieve herd immunity owing to 
rapid waning immunity. Similarly, NPIs cannot stop the 
global spread of emerging infectious diseases due to the 
prohibitive costs associated with implementing stringent 
control measures. Therefore, it is crucial to design a com-
prehensive and improved control policy that leverages 
the synergistic effects of NPIs and vaccination to combat 
Disease X to curb the epidemics at the most effective and 
cost-efficient way. It would be feasible to devise a general 
and adaptive control policy that draws on past experi-
ences in tackling previous emerging infectious diseases. 
Here, adaptive strategy means an appropriate shifting of 
control policy following the quick evolving of the virus in 
terms of its transmissibility and the pathogenicity.

Considering that COVID-19 is regarded as the first 
instance of Disease X [18–22], and given the significant 
shifts in China’s control policy for COVID-19, this study 
aims to develop a general and adaptive policy based on 
China’s experiences. We first projected the epidemic 
waves of the Omicron variant following the easing of 
the zero-COVID policy in November 2022 using a com-
partment model. This serves as the baseline for compar-
ing whether there is a better timing for easing the policy. 
In the case of weak or even no control interventions, it 
can be seen that there is definitely a large-scale epidemic 
wave no matter when the zero-COVID policy is relaxed 
if the basic reproduction number exceeds 8. Note that, 
the large-scale wave occurs even when the vaccination 

coverage already exceeds 80% in China, which is owing 
to that a large ratio of population loss their immunity 
already before the vaccination coverage reaches a high 
level. Our results indicate that the easing of zero-COVID 
policy at January, 2022, can not only help to reduce the 
outbreak size and the incidence of severe infections but 
also save a significant cost of boosting dose of the mass 
vaccination comparing to the baseline case. Therefore, it 
is important to choose an improved timing for releasing 
the strict control intervention by leveraging the protec-
tion of mass vaccination. And our results shows that an 
improved timing for easing the strict control intervention 
can not only reduce the outbreak size of the epidemic 
wave but also greatly saving the control-cost of additional 
vaccination.

The natural question then arises: could the strict 
control interventions have been relaxed much earlier? 
To explore this, we simulated the outcomes of the epi-
demic if the zero-COVID policy had been lifted in Jan-
uary 2021, during the circulation of the Delta variant in 
China. The results indicate that there would still have 
been a large-scale epidemic wave, with an accumula-
tive infection rate reaching 89% of the baseline sce-
nario. However, the peak size of new infections would 
have decreased to 47% of the baseline, due to the Delta 
variant’s lower transmissibility compared to that of 
the Omicron variant. Despite these findings, the situ-
ation would have worsened significantly, with severe 
infection rates and case fatality rates (CFR) increasing 
by 71% and 226%, respectively, compared to the base-
line case. Given China’s large population, this scenario 
would have led to a substantial increase in the number 
of deaths. Considering that China had 17 rounds of 
local outbreaks during 225 days of Delta variant circu-
lation, with the highest peak at only 180 cases [58], it is 
suggested that quick case clearance should be pursued 
for variants with lower transmissibility. Each outbreak 
could potentially be controlled within a short period, 
such as about one month, based on China’s experience 
with the Delta variant.

In conclusion, managing an emerging infectious dis-
ease (Disease X) requires comprehensive consideration 
and monitoring of several factors: the transmissibility of 
viral variants, the upper limit of NPI effectiveness, the 
speed of vaccine development and administration, and 
the waning efficacy of vaccines. These factors are crucial 
for formulating an adaptive control strategy. The pro-
posed general and adaptive policy can be summarized as 
follows: initially, highly stringent control measures (such 
as a zero-COVID policy) may be employed to halt each 
outbreak when the virus’s basic reproduction number is 
below 5. If stopping the spread quickly proves too costly, 
it may be necessary to relax these stringent measures 
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and transition to normalized control strategies. This shift 
should occur at a more appropriate time, leveraging the 
protective effects of mass vaccination to maintain control 
over the disease spread.

There are still several limitations in this study. Firstly, 
since the model design did not specifically account for 
excess mortality among severe patients due to insuffi-
cient healthcare capacity, the estimated mortality figures 
in this paper are somewhat conservative. Secondly, the 
vaccine-related data we have is still incomplete, and miss-
ing vaccination data for each age group at certain time 
points limits our ability to perform a more detailed analy-
sis. Lastly, although we performed three scenario analy-
ses as preliminary experiments, designing dynamic and 
comprehensive strategies—such as NPIs and vaccination 
plans incorporating game theory, cost-effectiveness, and 
sensitive variant monitoring—remains a challenge. This 
will require further research.

Methods
Model formula
Based on a Susceptible- Exposed- Asymptomatic- 
Infectious- Quarantined- Hospitalized- Recovered- 
Death model structure (SEAIQHRD), we developed 
a dynamic model of COVID-19 transmission in the 
widespread outbreak caused by the SARS-CoV-2 Omi-
cron variant in China, and the flow diagram is shown in 
Fig.  1. Considering the different levels of social activi-
ties of different age groups in the modeling, the popula-
tion was divided into three age groups: 0–2  years old, 
3–59 years old, and 60 years old and above. According 
to the dose of vaccine and individual immunity level, 
the population was further divided into four groups: 
unvaccinated group, one-dose vaccination group, 
two-dose vaccination group and booster vaccination 
group. Since almost everyone in China had never been 
infected with the COVID-19 before the easing of the 
‘zero-COVID policy’, we divide the infection process 
into the first round of infection and reinfection. There-
fore, each state variable or compartment variable has 
three superscripts i, j, and k , which represent age group, 
immunity level group, and whether it is the first round 
of infection. For example, S2,1,0 represents people in 
the second age group and the second immunity group 
who have been infected and are susceptible again. It 
is worth noting that the division of three age groups 
can not only highlight the heterogeneity of the popu-
lation, but also avoid the model structure from being 
too complex. And this is also related to the division of 
immunity level groups, because according to national 
policy, children aged 0–2  years are generally not vac-
cinated, while those over 60 years old are the national 
key protected groups. Meanwhile, the vaccination 

data available to us is categorized by age only for indi-
viduals aged 60 and above. The data for the 3–59 age 
group lacks further stratification. In fact, vaccination 
data largely determines how we set up the three age 
groups. In addition, although it appears that all three 
age groups fall into four immunity levels (a total of 12 
different combinations), the first age group (0–2  years 
old) is always entirely in the first immunity level group 
(unvaccinated group) during the first round of infec-
tion. Immunity waning is considered to reflect the 
movement of people between different immunity level 
groups (e.g., Si,3,0 to Si,1,0 ). In addition, it is also used 
to reflect the movement of recovered people to suscep-
tible people (e.g., Ri,1,0 to Si,1,1 ). According to the indi-
vidual state of infection, the population is divided into 
susceptible ( S ), exposed ( E ), infectious ( A, Im, Is ), quar-
antine ( QA,Qm,H  ), recovered ( R ) and dead ( D ) classes. 
We distinguish between asymptomatic infection ( A ), 
mild infection ( Im ), severe infection ( Is ), and also dis-
tinguish between the corresponding home quarantine 
( QA , Qm ) and severe hospitalization ( H).

We first sort out the dynamics of individual infections 
without superscripts. The transmission occurs when the 
susceptible population ( S ) closely contact with infec-
tious individuals ( A , Im and IS ) and become exposed 
class ( E ) with a transmission probability β per con-
tact. Two types of infectious individuals have calibra-
tion coefficients ςA and ςIm for their infectivity relative 
to severe patients, respectively. Individuals in exposed 
( E ) will enter into the asymptomatic population ( A ) 
with the transition rate (1− ρ)σ , where ρ is the prob-
ability of developing symptoms and 1/σ is the incuba-
tion period. The other individuals in exposed will enter 
into the mild infection population ( Im ) and severe infec-
tion population ( IS ) with the transition rate (1− θ)ρσ 
and θρσ , respectively. θ is the probability of severe ill-
ness among symptomatic patients. Further, these three 
types of infected individuals will enter into quarantined 
asymptomatic population ( QA ), quarantined mild infec-
tion population ( Qm ) and hospitalized and isolated 
population ( H  ) according to the home isolation rate 
( δA and δIm ) and hospitalization rate ( δIs ) respectively. 
Among them, critically ill patients will be transferred 
to Qm with a discharge rate of τH . All asymptomatic and 
mild symptom patients will move to the recovery class 
with recovery rates γA , γIm , γQA , and γQm respectively. A 
disease-related death for the hospitalized population is 
considered with severe mortality rate d.

Finally, we assume that individuals with medium and 
high immunity levels ( Si,2,0 and Si,3,0 ) will move to the 
low immunity level group ( Si,1,0 ) at rates ωi,2,0 and ωi,3,0 
respectively. After experiencing the first round of infec-
tion, the recoveries ( Ri,j,0, j = 0,1, 2,3 ) will move to the 
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susceptible class ( Si,j,1 , j = 1,2, 3 ) at rates of immunity wan-
ing ( ωi,j,0, j = 0,1, 2,3 ). It should be noted that since indi-
viduals in the first immunity level group acquire natural 
immunity after being infected and recovering, they will 
enter Si,1,1 instead of Si,0,1 . The setting for immunity wan-
ing during the reinfection process is consistent with that 
for the first round of infection.

A more detailed description of the parameters and 
variables is given in Table S1. It is important to empha-
size that, for the consistency of model representation, the 
superscripts of the compartment variables correspond 
one-to-one with the superscripts of each parameter. 
However, in the actual simulation, apart from the contact 
matrix C , which is only related to age groups, the other 
parameters are only related to immunity levels. There-
fore, in Table  S1, for clarity, we denote each parameter 
with a subscript and use the superscript ‘-’ to distinguish 
between reinfection and the first round of infection.

Particularly, the infection rate �i,j,k was given as 
follows.

Specifically, �i,j,k represents individuals who have moved 
out of the susceptible group ( Si,j,k ) due to being infected 
after coming into contact with an infected person. Since 
our contact matrix is derived based on three age groups, 
for a specific age group (i) , its contact rate with each age 

(1)

dSi,0,0

dt
= −�i,0,0

dSi,1,0

dt
= −�i,1,0 + ω

i,2,0Si,2,0 + ω
i,3,0Si,3,0
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dt
= −�i,2,0 − ω
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dt
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= −�i,0,1
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�i,j,k

=

∑3

b=1

cibβ
i,j,k Si,j,k

Nb

∑3

n=0

∑1

l=0

(

ς
b,n,l
A Ab,n,l

+ ς
b,n,l
Im

Ib,n,lm + Ib,n,ls

)

group is represented as cib, (b = 1,2, 3 ). When contacting 
age group b , it also includes divisions based on four immu-
nity levels and whether the individual is the first round of 
infection. Here, Nb ​ represents the total population of age 
group b . It is placed in the denominator to represent the 
probability of encountering individuals from the afore-
mentioned categories during each contact.

Basic reproduction number
The basic reproduction number R0 plays a crucial role in 
disease control and the stability of the disease-free equi-
librium (DFE) [69]. When R0 > 1 , the disease spreads 
within the population, rendering the DFE unstable as 
the rate of new infections surpasses the rate of recover-
ies. Conversely, when R0 < 1 , the disease cannot sustain 
itself, leading to a stable DFE and eventual elimination 
of the infection over time. This threshold concept is 

fundamental for designing control strategies, such as 
achieving sufficient vaccination coverage or implement-
ing interventions to reduce R0 below 1, thereby eradicat-
ing the disease. General epidemic control strategies aim 
to minimize R0 to ensure the disease’s extinction.

The basic reproduction number of the above model is 
calculated using the method of the next-generation 
matrix [70]. First, we need to identify two vectors F  

and V . F =

[

�24×1

072×1

]

 , �24×1 represents a column vector 

of 24 dimensions, whose elements are �i,j,k,
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Here, E24×1 , A24×1 , Im24×1 , Is24×1 represent column 
vectors of 24 dimensions respectively. Its elements are 
Ei,j,k , Ai,j,k , I i,j,km  , I i,j,ks  . I24×24 is a 24-dimensional iden-
tity matrix. σ24×24 , γA24×24 , γIm24×24 , δA24×24 , δIm24×24 , 
δIs24×24 , φIs24×24 , ρ24×24 , ̺24×24 represents a diagonal 
matrix of 24 dimensions, whose diagonal elements are 
σ i,j,k , γ i,j,k

A  , γ i,j,k
Im

 , δi,j,kA  , δi,j,kIm
 , δi,j,kIs

 , φi,j,k
Is

 , ρi,j,k , ̺i,j,k . For 
example,

The construction of the remaining matrices follows a 
similar approach.

So, we have

Here, F1,2 , F1,3 , and F1,4 represent the Jacobian matri-
ces composed of the partial derivatives of the �24×1 vec-
tor with respect to the A24×1 , Im24×1 , and Is24×1 vectors, 
respectively. Taking F1,2 as an example,
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


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Here, (•)T denotes the transpose of the matrix. F1,3 and 
F1,4 follow a similar structure.
V1,1 , V2,1 , V2,2 , V3,1 , V3,3 , V4,1 and V4,4 are all diagonal 

matrices of 24 × 24, and

It can be calculated that,

Then, the basic reproduction number is R0 = R
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Contact matrix
Since we obtained an 84-age group contact matrix from 
the references, and what we need for this study is a con-
tact matrix among three age groups, it is necessary to 
process the original contact matrix. cij represents the per 
capita contact rate between age group i and age group j 
( i, j = 1,2, . . . , 84 ), defined as.

Where fij represents the total number of contacts 
between age group i and age group j , where fij = fji is met, 
and ni represents the population of age group i . Below, we 
divide the 84 age groups into three large age groups, where 
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cij = fij/ni,
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Fuv corresponds to the total number of contacts between 
age group u and age group v ( u, v = 1,2, 3 ). The specific 
calculation process is as follows:

Here, ni and cij are available data [63]. The specific val-
ues of the contact matrix Cuv is given in Table 1.

Data
The multi-source epidemiological data on the local 
COVID-19 outbreak in China caused by the SARS-CoV-2 
Omicron variant were obtained from the Chinese Center 
for Disease Control and Prevention. Detailed informa-
tion is provided in Supplementary information Figure 
S1 [71]. The Chinese government announced two press 
conferences on November 10 and December 7, 2022, 
respectively, addressing the new measures for COVID-
19 prevention and control [72]. This marked a significant 
shift away from the zero-COVID policy. Consequently, 
we obtained the reported daily case numbers from 
November 1 to December 23. It is important to note that, 
Due to the substantial reduction in the scope of mass Pol-
ymerase Chain Reaction (PCR) testing mandated by the 
20 measures, the reported data no longer align with the 
actual number of new cases since November 10, 2022.

Additionally, according to national COVID-19 infec-
tion statistics from the Chinese Center for Disease 
Control and Prevention, the first wave reached its peak 
between December 22 and December 25 [71]. Despite 
the absence of mass PCR testing in China, the absolute 
peak value of new infections is unreliable; however, the 
relative timing of reaching the peak is considered reliable. 
Therefore, we utilized data from November 1 to Novem-
ber 10, along with the peak timings of the first wave, for 
model fitting.

The vaccine administration data were sourced not only 
from the official website of the Chinese National Health 
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Commission but also from Our World in Data (OWID) 
[58]; however, only partial datasets were available from 
both sources. The fitting of baseline conditions and the 
corresponding time-point vaccine data for the two addi-
tional scenarios are presented in Fig. 3(d) in the main text 
[71, 73–77]. It is important to note that due to the dele-
tion or hiding of much information about cases and vac-
cine administration on the official website of the National 
Health Commission of China, we can only rely on cita-
tions from other websites that report the commission’s 
announcements as indirect references.

Model fitting process
We calibrated model (1) using the least squares method 
(LSM) with COVID-19 data from China, all implemented 
using MATLAB software.

First, we utilized the calculation formula for the basic 
reproduction number ( R0 ), assuming that all suscep-
tibles (i.e., the entire population) were unvaccinated 
( 
∑

i S
i,0,0(0) = Nall ) and excluding the effects of all con-

trol measures. With all other parameters held constant, 
we estimated the original transmissibility β0 . Then we 
use LSM only in order to estimate the initial susceptible 
population Si,j,0(0) , initial mild infection population of pri-
mary infection I i,j,0m (0) , the calibration coefficient ​ fsd for 
the transmissibility β0 , which reflects the reduction in 
transmissibility due to social distancing measures.

We fixed some parameters in model (1) by reviewing 
literature, which included the incubation period ( 1/σ ), 
rate of immunity waning ( ωi,j,0 ), the vaccine effective-
ness, contact matrix ( C ), the probability of developing 
symptoms in unvaccinated exposed individuals at three 
ages ( ρ0 ), the probability of severe symptoms among 
unvaccinated people in three age groups ( θ0 ), the propor-
tion of severe ill unvaccinated patients admitted to the 
ICU in three age groups ( α0 ), and severe mortality among 
unvaccinated people in three age groups ( d0 ). Addition-
ally, the correction coefficients for the force of infection 
of asymptomatic and mildly symptomatic individuals rel-
ative to severe cases,
ςA ​ and ςm ​, are both assumed to be 1. The immunity 

waning rate ( ωi,j,1 )​ after the first infection is assumed 
to be the same as ( ωi,j,0)​. Due to the relaxation of home 
quarantine policies, we set the home quarantine rate 
to 0. Additionally, based on empirical data, we made 
assumptions regarding the hospitalization rate, the aver-
age length of hospital stay for severe patients, and the 
recovery rates. Sensitivity analyses were conducted for all 
the assumed parameters mentioned above. Please refer 
to the Supplementary Information section on sensitivity 
analysis.
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Except for the initial susceptible population and the 
mildly infected population, the initial values of all other 
compartments in the model are set to zero, as shown in 
Table S1. The initial distribution of susceptible individu-
als is set based on the vaccination data for the partially 
vaccinated population and the elderly that we obtained, 
as shown in Fig.  3(d). Additionally, supported by the 
estimation in reference [65], we assume that 15% of the 
population did not participate in the first wave of the 
pandemic.

We defined the loss function for the LSM method as 
shown above. The loss function consists of two parts: 
the first part represents the cumulative residuals of daily 
new cases, and the second part represents the residuals 
for the peak time of the first wave. In MATLAB, we use 
the ‘fmincon’ function to solve constrained minimization 
problems. The Loss function it calls is set as described. 
The magnitude of the first part, Datat for the 10-day 
period, is different from the magnitude of the second 
part, Datapeaktime . To help ‘fmincon’ converge more effec-
tively to the optimal solution, we need to assign weights 
to the two parts of the Loss. Through numerical experi-
ments, we set ψ to 10, as detailed in the Data Availability 
section.

Scenario setting for the improved easing time
We constructed a model that takes into account different 
immunity levels and estimated the initial population sizes 
for various groups. Combining vaccination data curves 
obtained from official website of China National Center 
for Disease Control and Prevention and OWID [59], we 
can essentially provide the distribution of population 
sizes with differing immunity levels at certain time points 
over three years. Consequently, the model can obtain 
initial values at any given moment, enabling simulations 
of the epidemic scenario in China under different time-
frames for easing the zero-COVID policy.

The new vaccination doses and the cumulative vaccina-
tion doses in China were shown in Fig. 3(a, b), it can be 
found that the vaccination rate exhibits a slow-fast-slow 
trend, resembling an S-shaped curve. Within the vac-
cination intervals observed over the last two years, it is 
clear that, from the standpoint of the entire population, 
the highest average immunity level is currently occurring 
during the most rapid phase of vaccine administration. 
These can provide us with some references for setting up 
scenarios.

Loss =
∑Nov10th

t=Nov1st

(

Datat −
∑

i,j,k
σ i,j,kE

i,j,k
t

)2

+ψ
(

Datapeaktime −Modelpeaktime

)2

Below, we illustrate how to set the relevant parameters 
for a scenario using an example. If we choose June 2021 
as a scenario, according to the data we collected shown 
in Fig. 3(d), the proportion of people newly vaccinated is 
43.62% [71, 73–77]. It is noteworthy that the transmis-
sibility of the Delta variant was not as potent as that of 
the Omicron variant. In our simulations, once the policy 
is eased, the vaccination program also remains at this 
moment. We depict the initial distribution of susceptible 
individuals based on the age distribution of the Chinese 

population obtained from the National Bureau of Statis-
tics of China [78]. At that point, China only had a popula-
tion consisting of individuals without immunity and those 
with a single dose of vaccine. Therefore, the population 
newly vaccinated with one dose, 43.62%, is divided by 
age proportion to obtain the number of individuals with 
one-dose immunity. Then, subtracting this number from 
the total population of each age group gives the number 
of individuals with zero-dose immunity. Note that infants 
and toddlers aged 0–2 years are assumed not to be vacci-
nated. To better reflect reality, it is necessary to adjust the 
key parameters for simulating the Delta variant. Accord-
ing to the literature [79–81], we can assume that the 
regeneration number of the Delta variant Rδ is about 5.08 
and the case fatality rate of it is 3 times that of Omicron, 
as reflected in the parameter for severe mortality d.

Similarly, if we choose January 2022 as another scenario, 
approximately 2.07 billion doses of vaccine are adminis-
tered within six months. As of January 6, 2022, approxi-
mately 88.5% of the population had received at least one 
vaccine doses, and 85% of the population had received a 
second dose. Furthermore, the universal administration 
of the second dose commenced in June 2021 [73]. Thus, 
in this scenario, the proportion of the population at the 
baseline immunity level is 85%, while the population with 
zero-dose immunity is 11.5%. Hence, the count of indi-
viduals with single-dose immunity can be derived accord-
ingly. Finally, specific initial population distributions are 
provided based on different age groups’ proportions.

In the scenario analysis, a single simulation is con-
ducted using only the average values of the estimated 
parameters.
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