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Abstract 

Background Virtual Gene Panels (VGP) comprising disease-associated causal genes are utilized in the diagnosis 
of rare genetic diseases to evaluate candidate genes identified by whole-genome and whole-exome sequencing. 
VGPs generated by the PanelApp software were utilized in a UK 100,000 Genome Project pilot study to filter candidate 
genes, thus enhancing diagnostic efficiency for rare diseases. However, PanelApp also filtered out disease-causing 
genes in nearly 50% of the cases.

Methods Here, we propose various methods for optimized approach to design VGPs that significantly improve 
the diagnostic efficiency by leveraging the hierarchical structure of the Mondo disease ontology, without exclud-
ing disease-causing genes. We also performed computational experiments on an evaluation dataset comprising 74 
patients to determine the optimal VGP design method.

Results Our results demonstrate that the proposed method can significantly enhance rare disease diagnosis effi-
ciency by automatically identifying candidate genes. The proposed method successfully designed VGPs that improve 
diagnosis efficiency without excluding disease-causing genes.

Conclusion We have developed novel methods for VGP design that leverage the hierarchical structure of the Mondo 
disease ontology to improve rare genetic disease diagnosis efficiency. This approach identifies candidate genes with-
out excluding disease-causing genes, and thereby improves diagnostic efficiency.

Keywords Rare disease, Ontology, Genetic testing, Virtual gene panel

Background
Rare diseases exhibit an extremely low prevalence rate, 
estimated to be around 10,000 cases worldwide [1]. The 
estimated number of individuals affected by these dis-
eases worldwide is estimated to surpass 400 million, with 
a significant portion remaining undiagnosed for years 
[2]. Approximately 80% of the rare diseases are believed 
to have a genetic origin [1]. Next-generation sequencing 
(NGS) have reduced the cost and time required to decode 
genetic sequences, and thus provides with a powerful 
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tool for diagnosing rare diseases as well [3]. However, 
diagnosing rare diseases using NGS still requires a labor-
intensive process of literature search to identify a single 
candidate disease-causing gene associated with disease 
symptoms. Even for experts, this manual interpretation 
may take hours [4].

Virtual gene panels (VGP) comprising a set of disease-
related causal genes are used to identify candidate genes 
for disease diagnosis efficiency and thus to facilitate the 
interpretation process. The number of potential can-
didates can be significantly reduced by considering the 
overlap between candidate genes and the set of genes in 
the VGP corresponding to an initial diagnosis. To this 
end, a pilot study of UK 100,000 Genomes Project for 
rare disease diagnosis developed PanelApp, a resource 
comprising 340 VGPs that can be applied for the man-
ual interpretation of whole-genome sequencing results 
[5]. The PanelApp is a publicly available knowledge base 
that allows virtual gene panels to be created, stored, and 
queried. It also includes a crowdsourcing tool that allows 
genes, short tandem repeats, and copy number variants 
to be added or reviewed by experts in the international 
scientific community. Manual curation in this way pro-
vides an opportunity to establish standard virtual gene 
panels with sufficient evidence on disease association [6].

PanelApp was efficient in identifying candidate genes 
in half of the cases, yet also filtered out disease-causing 
genes in the remaining half [7]. This may be attributed 
to two factors. First, PanelApp includes only 340 VGPs 
that are identified via manual curation. This limited set of 
genes may not necessarily be relevant for an initial diag-
nosis. Second, if the initial diagnosis is slightly incorrect, 
the corresponding VGP may not include the disease-
causing gene in the respective case.

In this study, we propose a method for automatically 
selecting VGPs developed independently using a knowl-
edge graph. Additionally, we propose several methods 

to expand VGPs using the hierarchical structure of the 
Mondo disease ontology (Mondo) [8] in cases where the 
initial diagnosis is slightly incorrect. The basic prem-
ise of the expanded VGP design is the addition of genes 
associated with the superclass or siblings of the disease 
initially diagnosed in Mondo to an original set of genes. 
We evaluated the diagnostic efficiency of these meth-
ods using 74 cases of rare genetic diseases. Our results 
showed that the best method successfully identified can-
didate genes while retaining disease-causing genes with 
high probabilities.

Methods
Knowledge graph
We collected a large amount of medical data and inte-
grated it into the RDF Portal (https:// rdfpo rtal. org/) [9]. 
Then, we constructed a resource description framework 
(RDF) based knowledge graph with interoperability based 
on this data. The knowledge graph included more than 16 
million triples with 15 properties. Using this knowledge 
graph, we constructed a process for the design of VGPs 
(https:// integ bio. jp/ rdf/ datas et/ pubca sefin der). Figure  1 
illustrates a simplified knowledge graph derived from the 
original, with a focus on highlighting the paths connect-
ing diseases to genes.

All diseases and genes were defined as instances of 
“med2rdf:Disease”  and “med2rdf:Gene” classes, respec-
tively, by Med2RDF-ontology (http:// med2r df. org/) [10]. 
Gene-disease associations were defined as instances of 
the “sio:SIO_000983” class as defined by Semantics Sci-
ence Integrated Ontology [11].

We collected gene-disease associations from the fol-
lowing sources.

1. MIM2Gene  (https:// ftp. ncbi. nlm. nih. gov/ gene/ DATA/ 
mim2g ene_ medgen).  Associations between MIM 

Fig. 1 The knowledge graph for designing VGPs automatically

https://rdfportal.org/
https://integbio.jp/rdf/dataset/pubcasefinder
http://med2rdf.org/
https://ftp.ncbi.nlm.nih.gov/gene/DATA/mim2gene_medgen
https://ftp.ncbi.nlm.nih.gov/gene/DATA/mim2gene_medgen
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Numbers with type “phenotype” and NCBI Gene IDs 
were extracted.

2. OrphaData (http:// www. orpha data. org/ data/ xml/ en_ 
produ ct6. xml).  Associations between OrphaCodes 
and Gene symbols were extracted.

3. GenCC (https:// search. thege ncc. org/ downl oad) [12]. 
Associations between disease IDs, including MIM 
Numbers, OrphaCodes, and Mondo IDs and HGNC 
IDs, were extracted.

We matched MIM numbers in Online Mendelian 
Inheritance in Man [13] and OrphaCodes in Orphanet 
Rare Disease Ontology [14] with their correspond-
ing Mondo IDs using the “equivalentTo”  classes in 
Mondo (data-version:releases/2021–06-01). In the con-
structed knowledge graph, genes were thus associated 
with a disease ID in Mondo through med2rdf:Disease 
and sio:SIO_000983. We defined a set of genes associ-
ated with a disease using this graph. For disease ID d in 
Mondo, we denote a set of genes by G0(d) connected to d 
using the path in the knowledge graph. If d has children, 
the sets of genes associated with them are also consid-
ered. We define G(d) = G0(d) ∪ (∪ d′ is a subClassOf d G(d′)) as 
a set of genes associated with disease d.

Methods for expanding VGPs
Initially, when disease d is diagnosed, G(d) can be 
regarded as a VGP for d. Original set (OR): For a given 
disease d, output a set G(d) of genes. Using the OR, we 
can obtain as many VGPs as the number of Mondo IDs.

However, similarly to the issue mentioned earlier, OR 
excludes disease-causing genes if the initial diagnosis 
is slightly different. Here, we present six methods for 

expanding the VGPs initially included in the OR to over-
come this problem.

Mondo forms a directed acyclic graph, with nodes rep-
resenting diseases and edges “rdfs:subClassOf” relation-
ships between diseases. Using this graph, we expanded 
the VGPs based on OR by adding superclass genes 
to Mondo using these methods. Four of these meth-
ods involve nodes ascending once or twice through the 
RDF property:subClassOf. The remaining two meth-
ods involve ascending nodes until the number of genes 
exceeded a certain threshold.

Here, we describe four simple rolling-up methods to 
expand the VGP using rdfs:subClassOf. One class up for 
all paths (1UAP): For disease d, compute a set of genes 
G = {g|g ∈ (d′), d rdfs:subClassOf d′}. Two classes up for 
all paths (2UAP): For disease d, compute a set of genes 
G = {g|g ∈ (d′′), d rdfs:subClassOf d′ and d′ rdfs:subClassOf 
d′′}. One class up for minimum paths (1UMP): For dis-
ease d, compute a set of genes G = argmin|(d′)| {g|g ∈ G(d′), 
d rdfs:subClassOf d′}. Two classes up for minimum 
paths (2UMP): For disease d, compute a set of genes, 
G = argmin|(d′′)| {g|g ∈ G(d′′), d rdfs:subClassOf d′ and 
d′ rdfs:subClassOf d′′}. Let us suppose that the initial dis-
ease d is schizencephaly based on the example shown in 
Fig. 2B. In the 1UAP method, we roll up d to its one-step 
higher classes in all paths, resulting in d being changed to 
an encephaloclastic disorder or congenital nervous system 
disorder. Similarly, in the 2UAP method, we rolling-up d to 
its two-step higher classes, leading to d being changed to 
cerebral malformation and nervous system disorders. Thus, 
the 1UAP method expands the VGP set for d by including 
genes associated with Schizencephaly, Encephaloclastic 
disorders, and Congenital nervous disorders. In contrast, 

Fig. 2 Examples A and B are provided as illustrative examples to aid in understanding the structure of Mondo. An example of Schizencephaly 
(MONDO_0010011). The numbers next to the Disease in Fig. 2B represent the count of genes that are combined in the union of the gene set 
of that Disease and the gene set of its subclasses

http://www.orphadata.org/data/xml/en_product6.xml
http://www.orphadata.org/data/xml/en_product6.xml
https://search.thegencc.org/download
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the 2UAP method expands the VGP set to include genes 
associated with Schizencephaly, Encephaloclastic disor-
ders, congenital nervous system disorders, cerebral mal-
formations, and nervous system disorders. With 1UMP, d 
is changed to encephaloclastic disorder, the one with the 
lowest number of genes among encephaloclastic disorder 
and congenital nervous system disorder, which is a one-
step higher class. With 2UMP, d is changed to cerebral mal-
formation, the one with the lowest number of genes among 
cerebral malformation and nervous system disorder, which 
is a two-step higher class.

Additionally, we describe the following methods to 
expand the VGP by rolling-up until the number of genes 
exceeds the threshold k.

• All paths up with threshold k (TH k AP)
• Minimum path up with threshold k (TH k MP)

For an initially diagnosed disease d, TH k AP and TH 
k MP compute a set D of Mondo IDs, such that each d′ 
in D is d or an ancestor of d and the size of G(d′) is equal 
to or greater than the threshold k. TH k AP outputs the 
union of G(d′) for all d′ in D, and TH k MP outputs G(d′) 
for d′ with a minimum size of G(d′). The algorithms of 
TH k AP and TH k MP are presented in Algorithms 1 and 
2, respectively.

For example, with the initial disease d as schizenceph-
aly and the threshold value as 1,000, the TH k AP method 
results in changing d to a congenital nervous system dis-
order and developmental defects during embryogenesis, 
which have gene counts exceeding the threshold. How-
ever, the TH k MP method changes d change to congeni-
tal nervous system disorder, which is the class with the 
smallest number of associated genes among congenital 
nervous system disorders and developmental defects 
during embryogenesis.

Algorithm 1 TH k AP

Algorithm 2 TH k MP

Results
We evaluated the diagnostic efficiency of the developed 
VGPs using a whole-exome sequencing (WES) dataset 
comprising 74 patients. The schema of the test dataset 
consists of “Patient ID”, “Initial diagnosis (using Mondo)”, 
“Candidate gene list”, “Phenotypes (using HPO)”, and 
“Final disease-causing genes”. The median and average 
number of candidate genes were 384 and 383.25, respec-
tively. Only a single disease-causing gene was included per 
patient in G. The number of initially diagnosed diseases 
ranged between one and three, with a median of one.

Using a knowledge graph, the VGPs for approximately 
10,000 diseases included in Mondo can be automati-
cally designed based on the OR method. To evaluate the 
performances of the expansion methods, we computed 
their coverage and median. Additionally, we evaluated 
the expectations, considering how extensive the analy-
sis should be when using the panel in practice to deter-
mine the finaldisease-causing genes. The coverage refers 
to the ratio of VGPs, including disease-causing genes. 
The median is the median of the sizes of the intersec-
tions between the patient’s candidate genes and the VGPs. 
Expectation is the expected number of genes to be ana-
lyzed to determine the final disease-causing gene. If VGPs 
include disease-causing genes, only the genes at the inter-
section of the patient’s candidate genes and the VGPs 
should be analyzed. However, if the VGPs do not include 
disease-causing genes, all candidate genes should be ana-
lyzed. Hence, the expectation was computed using the fol-
lowing formula:

Expectation = (�g(p)∈VGP(p)|C(p) ∩ VGP(p)| +�g(p)/∈VGP(p)|C(p)|)/74
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where for patient p, a set of genes in the VGP, the disease-
causing gene, and a set of candidate genes are denoted as 
VGP(p), g(p), and C(p), respectively.

Figure 3 shows the results for TH k AP and TH k MP 
when the threshold was increased from 0 to 4,500 in 
increments of 250 (All results can be found in Supple-
mentary Material 1). Tables 1 and 2 show the results for 
TH k AP and TH k MP when the threshold was increased 
from 0 to 1,750 in increments of 250.

To gain a comprehensive understanding of this expec-
tation, we conducted experiments by increasing the 
threshold k from 0 to 4,500 in increments of 250. The 
results are presented in Fig. 3. TH 500 AP to TH 4,500 
AP consistently demonstrated the best performances in 
terms of coverage with a value of one, yet with relatively 

high median values (all results are shown in Supplemen-
tary Material 1). In contrast, OR yielded the best median 
but the worst coverage. TH 250 MP exhibited the high-
est expectation among all tested threshold settings (all 
results are indicated in Supplementary Material 1).

Based on this, we conducted additional experi-
ments by incrementally increasing the threshold value 
around TH 250 MP from 0 to 500 in increments of 10 
to determine the optimum value of k (Fig.  4). With k 
of 190, the expected value reached the highest perfor-
mance with 38.39. However, from k = 190 to 300, only 
small variations were observed, and the performance 
was maintained. The results of this experiment are 
presented in the supplementary data in Supplementary 
Material 2.

Fig. 3 The results for TH k AP and TH k MP when the threshold was increased from 0 to 4,500 at increments of 250

Table 1 The results of the experiments using TH k AP

Threshold(k) 0 250 500 750 1,000 1,250 1,500 1,750

Coverage 0.6081 0.9730 1 1 1 1 1 1

Median 2 47 60.5 62 62 69 69 90.5

Expectation 158.15 54.93 59.19 62.04 63.73 72.80 72.80 84.20

Table 2 The results of the experiments using TH k MP

Threshold(k) 0 250 500 750 1,000 1,250 1,500 1,750

Coverage 0.6081 0.9459 0.9459 0.9730 0.9730 0.9865 0.9865 0.9730

Median 2 15 25 29.5 30 42.5 42.5 56

Expectation 156.19 38.74 47.03 43.46 44.78 50.82 50.82 66.86
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Table  3 shows the results for the seven expansion 
methods OR, 1UAP, 1UAP, 1UMP, 2UAP, and 2UMP, 
and the optimal thresholds TH 40 AP and TH 190 MP. 
Here, TH 190 MP yielded the highest expectation.

Discussion
Among the seven methods, TH k MP exhibited the best 
performance, with an optimal k value of 190 (Supplemen-
tary Material 2). With increasing values of k, both the 
coverage of TH k MP and the median number of genes to 
be analyzed increased as well. Consequently, a trade-off 
between the coverage and the median exists. Users can 
design a VGP with their preferred coverage by selecting 
appropriate values of k.

The number of candidate genes to be analyzed may also 
be reduced using VGPs. If the VGP is not used, all candi-
date genes will need to be analyzed (median: 388). How-
ever, using VGPs designed by the TH 190 MP, the median 
number of candidate genes reduces to 14 if the VGPs 
include disease-causing genes (all results are indicated 
in Supplementary Material 2). Therefore, VGPs designed 
using the methods proposed here may be useful for gene-
ranking systems such as PubCaseFinder [15].

Here, VGPs were developed using simple rolling-up 
and rolling-up methods with a threshold k. We plan to 
develop more sophisticated filtering methods that involve 
examining gene lists from surrounding and superclass dis-
ease groups, calculating similarities, and performing more 
refined filtering starting from the initial diagnosis stage. 
This approach will allow for a more tailored and precise 
analysis of candidate genes, considering their relevance 
to specific disease contexts and their functional similari-
ties to known disease-causing genes. We will also focus on 
developing more sophisticated and refined filtering meth-
ods for VGPs, enabling more accurate and targeted analy-
ses of candidate genes in the context of specific diseases.

Conclusion
In this study, seven methods are presented to develop 
expanded VGPs for initial clinical diagnosis using knowl-
edge graphs based on Mondo. The results indicated that the 
minimum path up with the threshold k method, TH k MP, 
showed the best performance in terms of expectation with 
a threshold of 190. This method can be used to identify can-
didate genes, and facilitate rare disease diagnosis efficiency. 
We expect that this method will be widely used by clinicians 
to diagnose rare diseases using NGS data.

Fig. 4 The results for TH k AP and TH k MP when the threshold was increased from 0 to 500 at increments of 10

Table 3 The results of the experiments using OR, 1UAP, 1UMP, 2UAP, 2UMP, TH 40 AP and TH 190 MP

OR 1UAP 1UMP 2UAP 2UMP TH 40 AP TH 190 MP

Coverage 0.4864 0.9324 0.8378 0.9729 0.8918 0.9595 0.9459

Median 1 23.5 10 60 18 31 14

Expectation 197.22 52.77 74.67 67.14 64.87 50.55 38.39
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Abbreviations
1UAP  One class Up for All Paths
1UMP  One class Up for Minimum Paths
2UAP  Two classes up for all paths
2UMP  Two classes up for minimum paths
Mondo  Mondo disease ontology
NGS  Next-Generation Sequencing
OR  Original set
RDF  Resource Description Framework
TH k AP  All paths up with threshold k
TH k MP  Minimum path up with threshold k
VGP(s)  Virtual Gene Panel(s)
WES  Whole exome sequencing
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