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Abstract 

Background In Japan, reporting of medical device malfunctions and related health problems is mandatory, 
and efforts are being made to standardize terminology through the Adverse Event Terminology Collection 
of the Japan Federation of Medical Device Associations (JFMDA). Internationally, the Adverse Event Terminology 
of the International Medical Device Regulators Forum (IMDRF-AET) provides a standardized terminology collection 
in English. Mapping between the JFMDA terminology collection and the IMDRF-AET is critical to international harmo-
nization. However, the process of translating the terminology collections from English to Japanese and reconciling 
them is done manually, resulting in high human workloads and potential inaccuracies.

Objective The purpose of this study is to investigate the optimal machine translation model for the IMDRF-AET 
into Japanese for the part of a function for the automatic terminology mapping system.

Methods English-Japanese parallel data for IMDRF-AET published by the Ministry of Health, Labor and Welfare 
in Japan was obtained from 50 sentences randomly extracted from the terms and their definitions. These English 
sentences were fed into the following machine translation models to produce Japanese translations: mBART50, m2m-
100, Google Translation, Multilingual T5, GPT-3, ChatGPT, and GPT-4. The evaluations included the quantitative metrics 
of BiLingual Evaluation Understudy (BLEU), Character Error Rate (CER), Word Error Rate (WER), Metric for Evaluation 
of Translation with Explicit ORdering (METEOR), and Bidirectional Encoder Representations from Transformers (BERT) 
score, as well as qualitative evaluations by four experts.

Results GPT-4 outperformed other models in both the quantitative and qualitative evaluations, with ChatGPT show-
ing the same capability, but with lower quantitative scores, in the qualitative evaluation. Scores of other models, 
including mBART50 and m2m-100, lagged behind, particularly in the CER and BERT scores.

Conclusion GPT-4’s superior performance in translating medical terminology, indicates its potential utility in improv-
ing the efficiency of the terminology mapping system.
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Introduction
In Japan, it is required to report any malfunctions occur-
ring during the operation of medical devices, the asso-
ciated health problems, and information related to the 
investigation of causes, as Medical Device Malfunction 
Reports to the government. To promote the use of stand-
ard terminology in these reports, the Japan Federation of 
Medical Device Associations (JFMDA) has published an 
Adverse Event Terminology Collection (JFMDA Termi-
nology Collection) [1]. At present, the sixth edition has 
been published, comprising a collection of 97 individual 
terminology sets and one common terminology set. The 
individual terminology sets are associated with groups of 
Japanese medical device nomenclatures, such as medical 
X-ray devices, catheters, and cardiac pacemakers. Each 
terminology set includes approximately 100 terms, with 
a total of around 9,000 terms. The common terminology 
set is an organized version of the Adverse Event Termi-
nology released by the International Medical Device 
Regulators Forum (IMDRF-AET) in a format suitable for 
use in Japan, while the IMDRF-AET is utilized for the 
collection of adverse event information abroad [2].  For 
international harmonization of the JFMDA Terminol-
ogy Collection, manual mapping work is conducted by 
the JFMDA Malfunction Terminology Working Group. 
The JFMDA terminology collection is organized in a two-
level structure, with upper-level terms indicating gen-
eral categories and lower-level terms representing the 
specific terms recorded in reports. On the other hand, 
the IMDRF-AET follows a three-level structure, with all 
terms being eligible for inclusion in reports. The mapping 
process involves a one-to-one mapping between the spe-
cific terms in items in the JFMDA terminology collection 
and the corresponding terms in the IMDRF-AET. This 
work involves manually translating the IMDRF-AET into 
Japanese and visually comparing the IMDRF-AET trans-
lation data with the JFMDA Terminology Collection. As 
both terminology collections are updated at least once a 
year, each update requires significant human resources 
and time due to the thousands of terms involved, leading 
to potential mapping errors and inconsistencies between 
the terminology collections. To improve on this, we 
have been working on the development of a computer-
aided system for mapping between terminologies with a 
machine translation and sentence similarity evaluation 
tool [3–5]. In this paper, we focus on machine translation.

Research on machine translation targeting medicine, 
according to a review by Dew et al., is primarily aimed at 
Health Education and Clinical Communication, with no 
studies identified on the translation of documents related 
to medical devices [6]. Noll et al. reviewed research cases 
on machine translation targeting medical terms such as 
SNOMED, investigating the target glossaries, languages, 

machine translation tools, and evaluation metrics [7]. 
Research specifically focusing on Japanese is very limited, 
forming only 3% of the studies.

We have been working on the development of deep 
learning-based English-Japanese translation models spe-
cifically for the IMDRF-AET [4, 5]. These studies have 
shown that the translation accuracy of IMDRF-AET 
using Generative Pretrained Transformer 3 (GPT-3) was 
the best, but since its publication, deep learning technol-
ogy in natural language processing has advanced. The 
evolution of ChatGPT and GPT-4, surpasses traditional 
methods in various tasks. For instance, in examinations 
for medical licenses and specialist examinations, GPT-4 
has achieved or nearly achieved passing marks [8–12]. 
Regarding clinical applications, there are reports that 
explanations to patients by ChatGPT are more under-
standable than those from doctors [13], and it has been 
applied to various tasks such as generating and simplify-
ing radiology reports [14, 15]. These outcomes suggest 
that GPT-4 could be useful for the translation task of 
IMDRF, and given the enhancements made to GPT-4 for 
languages other than English [16], it is also expected to 
perform well in translations into Japanese.

The purpose of this study is to identify an optimal 
machine translation model for IMDRF-AET translation, 
incorporating ChatGPT and GPT-4.

Methods
Data collection and trained translation model acquisition
The IMDRF-AET comprises a single set of terminologies 
applicable to all medical devices, with sections ranging 
from Annex A to G, covering terms related to medical 
device problems, cause investigation, health effects, and 
medical device components. The IMDRF-AET is struc-
tured into three levels, with each term assigned a defini-
tion. Reports may utilize terms from all levels.

For this research, bilingual data from the IMDRF-AET 
published by the Ministry of Health, Labour and Wel-
fare [17] was acquired, and 50 sentences were selected 
by generating pseudorandom values from the terms and 
definition texts in annexes A, E, F, and G. The investi-
gation terms and these definitions in annex B, C, and D 
were excluded as they utilize the translated version from 
the IMDRF-AET and do not require additional mapping.

For the acquisition of pretrained translation mod-
els, this study obtained the models used in the previous 
study: the google translation [18] and multilingual-T5 
(mT5) [19] released by Google, multilingual bidirec-
tional auto-regressive transformer (mBART) [20] and 
Many-to-Many multilingual translation model (m2m-
100) [21], released by Facebook AI Research (now Meta 
AI Research), and GPT-3 [22] released by Open AI. 
For m2m-100, both the 418  million parameter model 
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(m2m-100–418 M) and the 1.2 billion parameter model 
(m2m-100-1.2B) were utilized. In addition to these other 
models, this study utilized ChatGPT, and GPT-4 [23], 
which are provided by OpenAI.

Translations using Google Translation and mT5 were 
conducted by having the publicly available models from 
an original Python program perform machine transla-
tion. For GPT-3, ChatGPT, and GPT-4, machine trans-
lation was executed by entering “Translate the following 
sentence into Japanese” into the prompt on the webpage 
provided by OpenAI. These tasks were carried out in 
July 2023. For machine translations using mBART and 
m2m-100, subword tokenization was performed as a pre-
processing step for the English input through byte pair 
encoding (BPE). Subsequently, the subword-tokenized 
English texts were input into each model for translation 
into Japanese. The software utilized for translations with 
mBART and m2m-100 was fairseq [24].

Evaluation of machine translation
English sentences in test data were input into all the mod-
els to generate Japanese translated sentences. A random 
selection of 50 sentences was extracted from the test data 
for both quantitative and qualitative evaluations. For the 
quantitative evaluation, the Bilingual Evaluation Under-
study (BLEU) [25], character error rate (CER), word error 
rate (WER), Metric for Evaluation of Translation with 
Explicit ORdering (METEOR) [26], and Bidirectional 
Encoder Representations from the Transformers (BERT) 
score [27] were used.

The BLEU metric [25] is widely utilized in assessing 
the accuracy of machine translations. It is an evalua-
tion metric based on the n-gram match rate between the 
machine-generated text (generated sentence) and the 
baseline of the Japanese translation (reference sentence) 
found in the translated version of the IMDRF terminol-
ogy. The BLEU score is calculated using the following 
formula:

where, P(n) represents the n-gram (ranging from uni-
gram to 4-gram) match rate between the generated sen-
tences in the test data and the reference sentences. The 
brevity penalty (BP) is a factor that applies a penalty 
when the generated sentence is shorter than the refer-
ence sentence. The purpose of BP is to discourage overly 
short translations that could artificially inflate the match 
rate by being brief but not necessarily accurate or com-
plete. The higher the BLEU score, the closer the gener-
ated sentence is to the reference sentence.

BLEU = BP · exp

(

N
∑

n=1

1

N
log P(n)

)

The CER indicates the percentage of characters that 
were incorrectly predicted. The lower the value, the bet-
ter the performance of the translation system with a CER 
of 0 being a perfect score, CER can then be computed as:

where  Sc is the number of character substitutions,  Dc 
is the number of character deletions,  Ic is the number of 
character insertions, and  Nc is the number of characters 
in the reference sentence.

Word error rate represents the percentage of words 
that were incorrectly predicted.

where  Sw is the number of word substitutions,  Dw is 
the number of word deletions,  Iw is the number of word 
insertions, and  Nw is the number of words in the refer-
ence sentence. The lower the value of WER, the better 
the translation accuracy.

The METEOR [26] metric measures the quality of the 
generated text based on the alignment between the gen-
erated text and the reference text. The metric is based on 
the harmonic mean of the unigram precision and recall, 
with recall weighted higher than precision. The weighting 
is 1 for recall and 9 for precision, according to the litera-
ture, and the formula for the harmonic mean is as follows

A penalty factor is applied for lack of cohesion in the 
word order between the translation and the reference. 
The penalty is calculated based on the number and size of 
chunks (contiguous sequences of matched words) in the 
translation, with more and longer chunks indicating bet-
ter order. The penalty formula is:

The final METEOR score is computed by applying the 
penalty to the harmonic mean, as follows:

The BERT score [27] is a metric designed to evaluate 
the quality of text generated by machine learning mod-
els. It utilizes the BERT model, a deep learning algo-
rithm developed by Google. Unlike traditional evaluation 
metrics that frequently rely on surface-level text com-
parisons, the BERT score calculates the semantic simi-
larity between the generated text and a reference text. 

CER =
Sc + Dc + Ic

Nc

WER =
Sw + Dw + Iw

Nw

Harmonic mean =
10 × Precision × Recall

Recall+ 9 × Precision

Penalty = 0.5×
number of chunks

number of unigrams matched

3

METEOR = Harmonic mean × (1 − Penalty)
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This process involves embedding both the generated 
and reference texts into high-dimensional vector spaces 
using BERT, followed by computing the cosine similarity 
between these vectors. This methodology allows for the 
assessment of textual similarity and quality based on con-
textual meanings, providing a more nuanced evaluation 
compared to conventional metrics.

For the qualitative evaluation, four evaluators con-
ducted a visual assessment. One evaluator was a phy-
sician with 20 years of experience in medical device 
regulatory affairs, including approval reviews and safety 
corrective actions. Two other evaluators were natural 
language researchers, one with 5 years and the other 
with 15 years of experience as radiological technologists. 
The fourth evaluator had at least 10 years of experience 
in medical device regulatory affairs and an additional 
10 years of experience serving on post-marketing safety 
committees of industry associations.

This assessment focused on the semantic consistency 
of the generated sentences. The evaluators determined 
whether the meanings of the translations were consistent 
with the original English texts, considering factors such 
as context, accuracy, and completeness. The percent-
age of generated sentences that received approval from 
at least three evaluators was deemed to have achieved 
semantic coherence. Inter-rater agreement was evaluated 
by calculating the κ values for each pair of evaluators, fol-
lowed by computing the average κ value across all pairs, 
as described in [28]. κ value of 0.41–0.60 was considered 
to indicate moderate agreement, 0.61–0.80 was consid-
ered to indicate good agreement, and 0.81–1.00 was con-
sidered to indicate excellent agreement.

Results
For inter-rater agreement, the κ values for the six pairs 
were calculated, ranging from 0.44 to 0.59, with the 
asymptotic test yielding p < 0.001. The average κ value 
was 0.51, indicating a moderate agreement.

The scores of each model are presented in Table 1. The 
best performance in both the quantitative and qualitative 
evaluations was achieved by GPT-4. ChatGPT showed a 
capability comparable to GPT-4 in qualitative evaluation, 
but it did not reach the quantitative scores of GPT-4. 
For the other models, mBART50 achieved a CER second 
only to GPT-4, but its performance in the other quanti-
tative evaluations and qualitative evaluation was poorer. 
The two models of m2m-100 did not achieve good values 
in either of the quantitative and qualitative evaluations, 
with these models ranking either last or second to last 
in the CER and BERT scores. Google Translation ranked 
second after GPT-4 in the BLEU and BERT scores, and 
its results in the qualitative evaluation followed GPT-4 
and ChatGPT in the ranking. The mT5 had the third-best 
results in BLEU and WER but ranked lowest in the visual 
evaluation. The GPT-3 ranked fourth in the qualitative 
evaluation, but its BLEU score was also low.

Translation examples are shown in Tables  2, 3 and 4. 
In Table 2, the GPT-4 produced correct Japanese transla-
tions compared with the reference texts, but other mod-
els output incorrect words and transliterations not used 
in clinical practice. The example in Table  3 shows that 
the objective was to translate “regionally-limited” into 
the Japanese term which refers to treatment being con-
fined to a lesion or its surrounding area, but the context 
was not adequately captured, leading to the translation 
as a geographical area. This phenomenon was observed 
across almost all models. In models excluding the three 
types of GPT included here, outputs included mistrans-
lations, untranslated terms, and transliterations not used 
in clinical practice among the medical terms. In the case 
shown in Table  4, the use of prepositional phrases and 
the order of words were incorrect, leading to an errone-
ous output of causality, despite the words being almost 
equivalent to the reference text.

Table 1 Score of each machine translation models

Model BLEU CER WER METEOR BERT score Evaluators

mBART50 15.29 0.541 0.719 0.481 0.855 42%

m2m-100–418 M 17.29 0.639 0.731 0.416 0.825 34%

m2m-100-1.2B 21.75 0.679 0.673 0.460 0.831 42%

googletranslation 27.72 0.543 0.581 0.574 0.881 56%

mT5 25.91 0.573 0.601 0.440 0.837 34%

GPT-3 20.85 0.578 0.610 0.452 0.861 54%

ChatGPT 24.69 0.569 0.876 0.571 0.877 72%
GPT-4 35.24 0.424 0.496 0.612 0.892 72%
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Discussion
In both the quantitative and qualitative evaluations, 
GPT-4 achieved the highest scores, establishing itself 
as the optimal model for this task. The superiority of 
GPT-4 in the quantitative evaluations can be attributed 
to its precise translation of health problem terms and 
events derived from medical device malfunctions, such 
as “angioedema” and “erythema,” into Japanese, as dem-
onstrated in the examples from Tables 2 and 3. The ten-
dency of GPT-4 to produce translations closely matching 
the terms used in the reference texts was a contributing 
factor. The quantitative evaluation metrics, BLEU, CER, 
WER, and METEOR, used in this study assess the string 
similarity to reference texts, which led to lower quantita-
tive scores for ChatGPT when it produced phonetic tran-
scriptions that differed from the reference terms, despite 
being equivalent in the qualitative evaluation to GPT-4. 
The reason why the ChatGPT BLEU score was approxi-
mately 10 points lower than that of GPT-4, but equiva-
lent in the qualitative evaluation, is believed to be due to 
the acceptance of the ChatGPT phonetic transcriptions 
as valid translations.

While GPT-4 was identified as the best model, it 
exhibited two main issues. The first issue, as shown in 
Table  3, is the misinterpretation of “regionally-limited” 
to words with geographical meanings. This may be attrib-
uted to the predominance of “regional” being associated 
with geographical contexts in the corpus from which it 
learned. A potential countermeasure for GPT-4 involves 
prompt tuning. Here, by specifying in the prompt that 
“regionally-limited is not geographical,” the correct out-
put was generated. Therefore, if translation errors are 
known to occur with specific terms in advance, prompt 
tuning could be a useful approach.

The second issue concerns the degradation of trans-
lation accuracy due to the breakdown of causal 

relationships in longer sentences. In the example from 
Table 3, the reference text stated “extreme thirst accom-
panied by chronic excessive intake of water,” but GPT-4 
translated it as “extreme thirst in the throat due to 
chronic excessive water intake.,” introducing an error in 
the causal relationship. Generally, it is said that language 
models learn only the patterns of word occurrences from 
their training data, which can lead to the generation of 
unfounded sentences or hallucinations. This case is con-
sidered to be a result of one such hallucination. One way 
around this would be the generation of multiple out-
puts. When prompted to regenerate the output, the cor-
rect translation “extreme thirst accompanied by chronic 
excessive water intake” was produced. Creating multiple 
generated texts and manually selecting the most accu-
rate one could lead to the acquisition of higher-precision 
translations.

There are limitations to relying solely on GPT-4 for 
the translation of mission-critical medical documents. 
To mitigate such risks, it is recommended to incorpo-
rate human oversight and a proofreading process. While 
GPT-4 has demonstrated nearly 90% accuracy in qualita-
tive evaluations and recorded the highest scores in quan-
titative assessments, its utility is undeniable. However, 
it is essential to use GPT-4 with an understanding of its 
output limitations.

Regarding the BERT score, it was observed that all 
models achieved favorable outcomes, with scores exceed-
ing 0.8. This metric evaluates similarity by transforming 
sentences into vector representations, suggesting that 
the nuances of the sentences generated by all models 
were likely close to those of the reference texts, indicat-
ing a high probability that the translations did capture 
the intent of the original English sentences. However, it is 
important to note that this score is not fully semantic and 
may have difficulty accounting for changes in temporality 

Table 2 The Japanese translation of "angioedema." Inside the parentheses is the English translation of the Japanese generated text
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or the direction of causality. Nonetheless, by utilizing 
qualitative evaluations, and considering that good results 
have been obtained in these evaluations, we believe that 
the aforementioned shortcomings can be mitigated.

The limitations of this study include the use of an out-
dated version of the terminology collection (the latest 
being the fifth edition), and the inherent imbalance in the 
distribution of terms across categories. Furthermore, the 

Table 3 The Japanese translation of "A regionally-limited response to an antigen, which may include inflammation, induration, 
erythema, pruritus or pain." Inside the parentheses is the English translation of the Japanese generated text
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accuracy of publicly available GPT versions may change 
with future updates.

Conclusion
The optimal machine translation model for translating 
IMDRF-AET was GPT-4, which achieved the highest 
scores in both quantitative evaluations and visual assess-
ments. Moving forward, we plan to advance our exami-
nation of glossary mapping based on these translation 
results. This study has highlighted the current capabili-
ties and limitations of machine translation using LLM, 
it also opens up new avenues for research that could sig-
nificantly impact the future of translation technology in 
medical domain.
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