CORRECTION

Correction: Machine learning predicts pulmonary long Covid sequelae using clinical data

Ermanno Cordelli¹, Paolo Soda^{1,2*}, Sara Citter^{3,4}, Elia Schiavon⁵, Christian Salvatore^{5,6}, Deborah Fazzini⁷, Greta Clementi⁷, Michaela Cellina⁸, Andrea Cozzi⁹, Chandra Bortolotto^{10,11}, Lorenzo Preda^{10,11}, Luisa Francini¹, Matteo Tortora^{1,12}, Isabella Castiglioni¹³, Sergio Papa⁷, Diego Sona³ and Marco Ali^{7,14}

Correction to: Cordelli et al. BMC Medical Informatics and Decision Making (2024) 24:359

The online version of the original article can be found at https://doi.org/10.1186/s12911-024-02745-3.

*Correspondence:

Paolo Soda

paolo.soda@umu.se; p.soda@unicampus.it

¹Unit of Computer Systems and Bioinformatics, Department of Engineering, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, Rome 00128, Italy

²Department of Diagnostics and Intervention, Radiation Physics, Biomedical Engineering, Umeå University, Universitetstorget 4, 901 87 Umeå, Sweden

³Fondazione Bruno Kessler, Via Sommarive, 18, Trento 38123, Italy⁴Department of Physics, University of Trento, Via Sommarive, 14, Trento 38123, Italy

⁵DeepTrace Technologies S.R.L., Via Conservatorio 17, Milan 20122, MI, Italy

⁶Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, 27100 Pavia, Italy

⁷Department of Diagnostic Imaging and Stereotactic Radiosurgey, Centro Diagnostico Italiano S.p.A., Via S. Saint Bon 20, Milan 20147, Italy

⁸Radiology Department, ASST Fatebenefratelli Sacco, Piazza Principessa Clotilde 3, Milan 20121, Italy

⁹Imaging Institute of Southern Switzerland (IIMSI), Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland

¹⁰Radiology Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Corso Str. Nuova, 65, Pavia 27100, Italy

¹¹Radiology Institute, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, Pavia 27100, Italy

¹²Department of Naval, Electrical, Electronics and Telecommunications Engineering, University of Genova, Via all'Opera Pia 11a, Genoa 16145, Italy

¹³Department of Physics G. Occhialini, University of Milan-Bicocca, 20133 Milan, Italy

¹⁴Bracco Imaging S.p.A., Via Caduti di Marcinelle 13, Milan 20134, Italy

https://doi.org/10.1186/s12911-024-02745-3

Following the publication of the original article, the authors noted that some text in the 'Results and discussion section,' including Tables 3 and 4, and 5, was from an earlier, unedited version. This occurred due to a rendering error in the software used to write the manuscript. The original article has been corrected and the changes include the removal of Tables 3, 4 and 5. The existing Table 6 has been renamed to Table 3.

The full overview of these changes is shown in Supplementary File 1. Parts that should have been removed are marked with the red box.

The correct version of **Results and discussion** section and Table 3 are as follows:

Results and discussion

Table 2 presents the results of the three approaches described in the previous section, one per each horizontal section of the table. By column, the table reports the model used and then the five performance scores already mentioned in terms of average and standard deviation across the cross-validation folds. Still by column, we highlight in bold the best performance attained, which reveals that classifier selection exploiting the multimodality with the SVM as meta learner returns the highest scores. It is also interesting to note that, in general, the multimodal classifier selection provides values of accuracy, specificity, and AUC that are larger than those returned by shallow machine learning and by the ensemble of learners.

Cordelli et al. BMC Medical Informatics and Decision Making (2025) 25:68 https://doi.org/10.1186/s12911-025-02918-8

> © The Author(s) 2025. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Open Access

Meta-learner	Performance (%)				
	Accuracy	Sensitivity	Specificity	AUC	F1-score
Bayesian classifier	86.4 ± 1.6	69.2 ± 3.5	95.8 ± 1.3	92.7 ± 1.8	78.3 ± 2.7
Decision Tree	76.4 ± 1.4	55.2 ± 2.9	88.8 ± 1.1	83.9 ± 2.1	63.1 ± 2.5
SVM	91.6 ± 0.7	79.2 ± 2.6	99.2 ± 0.7	98.0 ± 0.5	86.5 ± 1.3
XGBoost	81.4 ± 0.9	59.3 ± 2.1	93.3 ± 1.2	88.0 ± 1.7	68.7 ± 1.6

Table 3 Results of the multimodal approach when the features are randomly divided. As in Table 2, missing continuous and categorical values are imputed by the mean and the mode, respectively, as reported in "Data preparation" section

and to discover possible specific regions where the high-AUC classifier might perform worse than the other low-AUC classifier, Fig. 2 plots the corresponding average ROC curves¹. From left to right, it displays the plots of the shallow machine learning approach, of the ensemble of classifiers, and of the approach exploiting the modality selection. In the leftmost plot, we notice that the SVM curve lies over the others in a large portion of the ROC space, confirming its better performance observed in Table 2. The ROC plot in the case of ensemble learning shows that Random Forest and Majority Voting performs better than the other three approaches, since their curves lying closer to the ideal point, thus confirming the values observed in Table 2. Furthermore, while there the AUC values of the Random Forest and Majority Voting are closer, in the plot we notice that the Random Forest is more liberal than Majority Voting. The rightmost chart refers to the approach exploiting the multimodality when the model used for the selection varies: it is worth noting that the SVM lies closer to the ideal point in the ROC space, confirming its superiority to the other learners. We deem that this happens because the original feature space is in R 3 and the kernel expansion, together with the binary decomposition of the three-class classification task tackled by the model, helps obtain a linear separable space where the SVM effectively learns the boundary [48].

To deepen the results summarized by the AUC values,

Finally, we focus more on the third approach exploiting the multimodality: we investigate to what extent having divided the feature set according to a medical point of view impacts the results. To this end, we randomly shuffle the features in three sets, therefore losing any medical interpretation while keeping the number of modalities for the sake of comparison. The results attained using the same selection methodology reported in Sect. 3.3 are reported in Table 3, showing that the random organization of the descriptors reduces the performance in many scores and for different models. Furthermore, in the case of the best-performing models, i.e., the SVM in both Tables 2 and 3 we found that their performance statistically differs (p < 0.05) according to the Wilcoxon-Mann-Whitney test.

Supplementary Information

The online version contains supplementary material available at https://doi.or g/10.1186/s12911-025-02918-8.

Supplementary Material 1

Published online: 10 February 2025

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 $^{^{1}\,}$ We decided to do not show the horizontal and vertical standard deviation to make clearer the plots.