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Abstract
Background Ankle injuries in parcel delivery workers (PDWs) are most often caused by trips. Ankle sprains have high 
recurrence rates and are associated with chronic ankle instability (CAI). This study aimed to develop, determine, and 
compare the predictive performance of statistical machine learning models to classify PDWs with and without CAI 
using postural control, ankle range of motion, ankle joint muscle strength, and anatomical deformity variables.

Methods 244 PDWs who had worked in parcel delivery for more than 6 months were screened for eligibility. Thirteen 
predictors were included in the study: 12 numeric (age, body mass index, work duration, the number of balance 
retrials eyes-closed single-limb stance, Y-balance test, ankle dorsiflexion range of motion, lunge angle, strength ratio 
of the evertor in plantar flexion and neutral position to the invertor, ankle dorsiflexor strength, navicular drop, and 
resting calcaneal stance position) and one categorical (success of the eyes-closed single-limb stance). Five machine 
learning algorithms, including LASSO logistic regression, Extreme Gradient boosting machine, support vector 
machine, Naïve Bayes machine, and random forest–were trained.

Results The support vector machine and random forest models confirmed good predictive performance in the 
training and test datasets, respectively, for PDWs. For the Shapley Additive Explanations, among the five machine 
learning models, the variables entered into three or more models were low ankle dorsiflexion range of motion, low 
lunge angle, high body mass index, old age, a high number of balance retrials of the eyes-closed single-limb stance, 
and low strength ratio of the evertor in the neutral position to the invertor.

Conclusion Our approach produced machine learning models to classify PDWs with and without CAI and confirmed 
good predictive performance in PDWs.
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Background
Since the pandemic, logistics and retail industries have 
grown rapidly with the development of online shopping 
and e-commerce in the global economy, thereby increas-
ing the employment of parcel delivery workers (PDWs) 
[1–4]. PDWs handle various weights, sizes, and shapes of 
parcels from the warehouse to the doorsteps of clients. A 
general parcel delivery system includes a combination of 
driving and walking [5]. A study showed that PDWs walk 
an average of 8 km during delivery work, which includes 
repeatedly getting in and out of the truck, walking, and 
running with parcels, though the round distance to a par-
cel distribution center was excluded in the study [6].

Lateral ankle sprains are the second most common 
work-related musculoskeletal disorder [7]. Studies have 
shown that approximately 77% of ankle sprains involve 
the lateral ligaments, making lateral ankle sprains partic-
ularly prevalent [8]. The ankle is the most frequent site of 
injury (23%) in PDWs, and ankle injuries are most often 
caused by trips [9]. Ankle injuries occur in unpredictable, 
uncontrolled, and varied outdoor environments during 
delivery [10]. Occupational risk factors for ankle injuries 
include damaged and uneven paving and obstacles on 
the walking surface, stairways and steps, lighting condi-
tions, and unsafe working behaviors such as rushing, tak-
ing hazardous shortcuts, entering dangerous areas, and 
reading addresses while walking during delivery work 
[10]. However, because ankle sprains have a high rate 
of recurrence, which is related to the development of 
chronic ankle instability (CAI) [11, 12], it is necessary to 
consider not only occupational risk but also functional 
insufficiency factors, including sensory-perceptual and 
motor-behavioral impairments, to prevent and manage 
recurrent ankle sprains.

Ankle sprains result in an average of 20 lost working 
days [7], and recurrences due to CAI can result in more 
lost working days. Therefore, accurate classification of 
PDWs with and without CAI is required, followed by the 
management and recovery of PDWs with CAI by improv-
ing the factors contributing to CAI. Functional insuffi-
ciencies contributing to CAI after lateral ankle sprain are 
caused by alterations in the motor component of senso-
rimotor control, particularly impaired postural control 
[13, 14], limited ankle ROM [15, 16], diminished ankle 
eversion strength [17, 18], anatomical deformities [19], 
and changes in motor control of the muscles proximal to 
the injured ankle [20, 21]. However, because the factors 
contributing to CAI vary with mechanical insufficiency 
and occur independently or in combination, the factors 
contributing to CAI remain controversial for researchers 
and clinicians alike [18, 22].

Most classification modeling research on CAI has used 
either linear or logistic regression as a statistical method 
to identify key contributing factors according to whether 

the outcomes are continuous or binary [18]. However, lin-
ear and logistic regression methods are disadvantageous 
when the relationships between the outcome (or logit 
of the outcome) and the contributing factors are non-
linear. Nevertheless, machine learning (ML) is increas-
ingly being used to classify models. Because ML has 
the advantage of a suite of algorithms that could model 
highly nonlinear and linear relationships, it has been rec-
ommended to achieve higher accuracy compared with 
traditional statistical methods. The five machine learn-
ing models (LASSO logistic regression, Extreme Gradi-
ent boosting machine, support vector machine, Naïve 
Bayes machine, and random forest) were selected based 
on their proven effectiveness in medical classification 
tasks and their complementary approaches to classifica-
tion problems. LASSO logistic regression provides inter-
pretable linear relationships, support vector machine 
excels at handling non-linear boundaries, random forest 
offers robust performance with feature importance rank-
ings, Extreme Gradient boosting provides high accu-
racy through sequential learning, and Naïve Bayes offers 
probabilistic classification with computational efficiency 
[23]. Thus, the primary purpose of the present study was 
to develop, determine, and compare the predictive per-
formance of statistical ML models to classify PDWs with 
and without CAI using postural control, ankle range of 
motion (ROM), ankle joint muscle strength, and ana-
tomical deformity. The secondary purpose of the present 
study was to identify the contributing factors that have a 
significant impact on CAI and explain a model that could 
help prevent and manage CAI in PDWs by improving 
these factors.

Methods
Participants
Overall, 244 PDWs who had worked in parcel delivery for 
more than 6 months were screened for eligibility. PDW’s 
data generated from musculoskeletal screening tests for 
preventing industrial accident were used by visiting a 
musculoskeletal health care center in delivery company 
from August 2021 to March 2022. Informed consent 
for the present study was waived by Institutional review 
board before the queries and analyses because it was 
an analysis based on data already obtained by the par-
cel delivery company. Of the 244 PDWs included in the 
study, participants were classified into either the control 
group (n = 184) or the CAI group (n = 60, 24.6%) based 
on their ankle sprain history and stability status. Con-
trol group included participants with no history of ankle 
sprains and those who had experienced ankle sprains but 
reported no episodes of ‘giving way’ or feeling of ankle 
instability. Among those with a history of ankle sprain(s), 
participants were classified into the CAI group if they 
met al.l of the following criteria: (1) at least one ankle 
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sprain resulting in lateral ankle pain and impaired physi-
cal activity, (2) at least one episode of ‘giving way’ or feel-
ing of ankle instability, and (3) a score of ≥ 4 points on the 
Ankle Instability Instrument [15], confirming recurrent 
instability. While the presence of giving way episodes was 
confirmed through the Ankle Instability Instrument, the 
specific frequency could not be quantified as the instru-
ment only assesses the occurrence (yes/no) rather than 
the number of episodes. Participants were excluded if 
they had a recent history (< 6 months) of lower-extremity 
surgery, a diagnosis of ankle osteoarthritis, or a history 
of ankle surgery involving intra-articular fixation. To ana-
lyze the relationship between approximately 14 variables, 
a sample size of at least 140 participants was required, 
following the 1:10 rule of thumb [24].

Outcome measures
Postural control: Y-balance test and one leg standing with 
eye closed
Participants performed six practice trials and two mea-
surement trials for the Y-balance test (YBT) and stood 
with both hands placed on their chests. The patients 
were instructed to reach three 3 lines as far as possible 
in the anterior, posteromedial, and posterolateral direc-
tions [25]. To perform the eyes-closed single-limb stance 
(ECSLS) test, participants were required to stand on 
one leg and remain as still as possible with their hands 
on their hips and eyes closed for 20 s [26]. If participants 
could not maintain this position without falling, they 
could place their non-stance limb on the ground, regain 
balance as quickly as possible, and continue the balance 
trial (three trials, each separated by a 30 s break) [26].

Ankle range of motions: ankle dorsiflexion range of motion 
and lunge angle
Ankle dorsiflexion ROM in a straight knee while sitting 
was measured using a smart phone (SM-G960N, SAM-
SUNG, Suwon, Korea) installed Clinometer application 
(Plaincode, Stephanskirchen, Germany) on the lateral 
side of the foot with the knee joint in terminal extension, 
with the participant seated on the examination table and 
the distal half of the lower leg extending past the edge of 
the Table [27]. The participants were asked to relax as 
the tester passively dorsiflexed the talocrural joint until 
a restriction was reached, as indicated by the firm end-
point. The dorsiflexion angles were recorded. An Cli-
nometer application was used to measure the tibial angle 
in the lunged position [28]. The smart phone was placed 
15 cm below the tibial tuberosity. While lunging, the par-
ticipant aligned the second toe and heel in a straight line 
on the ground. The participants lunged, trying to touch 
a vertical line on the wall with their knees while holding 
heel contact with the ground [28]. The lunge angle was 
measured at the end position of the tibial advancement.

Ankle joint muscles strength: evertor, invertor, and 
dorsiflexor
In measuring the ankle muscle strength, the strap of the 
Smart KEMA strength sensor (KOREATECH, Inc, Seoul, 
Korea) was applied to the distal end of the metatarsal to 
allow half of the foot to be off the table, and the oppo-
site side of the sensor was fixed to the absorber on the 
floor using a belt [29]. Ankle muscle strength (kgf ) was 
collected over 5 s, and the average of the middle 3 s was 
processed. The neutral and plantar flexion positions were 
set at 0° and 50°, respectively, to measure ankle ever-
tor strength. The participants were asked to lie on their 
opposite sides to that of the leg to be measured and bend 
their hip and knee at 90° [29]. The investigator manually 
fixed the distal tibia of the participant to prevent exter-
nal tibial torsion and instructed the participant to evert 
the ankle while maintaining slight toe flexion with maxi-
mum force [29]. For the measurement of ankle inverter 
strength, the participants were asked to lie on the same 
side as that of the leg to be measured, and they were 
asked to bend their hip and knee at 90° while maintain-
ing the neutral ankle position. The investigator manually 
fixed the distal tibia of the participant to prevent inter-
nal tibial torsion and instructed them to invert their 
ankle with maximum force. Moreover, the participants 
were asked to sit on a table to measure ankle dorsiflexor 
strength; bend their hips and knee to 90° and hold their 
ankles in a neutral position; and dorsiflex while maintain-
ing slight toe flexion with maximum force.

Anatomical deformities: navicular drop and resting calcaneal 
stance position
The participants stood on the floor to measure the navic-
ular drop, and the navicular tuberosity was marked. The 
foot was everted and inverted until the talus was cen-
trally positioned to determine the subtalar neutral posi-
tion [30]. The distance between the navicular tuberosity 
and the floor was measured in the subtalar neutral and 
relaxed positions. In measuring the resting calcaneal 
stance position (RCSP), participants were asked to lie 
prone on a bed horizontal to the ground with their feet 
over the edge of the bed. Participants drew a bisec-
tion line, based on three dots on the upper, middle, and 
lower parts of the calcaneus [31]. The RCSP was mea-
sured when the participants stood with their feet first 
width apart. The angle between the bisection line of the 
calcaneus and the line perpendicular to the ground was 
defined as the RCSP [31].

Screening tests protocol
Participants completed a brief health history and patient-
reported Ankle Instability Instrument. Subsequently, 
PDWs with CAI were measured on the affected side, 
and those without CAI were measured on the dominant 
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side for the YBT, one leg standing with eyes closed, ankle 
dorsiflexion range motion, lunge angle, navicular drop, 
RCSP, and ankle joint muscle strength. All the tests 
were performed barefooted. The order of measurement 
of ankle joint muscle strength was randomized, and the 
participants rested for 3 min between each measurement 
of ankle muscle strength. In the event of bilateral CAI, 
the side with greater ankle instability was used for data 
analysis.

Data source and collection
Patient characteristics, including age, body mass index 
(BMI), and work duration during parcel delivery, were 
collected. The average of the two measured values was 
applied to the anatomical deformities, postural control, 
ankle ROM, and ankle joint muscle strength. For the 
ECLS, the success of the ECSLS and the number of bal-
ance retrials due to balancing failure were collected. For 
the YBT, the composite score was calculated as the sum 
of the highest reaches in each of the three directions 
divided by three times the leg length [25]. For ankle mus-
cle strength, the strength ratios of the evertor to inver-
tor and dorsiflexor muscles were collected. The navicular 
drop was defined as the difference between the neutral 
and relaxed subtalar positions [30]. For RCSP, calcaneal 
eversion and inversion were collected as positive and 
negative values, respectively.

Machine learning modeling
ML analysis was performed using the Orange data min-
ing software (Orange 3.3.0, Ljubljana, Slovenia) and 
Python (Version 3.6.15; Python Software Foundation).

Pre-processing and missing data handling
Thirteen predictors were included in the study: 12 
numeric (age, BMI, work duration, the number of bal-
ance retrials of ECSLS, YBT, ankle dorsiflexion ROM, 
lunge angle, strength ratio of the evertor in plantar flex-
ion and neutral position to the invertor, ankle dorsiflexor 
strength, navicular drop, and RCSP) and one categorical 
(success of the ECSLS). Exploratory data analysis was 
used to confirm missing data, and imputation was per-
formed to remove instances with unknown values. The 
distribution of each variable was confirmed as a boxplot 
to remove outliers because they influenced the accuracy 
of the learning model.

Machine learning algorithm
We split the complete data (n = 244) into a training set 
(80%, n = 196) for model development and a test set (20%, 
n = 48) to externally validate the prediction performance. 
Five ML algorithms, including LASSO logistic regression, 
Extreme Gradient boosting machine, support vector 
machine, Naïve Bayes machine, and random forest–were 

trained using 10-fold cross-validation. All ML algorithms 
have one or more parameters whose values are used to 
control the learning process to optimize the predictive 
accuracy of the model for hyperparameter tuning.

Model validation
The primary measure of model performance was the area 
under the curve (AUC) for the training and test datasets 
(average over classes). The secondary measures of model 
performance were the classification precision, recall, and 
the F1 score (average over classes). The F1 score is the 
harmonic mean of precision and recall, providing a single 
score that balances both measures. The score ranges from 
0 to 1, where 1 represents perfect precision and recall. 
It is calculated as: F1 = 2 × (Precision × Recall)/(Preci-
sion + Recall). The predicting performance was catego-
rized as excellent (≥ 0.9), good (0.8–0.9), fair (0.7–0.8), 
and poor (< 0.7) by the AUC value [32].

For each clinical outcome, the feature permutation 
importance was calculated to identify important factors 
in the trained model. The importance of feature permuta-
tions was applied to the training data to compute the con-
tribution of each feature to the prediction (based on the 
AUC) by measuring the increase in the prediction error 
of the model. Additionally, a Shapley additive explanation 
summary plot was made to display the importance and 
direction of each predictive variable, which their position 
on the y-axis was sorted by relative importance, with the 
most important predictors at the top. For each predictive 
variable, the position of each point (red indicates higher 
values or the presence of binary factors) on the x-axis 
expresses the contribution of individual participants to 
the overall Shapley additive explanation value, with high 
positive contributions on the far right. Shapley Additive 
Explanations is a game theoretic approach that explains 
the output of any machine learning model by calculating 
the contribution of each feature to the prediction. Shap-
ley Additive Explanations values represent a feature’s 
importance for a particular prediction, with positive 
values indicating the feature increased the probability of 
the predicted outcome, and negative values indicating it 
decreased the probability.

Results
PDWs characteristics
Table  1 shows the means and standard deviations of all 
variables. Overall, 244 PDWs were included in the ML 
analysis, of whom 24.6% (n = 60) met the criteria for CAI. 
All PDWs who participated in this study were male. The 
means and standard deviations of the Ankle Instability 
Instrument score were 5.9 ± 1.2 and 2.3 ± 1.5 in PDWs 
with and without CAI, respectively. The proportions of 
the side with CAI were 18.3%, 31.7%, and 50.0% on the 
right (n = 11), left (n = 19), and both sides (n = 30; the side 
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with the greater Ankle Instability Instrument: right = 12 
and left = 18), respectively. The proportions of the domi-
nant side in PDWs without CAI were 97.8% and 2.2% on 
the right (n = 180) and left (n = 4) sides, respectively.

Predictive models of machine learning
Table  2; Fig.  1 present the performances of the five ML 
models for predicting CAI during model training and 
testing, and Table  3 shows the most important predic-
tors. Five ML models during the training model classified 
PDWs with and without CAI, performed in the order of 
high AUC, support vector machine [AUC, 0.807 (good)], 
random forest [AUC, 0.800 (good)], Extreme Gradient 
boosting [AUC, 0.796 (fair)], LASSO logistic regression 
[AUC, 0.696 (poor)], and Naïve Bayes machine [AUC, 
0.667 (poor)] (Table 2; Fig. 2). During the test model clas-
sification of PDWs with and without CAI, five ML pre-
diction models were performed in the following order: 

high AUC, random forest [AUC, 0.853 (good)], Extreme 
Gradient boosting [AUC, 0.824 (good)], LASSO logistic 
regression [AUC, 0.813 (good)], support vector machine 
[AUC, 0.790 (fair)], and Naïve Bayes machine [AUC, 
0.689 (poor)] (Table 2; Fig. 2).

Regarding feature permutation importance, the suc-
cess of the ECSLS, ankle dorsiflexion ROM, RCSP, num-
ber of balance retrials of the ECSLS, age, and the strength 
ratio of the evertor in the neutral position to the inver-
tor position were the most important predictors of CAI 
in support vector machine model. The ankle dorsiflexion 
ROM, evertor strength ratio in the neutral position to the 
inverter, age, lunge angle, BMI, and YBT were the most 
important predictors of CAI in the random forest model 
(Fig. 3). For the Shapley Additive Explanations, failure of 
the ECSLS, low ankle dorsiflexion ROM, a high number 
of balance retrials of the ECSLS, low strength ratio of the 
evertor in the neutral position to the invertor, low lunge 
angle, and high RCSP were the most important predic-
tors of CAI in support vector machine model. Addition-
ally, a low ankle dorsiflexion ROM, high BMI, low lunge 
angle, low evertor strength ratio in the neutral position 
to the invertor, old age, and high RCSP were the most 
important predictors of CAI in the random forest model 
(Fig. 3).

Discussion
This study demonstrated that machine learning 
approaches can effectively classify PDWs with and with-
out CAI using a combination of clinical measurements. 
The random forest model showed the best performance 
(AUC = 0.853, good; F1 score = 0.747) among the five 
machine learning models tested. Multiple machine 
learning models were employed in this study to enhance 
the robustness of our findings, as different algorithms 

Table 1 Mean (standard deviation) of baseline characteristics in PDWs with and without CAI
with CAI (n = 60) Without CAI (n = 184) p

Age (yr) 38.20 ± 6.14 37.23 ± 8.82 0.431
Work duration (day) 394.59 ± 156.60 407.80 ± 271.17 0.721
BMI (kg/m2) 25.33 ± 4.11 23.44 ± 3.46 0.001
Evertor strength in neutral position (kgf ) 21.63 ± 7.02 25.65 ± 8.55 0.000
Evertor strength in plantar flexion (kgf ) 15.12 ± 4.10 17.77 ± 6.50 0.000
Invertor strength(kgf ) 25.55 ± 7.22 29.62 ± 8.45 0.000
Ratio of evertor in neutral/invertor (%) 89.63 ± 36.81 88.81 ± 25.97 0.873
Ratio of evertor in plantar flexion/invertor (%) 64.19 ± 29.57 61.23 ± 18.66 0.469
Ankle dorsiflexor strength (kgf ) 38.05 ± 11.75 41.29 ± 13.64 0.077
Ankle dorsiflexion ROM (°) 2.11 ± 5.19 5.00 ± 4.00 0.000
Lunge angle (°) 38.61 ± 8.83 45.05 ± 30.63 0.011
Navicular drop (cm) 0.68 ± 0.51 0.65 ± 0.32 0.539
RCSP (°) 2.37 ± 3.47 1.45 ± 3.65 0.086
YBT (%) 93.41 ± 13.25 112.83 ± 13.38 0.018
Success of ECSLS (0/1) 48/12 (0/1) 112/72 (0/1) 0.007
Number of balance retrials of ECSLS (trial) 2.14 ± 1.81 1.90 ± 2.42 0.426

Table 2 Performance metrics of five machine learning 
algorithms in the training and test set
Performance metrics of five machine learning algorithms in the training 
set
Performing model AUC F1 Precision Recall
Support vector machine 0.807 0.763 0.830 0.811
Random forest 0.800 0.800 0.840 0.832
Extreme gradient boosting 0.796 0.808 0.808 0.821
Logistic regression 0.696 0.748 0.758 0.786
Naïve Bayes 0.667 0.732 0.741 0.724
Performance metrics of five machine learning algorithms in the test set
Performing model AUC F1 Precision Recall
Random forest 0.853 0.747 0.839 0.792
Extreme gradient boosting 0.824 0.761 0.800 0.792
Logistic regression 0.813 0.634 0.804 0.729
Support vector machine 0.790 0.675 0.815 0.75
Naïve Bayes 0.689 0.632 0.623 0.646
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provide complementary insights into the classification 
problem. This approach allowed us to identify consis-
tent predictive factors across different models, increasing 
confidence in their clinical relevance. The ankle dorsi-
flexion ROM, evertor strength ratio in the neutral posi-
tion to the inverter, age, lunge angle, BMI, and YBT were 
the top predictors of CAI in the random forest model of 
feature permutation importance. Low ankle dorsiflexion 
ROM, high BMI, low lunge angle, low evertor strength 
ratio in the neutral position to the invertor, old age, and 
high RCSP were the top predictors of CAI in the random 
forest model with Shapley Additive Explanations. Among 
the five ML models, the variables entered into three or 
more models for feature imputation importance were 
ankle dorsiflexion ROM (five times), age (four times), 
strength ratio of the evertor in the neutral position to 
the invertor (three times), RCSP (three times), lunge 
angle (three times), and BMI (three times). Moreover, 
among the five ML models, the variables entered into 
three or more models for the Shapley Additive Expla-
nations were low ankle dorsiflexion ROM (five times), 
low lunge angle (four times), high BMI (three times), 
old age (three times), a high number of balance retri-
als of the ECSLS (three times), and low evertor strength 

ratio in the neutral position to the invertor (three times). 
Occupational risk factors for CAI can be difficult to con-
trol, manage, or prevent because ankle injuries occur in 
uncontrolled, unpredictable, and varied outdoor environ-
ments during delivery in PDWs [10]. These findings sug-
gest specific targets for clinical intervention in PDWs: (1) 
ankle dorsiflexion ROM and lunge angle can be improved 
through joint mobilization techniques and stretching 
exercises, (2) the evertor-to-invertor strength ratio can 
be addressed through targeted muscle strengthening 
programs focusing on the ankle evertors, (3) balance 
training incorporating visual restriction (eyes-closed) 
conditions can help address postural control deficits, 
and (4) BMI management through appropriate exercise 
and lifestyle modifications should be considered as part 
of a comprehensive prevention program. These targeted 
interventions could be implemented in workplace well-
ness programs or physical therapy settings to prevent and 
manage CAI in PDWs.

Several studies have reported the performance of risk 
factor models for ankle sprains and CAI.(33–35) To pre-
dict ankle sprains occurring during on-duty physical 
exercise in firefighters, the lower limb asymmetries of 
the YBT (AUC = 0.761–0.902; sensitivity: 0.778–1.000; 

Fig. 1 Performance metrics of five machine learning algorithms in the training and test set
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specificity: 0.800–0.889) and weight-bearing lunge test 
(AUC = 0.844; sensitivity: 0.667; specificity: 0.933) were 
predictors of ankle sprains [33]. The YBT and single-leg 
hop test were used to identify adolescent soccer players 
who experienced lateral ankle sprains. The YBT postero-
medial (AUC = 0.78, sensitivity: 0.83, specificity: 0.77) and 
posterolateral directions (AUC = 0.82, sensitivity: 0.92, 
specificity: 0.65) and single-leg hop test (AUC = 0.77, sen-
sitivity: 0.67, specificity: 0.94) were predictors of ankle 
sprains [34]. The AUC value for the ankle inversion dis-
crimination apparatus in the landing test to distinguish 
between participants with and without CAI for assessing 
proprioceptive deficits was 0.756 (sensitivity: 0.733; spec-
ificity: 0.800) [35]. The present study confirmed that the 
random forest ML prediction model showed high perfor-
mance [AUC = 0.853 (good); sensitivity: 1.000, specificity: 
0.773, accuracy: 0.887] during the test model classified 
PDWs with and without CAI. Due to their multifacto-
rial contribution to ankle sprain injuries, impaired bal-
ance, postural control, ankle muscle strength, and ankle 
joint ROM are likely to contribute to ankle instability by 
reducing the ability of an individual to stabilize the ankle 

joint against inversion sprains [18, 22]. Thus, classifying 
CAI using various variables (balance, postural control, 
ankle muscle strength, ankle joint ROM, and anatomical 
deformities) may improve the performance of the mod-
els presented in this study. The random forest and sup-
port vector machine models showed higher performance 
classification between PDWs with and without CAI than 
the logistic regression model in our study. The superior 
performance of these models may be due to their ability 
to capture complex relationships in the data. However, 
the specific nature of these relationships would require 
further investigation with dedicated analyses comparing 
linear and nonlinear aspects of the associations between 
CAI and the predictor variables.

For the Shapley Additive Explanations, among the five 
ML models, the most frequently entered variables were 
low ankle dorsiflexion ROM (five times) and low lunge 
angle (four times). Individuals with CAI display less ankle 
dorsiflexion ROM than healthy controls during running 
[36] and when landing from a jump [37] due to restric-
tions in the talocrural joint [27] and distal tibiofibular 
joint kinematics [38]. Significant differences in lunge 
angle were confirmed among the three groups with CAI 
based on the lateral step-down test quality of movement 
categories (good, moderate, and poor), and there was a 
negative correlation (r = -0.39) between lunge angle and 
lateral step-down test scores [15]. Due to the nature of 
delivery work, PDWs are repeatedly exposed to going up 
and down stairs or getting in and out of cars with parcels 
and have to run or walk fast to deliver to many destina-
tions in a limited time. If sufficient dorsiflexion does not 
occur in these motions, ankle instability may occur owing 
to exposure to a state of relative plantar flexion, which 
tends to cause ankle sprain. However, it is necessary to 
determine whether CAI occurs more frequently in PDWs 
with limited ankle dorsiflexion ROM in future studies 
because our study design was cross-sectional.

Our study found that high BMI was one of the signifi-
cant predictors of CAI in PDWs. While Vuurberg et al.‘s 
meta-analysis showed that patients with lateral ankle 
sprains had higher BMI compared to healthy controls 
(with no history of ankle sprains), and those with CAI 
had higher body weight compared to healthy controls, 
our study extends these findings by demonstrating that 
BMI can help distinguish between individuals with CAI 
and those without CAI (including both individuals with 
no ankle sprain history and those who have experienced 
ankle sprains without developing instability, often termed 
“copers”) [39]. This suggests that BMI may not only be 
associated with initial ankle sprain risk but may also be 
an important factor in differentiating between those who 
develop chronic instability and those who do not follow 
an ankle sprain. These relationships between body com-
position measures and ankle stability are particularly 

Table 3 Most important predictors in five machine learning 
models
Performing 
model

Most important predictors
Feature permutation 
importance

Shapley Additive 
Explanations

Random 
Forest

Ankle dorsiflexion ROM, 
strength ratio of evertor 
in a neutral position to 
invertor, age, lunge angle, 
BMI, YBT

Low ankle dorsiflexion ROM, 
high BMI, low lunge angle, 
low strength ratio of evertor 
in a neutral position to 
invertor, old age, high RCSP

Extreme 
Gradient 
Boosting

Age, ankle dorsiflexion 
ROM, strength ratio of 
evertor in plantar flexion 
to invertor, lunge angle, 
BMI, strength ratio of 
evertor in a neutral posi-
tion to invertor

Low ankle dorsiflexion ROM, 
old age, low strength ratio 
of evertor in plantar flexion 
to invertor, low strength 
ratio of evertor in a neutral 
position to invertor, low 
lunge angle, high BMI

Logistic 
Regression

Ankle dorsiflexion ROM, 
success of the ECSLS, 
RCSP, ankle dorsiflexor 
strength, lunge angle, a 
number of balance retrials 
of the ECSLS

Fail of the ECSLS, low ankle 
dorsiflexion ROM, high 
RCSP, low ankle dorsiflexor 
strength, low lunge angle, 
a high number of balance 
retrials of the ECSLS

Support Vec-
tor Machine

Success of the ECSLS, 
ankle dorsiflexion ROM, 
RCSP, the number of 
balance retrials of the 
ECSLS, age, strength ratio 
of evertor in a neutral 
position to invertor

Fail of the ECSLS, low ankle 
dorsiflexion ROM, a high 
number of balance retrials 
of the ECSLS, low strength 
ratio of evertor in a neutral 
position to invertor, low 
lunge angle, high RCSP

Naïve Bayes Ankle dorsiflexion ROM, 
RCSP, age, strength ratio 
of evertor in plantar flex-
ion to invertor, BMI, ankle 
dorsiflexor strength

Low ankle dorsiflexion 
ROM, old age, high BMI, 
long work duration, a high 
number of balance retrials 
of the ECSLS, high ankle 
dorsiflexor strength
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Fig. 2 Receiver operating characteristic (ROC) curves of five machine learning algorithms A: in the training set, B: in the test set
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relevant in PDWs, who regularly carry heavy parcels, 
potentially increasing stress on the ankle joint. Regard-
ing age, our findings showed it was a significant predic-
tor, with older PDWs more likely to present with CAI. 

This finding is particularly relevant to the occupational 
context of parcel delivery, where workers of all ages must 
maintain similar work outputs. While previous studies 
have shown that age itself may not independently predict 

Fig. 3 A: Feature permutation importance of random forest model in the training set, B: Shapley Additive Explanations (SHAP) analyses of random forest 
model in the training set
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initial ankle sprains [40, 41], our findings suggest that in 
PDWs, older age combined with occupational demands 
may influence the development of CAI. This might be 
related to age-associated changes in neuromuscular con-
trol and strength, which become particularly relevant 
in physically demanding occupations. This relationship 
between age and CAI in occupational settings warrants 
further investigation, particularly considering the physi-
cal demands of parcel delivery work.

Numerous balance retrials of the ECSLS and a low 
strength ratio of the evertor in the neutral position to 
the invertor were entered thrice in the five ML models. 
Individuals with CAI have significantly impaired pos-
tural stability during ECSLS compared with uninjured 
controls [18, 42] Postural control deficits in individuals 
with CAI could be due to motor impairment, somato-
sensory impairment, or both [22]. During ECSLS, the 
somatosensory system, altered due to repeated ankle 
sprains and visual disturbances, is diminished when par-
ticipants close their eyes [42]. If PDWs carry parcels with 
both hands and read addresses during delivery, it is easy 
to impose visual restrictions on the environment under 
the feet of PDWs. Thus, postural control deficits may 
have contributed to CAI in PDWs in our classification 
models. Weak ankle muscle strength likely contributes 
to ankle instability by decreasing the ability of individuals 
to stabilize the ankle joint against inversion sprains [18]. 
Regarding muscle strength, our results present an inter-
esting pattern. While both evertor and invertor strength 
were significantly lower in the CAI group compared to 
controls, the evertor-to-invertor strength ratio did not 
show significant between-group differences in tradi-
tional statistical analysis. However, this ratio emerged as 
an important predictor in our machine learning models. 
This suggests that while the absolute strength of both 
muscle groups is reduced in CAI, the relative balance 
between evertors and invertors (their strength ratio) may 
have a more complex relationship with CAI than can be 
detected through traditional statistical comparisons. This 
finding aligns with biomechanical principles where the 
relative strength between antagonist muscles is crucial 
for joint stability [29, 43]. The importance of this ratio in 
our ML models, despite no significant group differences 
in direct comparisons, highlights the value of machine 
learning approaches in identifying complex relationships 
that might not be apparent through traditional statistical 
methods.

Limitations
The present study has some limitations. First, the limited 
sample size and data imbalance ( CAI = 24.6%; without 
CAI = 75.4%) may have increased the risk of overfitting. 
Further studies with larger and wider populations are 
warranted to improve the predictive efficacy of ML in 

CAI. Second, while our study used the validated Ankle 
Instability Instrument for screening CAI, we acknowl-
edge two limitations in our assessment methods. First, 
incorporating additional patient-reported outcome 
measures such as the Identification of Functional Ankle 
Instability, Foot and Ankle Ability Measure, or Cumber-
land Ankle Instability Tool could have provided more 
comprehensive assessment of functional limitations and 
instability symptoms. In addition, while we confirmed 
the presence of giving way episodes, we could not quan-
tify their frequency due to the yes/no nature of the Ankle 
Instability Instrument question regarding giving way 
episodes. Future studies should consider including mul-
tiple validated tools that can capture both the presence 
and frequency of instability symptoms to enhance the 
robustness of CAI classification. Third, there is a pos-
sibility that the best-performing model was not one of 
the five models selected because of the diversity of ML 
algorithms. Fourth, we did not measure pathomechanical 
impairments such as pathologic laxity and arthrokinema-
tic restrictions or sensory-perceptual impairments such 
as somatosensation and kinesiophobia, which may have 
contributed to CAI. If pathomechanical and sensory-per-
ceptual impairments were added to our model, the model 
performance might increase. Fifth, although there are 
statistical tests to compare different ML algorithms based 
on a single test dataset, a separate validation study could 
be needed for verification. Sixth, although our machine 
learning models showed good predictive performance, 
these findings should be considered preliminary until 
validated through prospective studies. Future research 
should test these predictive algorithms in practice to con-
firm their clinical utility in identifying PDWs at risk for 
CAI.

Conclusions
Our approach of using postural control, ankle ROM, 
ankle joint muscle strength, and anatomical deformity 
variables produced clinical ML models to classify PDWs 
with and without CAI and confirmed good predictive 
performance in PDWs. For the Shapley Additive Explana-
tions, among the five ML models, the variables entered 
into three or more models were low ankle dorsiflexion 
ROM, low lunge angle, high BMI, old age, a high number 
of balance retrials of the ECSLS, and low strength ratio 
of the evertor in the neutral position to the invertor. The 
variables contributing to the model performance regard-
ing feature importance can be considered as clinical 
guidelines for preventing and managing CAI in PDWs.
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