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Abstract
Introduction  Renal transplantation is a critical treatment for end-stage renal disease, but graft failure remains a 
significant concern. Accurate prediction of graft survival is crucial to identify high-risk patients. This study aimed 
to develop prognostic models for predicting renal graft survival and compare the performance of statistical and 
machine learning models.

Methodology  The study utilized data from 278 renal transplant recipients at the Ethiopian National Kidney 
Transplantation Center between September 2015 and February 2022. To address the class imbalance of the data, 
SMOTE resampling was applied. Various models were evaluated, including Standard and penalized Cox models, 
Random Survival Forest, and Stochastic Gradient Boosting. Prognostic predictors were selected based on statistical 
significance and variable importance.

Results  The median graft survival time was 33 months, and the mean hazard of graft failure was 0.0755. The 3-month, 
1-year, and 3-year graft survival rates were found to be 0.979, 0.953, and 0.911, respectively. The Stochastic Gradient 
Boosting (SGB) model demonstrated the best discrimination and calibration performance, with a C-index of 0.943 
and a Brier score of 0.000351. The Ridge-based Cox model closely followed the SGB model’s prediction performance 
with better interpretability. The key prognostic predictors of graft survival included an episode of acute and chronic 
rejections, post-transplant urological complications, post-transplant nonadherence, blood urea nitrogen level, post-
transplant regular exercise, and marital status.

Conclusions  The Stochastic Gradient Boosting model demonstrated the highest predictive performance, while 
the Ridge-Cox model offered better interpretability with a comparable performance. Clinicians should consider the 
trade-off between prediction accuracy and interpretability when selecting a model. Incorporating these findings 
into the clinical practice can improve risk stratification and personalized management strategies for kidney transplant 
recipients.
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Introduction
Renal transplantation is a life-saving treatment that pro-
vides improved quality of life and long-term survival for 
those suffering from end-stage renal disease (ESRD). 
However, despite its benefits, graft failure is still a signifi-
cant concern and a major contributor to morbidity and 
mortality in transplant recipients. Graft failure can occur 
due to various factors, such as acute rejection, chronic 
rejection, infection, and other complications. When graft 
failure occurs, patients may need to resume dialysis or 
undergo re-transplantation, both of which are associated 
with poorer outcomes and increased healthcare costs [1].

In the era of personalized and precision medicine, pre-
dicting the prognosis of diseases has become vital for 
patient management by healthcare personnel [2]. Accu-
rate prediction of renal graft survival is critical since it 
can aid in identifying individuals at high risk of graft fail-
ure for closer monitoring and more aggressive therapy. 
This can potentially improve transplant outcomes and 
reduce healthcare costs by preventing or delaying graft 
failure [3]. Graft survival prediction after renal trans-
plantation is considered one of the most challenging and 
vital aspects of modern medicine [4]. It is difficult as it 
depends on various factors associated with the donor, 
transplant, and recipient, and their importance changes 
over time and per outcome measure [5].

Survival prognostic models estimate the likelihood of 
an event in a specified timeframe. There are two com-
mon approaches used to estimate survival probability: 
machine learning and statistical modeling [6]. Machine 
learning models, a subset of statistical models, use algo-
rithms to learn from data and make predictions or deci-
sions without explicit programming. Statistical models, 
on the other hand, are based on statistical theory and 
use mathematical equations to model the relationship 
between variables [7]. Machine learning models are often 
used when the relationship between variables is com-
plex and not well understood, while statistical models 
are used when the relationship between variables is well 
understood and can be modeled using mathematical Eq. 
[8].

Statistical models, such as Cox models, are widely 
used and well-understood in survival analysis. They are 
relatively straightforward to implement and interpret and 
can provide estimates of the effects of individual variables 
on the outcome [9]. However, statistical models may not 
capture complex interactions between variables and may 
not handle high-dimensional data or non-linear relation-
ships. Machine learning models, instead, have the poten-
tial to capture complex interactions and provide more 

accurate and personalized predictions by considering the 
unique characteristics of each study subject. They can 
handle high-dimensional data and non-linear relation-
ships but may be more difficult to interpret and require 
more computational resources [6].

To date, numerous studies have employed statistical 
methods, particularly Cox regression, to develop prog-
nostic models that predict renal graft survival. Although 
some studies have utilized machine learning methods, 
some of these models may be overly complex and prone 
to overfitting. As a result, when tested on new and inde-
pendent datasets, these models may exhibit poor gen-
eralizability and performance [10]. However, it is still 
controversial which methods among machine learning 
algorithms and conventional statistical modeling can 
achieve better performance in survival analysis, particu-
larly in the field of transplant medicine [11]. This study 
addresses the shortcomings of previous research, which 
primarily compared the standard Cox model with ran-
dom survival forests while overlooking essential sociode-
mographic factors, such as regular physical exercise and 
marital status, that significantly impact graft survival in 
the Ethiopian context. In contrast, the current study pro-
vides a thorough comparison of models and predictors 
for graft survival. We effectively tackle overfitting issues 
and improve prediction performance using techniques 
like cross-validation, pre-feature selection, hyperpa-
rameter tuning, and the use of penalized and tree-based 
ensemble models.

Accordingly, the current study aimed to compare the 
performance of statistical and machine learning models 
for predicting renal graft survival among renal transplant 
recipients in the Ethiopian National Kidney Transplan-
tation Center (ENKTC). The ENKTC is the sole renal 
transplant center in Ethiopia and as a newly established 
facility, it has not yet conducted extensive studies on 
transplant complications, including graft failure.

Methods and participants
Source of data and study design
The institutional retrospective study was conducted 
on 278 kidney transplant recipients at the Ethiopian 
National Kidney Transplantation Center between Sep-
tember 2015 and February 2022. The current study 
included transplant recipients who had three or more 
follow-up visits in the defined period. The data, includ-
ing epidemiological, laboratory, and clinical histories, 
was extracted from patient follow-up charts and medical 
records. There were no missing values in the data, as the 
records were crosschecked and any gaps were filled by 
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contacting patients. The data extraction tool was based 
on renal post-transplant follow-up guidelines to ensure 
all variables were accounted for.

Methodological strategies to fix data limitations
Given that our transplant center is new, established in 
September 2015, we are working with a relatively small 
cohort of transplant recipients, comprising only 278 
cases, and we have observed a limited number of graft 
failures, a total of 21 cases. We recognize that the small 
sample size and the imbalanced nature of our data may 
impact the reliability of our findings. To enhance both 
the validity and reliability of our results, we have imple-
mented several methodological strategies:

Pre-feature selection
We prioritize identifying and incorporating only the 
most relevant features in our analysis to enhance model 
effectiveness and directly address our research questions. 
Using statistical methods and expert knowledge, we con-
ducted pre-feature selection using the `uni.selection` 
function in R, which performs univariate Cox regres-
sion for each predictor in the training dataset. A vari-
able is deemed significant if its p-value is less than or 
equal to 0.05. After refining for near-zero variance and 
correlated predictors, we selected 39 out of 54 features. 
Among these, the univariate Cox and domain experts 
confirmed the top 10 candidate prognostic features. The 
final features for developing clinical prognostic models 
include episodes of chronic and acute rejection, urologi-
cal complications, nonadherence, glomerulonephritis, 
post-transplant admissions, blood urea nitrogen levels, 
delayed graft function, regular physical exercise, marital 
status [12].

Cross-validation
We use cross-validation techniques to evaluate model 
performance across different subsets of our data. This 
method increases the robustness of our findings by 
minimizing dependence on any single data partition and 
enhancing overall reliability [13]. Therefore, we consis-
tently performed 5-fold cross-validation for all model 
development.

Hyperparameter tuning
To improve model accuracy, we conduct hyperparameter 
tuning, which involves optimizing the parameters that 
dictate the model’s behavior. This process plays a crucial 
role in enhancing predictive performance, particularly in 
datasets with limited events [14]. Consequently, we tuned 
the hyperparameters for penalized Cox models, random 
survival forests, and stochastic gradient boosting models 
using the random search method, which is presented in 
the study’s results.

Penalized models
Utilizing penalized models allows us to mitigate poten-
tial overfitting issues arising from the limited number of 
events. These models introduce penalties for complex-
ity, promoting simpler models that generalize better to 
unseen data [15]. Accordingly, the penalized versions of 
the Cox model were considered.

SMOTE resampling
To address a class imbalance in our dataset, where graft 
failures represent a minority class, we apply SMOTE 
(Synthetic Minority Over-sampling Technique). This 
technique enhances the model’s learning capabilities by 
generating synthetic samples from the minority class 
instead of merely reproducing the existing minority class 
samples [16]. After applying SMOTE, the class distribu-
tion in the training dataset was significantly more bal-
anced. The majority-to-minority class ratio in the training 
dataset reduced from 12:1 to 1.7:1. This reduction in class 
imbalance through SMOTE aimed to improve the mod-
el’s ability to learn the decision boundaries between the 
two classes, leading to better generalization performance 
on the hold-out testing data set.

Tree-based ensemble models
We leverage tree-based ensemble models that are known 
for their resilience against overfitting and their ability 
to capture complex interactions among features. These 
models effectively address the challenges posed by imbal-
anced data and small sample sizes. Their robustness 
against overfitting, ability to generalize well, and adapt-
ability through parameter tuning make them a preferred 
choice in various machine learning tasks. The effective-
ness of tree-based ensembles can be further enhanced 
by combining them with resampling techniques like the 
SMOTE method. This combination can help balance the 
dataset while leveraging tree-based models’ strengths 
[17].

Despite the constraints of our data, we aim to derive 
significant insights from it by employing these method-
ological tools. This rigorous approach justifies the ade-
quacy of our sample size and deepens our understanding 
of graft failure dynamics within the context of our emerg-
ing transplant center. Moreover, the study adhered to 
the TRIPOD (Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or Diagnosis) 
guidelines to ensure transparent reporting of our predic-
tion model [18].

Experimental setups
The experiment starts by cleaning, preprocessing, and 
exploration of the dataset. In this study, we utilized base-
line records for longitudinal predictors. Continuous 
predictors were standardized using the mean-centering 
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method, while categorical predictors were appropriately 
coded. Predictors with high correlation and near-zero 
variance were excluded from the dataset. The prepro-
cessed dataset was divided into a training (70%) and vali-
dation set (30%), while maintaining the event/censoring 
proportion of the original data. Before the model train-
ing phase, we conducted data-driven pre-feature selec-
tion and applied class imbalance handling techniques to 
mitigate the risk of overfitting. The refined predictors 
and balanced training data were used throughout the 
model development. Models were trained using 5-fold 
cross-validation and hyperparameter tuning. The pre-
dictive performance of the candidate models was evalu-
ated using the hold-out testing dataset, which remained 
unseen and unmodified during the training and resa-
mpling procedures. The appropriate prediction perfor-
mance evaluation metrics, such as concordance index, 
Brier score, and area under the ROC curve were used 
to evaluate and compare the effectiveness of the prog-
nostic models to predict renal graft survival. All experi-
ments were executed on the R platform and R packages 
like; “survival”, “RandomForestSRS”, “glmnet”, and “gbm” 
were used to train and validate the specified statistical 
and machine learning models. The process of selecting 
significant predictors for graft survival was conducted by 
assessing the statistical significance and relative impor-
tance of candidate variables. Variables that were selected 
as significant or important by most models were con-
sidered potential predictors of graft survival. Ultimately, 
the best-performing model was reported as a calibrated 
clinical prognostic model to predict graft survival among 
renal transplant recipients. Figure 1 illustrates the work-
flow of the study’s computations.

Clinical endpoint (outcome)
The clinical outcome for this study is renal graft survival 
where graft failure is a primary event of interest. Patients 
who died with a functioning graft were not considered 
positive for graft failure but were included in all mod-
els and censored at their death time. The time to graft 
failure was measured in months from the date of trans-
plantation. Given the retrospective nature of the study, 
we defined patients who did not experience graft failure 
during the study period (September 2015 to February 
2022) as right-censored. Moreover, patients who died 
with a functioning graft during the study period were 
also treated as right-censored observations. The time of 
censorship (death or end of the study period) was still 
included in the analysis. This retrospective approach pre-
serves valuable survival information and enhances the 
integrity of our survival analysis, ultimately improving 
the model’s predictive accuracy.

Consideration of survival prognostic models
Based on the nature of the data and the motive of the cur-
rent study various statistical and machine-learning mod-
els assumed to be effective in this scenario were selected. 
From the statistical perspective, standard and regularized 
Cox models such as Lasso-based Cox, Ridge-based Cox, 
and Elastic net-based Cox were chosen based on their 
interpretability and appropriateness for rare event analy-
sis. Particularly, penalized Cox models were selected to 
address sparsity and multicollinearity issues, while the 
standard Cox model was chosen for its robustness in 
survival data analysis [19]. Meanwhile, for the machine 
learning approach, random survival forests and stochas-
tic gradient boosting models were selected as they were 
deemed effective based on previous work done on renal 
graft failure datasets, as tree-based ensemble models are 
particularly effective for imbalanced data [20].

Fig. 1  Computational workflow of the study
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Standard cox regression
It is a type of statistical model that is widely used to pre-
dict survival outcomes. The model estimates the hazard 
ratio for each variable, which represents the relative risk 
of the event occurring for a particular level of the vari-
able. The model assumes a proportional hazards assump-
tion, which means that the hazard ratio is constant over 
time [21]. Its mathematical expression is given by:

	
h(t | X) = h0(t) exp

(
p∑

i=1

βixi

)
= h0(t) exp

(⊤βX
)

,

Where h(t | X) is the risk of graft failure given a set of 
predictors, h0 (t) is the baseline hazard (the hazard when 
all predictors are equal to zero), β =

(
β 1, . . . , β ρ

)T  
is the column vector of regression parameters, and ⊤β 
means its transpose, X=⊤ (x1, . . . , xp) denotes the set 
of considered predictor variables. After some algebraic 
manipulation, the log-partial likelihood function of the 
Cox model becomes:

	 l (β ) =
∑

r∈ D

(
β T X(r) − log

(∑
j∈ R, exp

(
β T X(j)

)))
.

The standard maximum likelihood estimation method 
can be applied to calculate unknown parameters (β). As 
a general rule, logistic and Cox models can be fitted with 
at least 10 events of the outcome variable per predic-
tor variable, to prevent overfitting [16]. However, in our 
study, the total number of outcome events (graft failure) 
is 21 out of 278 subjects and several predictor variables 
have been taken into account. As a result, there are rela-
tively few events per predictor. This rare event results in 
overfitting and inconsistent estimates when fitted with 
the standard Cox regression. Penalization alleviates this 
issue by restricting the size of regression coefficients 
through the use of a complexity parameter that controls 
shrinkage [22]. The three commonly used Cox penaliza-
tion models are the Lasso-based, Ridge-based, and Elas-
tic net-based Cox models.

Lasso-based cox regression
Lasso-based Cox regression is a type of Cox model that 
includes a penalty term to encourage sparsity in the 
model coefficients. This can help to identify the most 
important predictors and reduce overfitting. The model 
penalty term shrinks the coefficients towards zero, which 
can help to prevent the coefficients from becoming too 
large and unstable. To incorporate the regularization 
term into the Cox regression model, the log partial likeli-
hood function would be rewritten as follows.

	 l (β ) −
∑

p
j=1 λ

∣∣β j

∣∣ ,

where λ  is a tuning (regularization) parameter and p is 
the number of predictors. The L1-penalized (Lasso) char-
acterized by simultaneous variable selection and shrink-
age is a useful method for determining interpretable 
prediction rules in high-dimensional data [23].

Ridge-based cox regression
Ridge-based Cox regression, on the other hand, is a 
regression method that shrinks the regression coeffi-
cients towards zero (not exactly zero) by imposing a pen-
alty on the sum of the squared values of the coefficients. 
This technique is useful when there are many potentially 
relevant predictors for survival outcomes, as it can help 
stabilize the estimates of the coefficients in the presence 
of multicollinearity [24]. The L2-penalized (ridge) log 
partial likelihood is written as:

	 l (β ) −
∑

p
j=1 λ β 2

j

Elastic net-based cox regression
Elastic net-based Cox regression is a hybrid of lasso-
based and ridge-based Cox regression. The model 
includes both L1 and L2 penalty terms, which can help 
to identify important predictors and prevent overfitting. 
The model is particularly useful when there are many 
correlated predictors and when the outcome is sparse 
[25]. Its penalization is given by:

	 l(β
∑

p
j=1

(
λ 1

∣∣β j

∣∣ + λ 2β 2
j

)
,

where λ 1 and λ 2 are corresponding regularization 
parameters of L1 and L2 penalties, respectively.

Random survival forest
In survival analysis, the main challenge of applying 
machine learning methods is the difficulty of appropri-
ately dealing with censored information and the time 
estimation of the model [26]. Random survival forest is 
a type of ensemble machine learning model as an exten-
sion of random forest it uses a combination of decision 
trees and survival analysis techniques to predict the 
time-to-event outcome. The model randomly selects fea-
tures and survival times to build a decision tree and then 
combines multiple decision trees to form a forest. Com-
bining information from the separate trees like survival 
probabilities and ensemble cumulative hazard estimates 
can be calculated using the Kaplan-Meier and Nelson-
Aalen methodologies, respectively. The model is useful 
for handling high-dimensional data, capturing non-linear 
relationships, and mitigating overfitting [27].
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Stochastic gradient boosting survival
Stochastic gradient boosting survival is another machine 
learning model that uses an ensemble of decision trees to 
predict survival outcomes [28]. It is an extension of sto-
chastic gradient boosting suited for survival predictions. 
The model iteratively adds decision trees to the ensemble, 
with each tree correcting the errors of the previous tree. 
The model can handle non-linear relationships between 
variables and can provide accurate and personalized pre-
dictions. The two machine learning algorithms (SGB and 
RSF) were selected based on their superior prediction 
performance in predicting renal graft failure [20].

Model comparison
Each model’s performance is assessed and compared 
based on its calibration, discrimination, and interpret-
ability. We used global metrics like the concordance 
index (C-index) and Brier score, as well as graphical 
methods such as the ROC curve and calibration plot. In 
the evaluation process, we followed a 3-stage comparison 
approach: first, we assessed the model’s discrimination 

(accuracy), followed by calibration (absolute accuracy), 
which is often neglected despite its importance (only 36% 
of published models provided a calibration measure). 
Finally, we evaluated the model’s interpretability, in terms 
of the most prognostic factors identified [29].

Results
Patient characteristics
The study cohort consists of a total of 278 transplant 
recipients under the follow-up of the Ethiopian National 
Kidney Transplant Center. The survival times of the 
graft ranged from 1 to 73 months, with an average haz-
ard of graft failure of 0.0755 and a median survival time 
of 33 months. The 3-month, 1-year, and 3-year graft 
survival rates were found to be 0.979, 0.953, and 0.911, 
respectively. Of the patients, 74.8% were male and 25.2% 
were female, with a median age of 37 years. The original 
entire group was divided into training and testing sets to 
develop and test clinical prognostic models. It was essen-
tial to ensure that the survival rates of both datasets were 
proportional. The Kaplan-Meier survival function and 
log-rank test were utilized to confirm this, and it was 
found that there was no significant difference (p = 0.96) in 
survival probability between the training and testing sets, 
as shown in Fig. 2.

Construction of the clinical prognostic models
This study involved developing a range of statistical and 
machine-learning models to predict renal graft survival 
by utilizing a balanced dataset and carefully chosen fea-
tures. After the models were developed with a cross-vali-
dation hyperparameter tuning technique, their predictive 
performance was evaluated using a testing dataset that 
remained unseen by the models and was not resampled.

Random survival forests (RSF)
The RSF model was developed using 5-fold cross valida-
tion and hyper parameter tuning. Important results of 
the model were presented in Fig. 3. Based on the figure, 

Fig. 3  a) Error rate across tree numbers; b) variable importance from random survival forests

 

Fig. 2  The Kaplan-Meier Survival Curves for Training and Testing Datasets
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the error rate was relatively low and started to stabilize 
when the number of survival trees was 500. The feature 
importance score of each prognostic variable was calcu-
lated and the features were ranked in descending order. 
Accordingly, blood urea nitrogen level, an episode of 
chronic rejection, an episode of acute rejection, post-
transplant urological complications, the number of post-
transplant admissions, post-transplant regular physical 
exercise, and marital status were the top seven prognostic 
features for renal graft survival.

Stochastic gradient boosting (SGB) model
Similarly, the hyper parameter tuning for SGB model was 
performed using 5-fold cross validation. As depicted in 
Fig. 4, the top seven predictors of graft survival are blood 
urea nitrogen level, the number of post-transplant admis-
sions, an episode of acute rejection, an episode of chronic 
rejection, post-transplant urological complications, post-
transplant regular physical exercise, and post-transplant 
nonadherence.

The standard cox PH model
The standard Cox regression model was developed using 
the Breslow estimation method. After fitting the model, 

proportionality was tested and achieved with a global 
p-value of 0.650. According to the Cox PH regression 
model results in Table  1, an episode of acute rejection, 
higher blood urea nitrogen level, an episode of chronic 
rejection, post-transplant urological complication, and 
post-transplant non-adherence were associated with a 
significantly higher risk of graft failure (p < 0.05). whereas, 
patients who are married (cohabited) and those who per-
form regular physical exercise after the transplant have a 
significantly lower risk of graft failure.

Based on the Table, patients who experienced an epi-
sode of acute rejection had a 3.782 times higher risk of 
graft failure compared to those who did not have an acute 
rejection episode. Similarly, every one-unit increase in 
blood urea nitrogen (BUN) level was associated with a 
39.6% higher risk of graft failure. Patients who developed 
an episode of chronic rejection had a 2.136 times greater 
risk of graft failure relative to those without chronic 
rejection. The presence of a post-transplant urological 
complication was also a significant risk factor, increas-
ing the risk of graft failure by 1.735 times. Additionally, 
patients who were non-adherent to the post-transplant 
treatment regimen had a 1.640 times higher risk of graft 
failure compared to adherent patients.

In contrast, the analysis identified two protective fac-
tors against graft failure. Being married (cohabited) was 
associated with a 40.8% lower risk of graft failure com-
pared to living alone (single, divorced, separated, or wid-
owed). This may be due to the emotional, practical, and 
financial support a partner can offer. This helps patients 
follow the complicated medication schedules after a 
transplant keep up with medical appointments, and cope 
with the recovery demands. Such a social support net-
work can have a beneficial impact on mental health and 
overall well-being, which are vital for positive graft out-
comes, like elongated graft survival. Moreover, engag-
ing in regular physical exercise after the transplant was 
even more strongly protective, reducing the risk of graft 
failure by 73.8% compared to those who did not exercise 
regularly.

Table 1  Cox Regression Analysis Results for predictors of renal graft survival
Variables Coef. Exp (Coef.) Se (Coef.) z Pr.(>|z|)
An episode of acute rejection 1.330 3.782 0.292 4.561 < 0.001
Blood Urea Nitrogen level 0.333 1.396 0.091 3.678 < 0.001
An episode of chronic rejection 0.759 2.136 0.274 2.774 0.006
Post-transplant Urological complication 0.551 1.735 0.258 2.136 0.033
Post-transplant nonadherence 0.495 1.640 0.242 2.046 0.041
Post-transplant delayed graft functioning 0.347 1.415 0.247 1.404 0.160
Number of post-transplant admissions 0.061 1.063 0.090 0.680 0.496
Post-transplant glomerulonephritis 0.139 1.149 0.265 0.524 0.600
Marital status -0.523 0.592 0.225 -2.323 0.020
Post-transplant regular physical exercise -1.341 0.262 0.294 -4.561 < 0.001

Fig. 4  Variable importance from the SGB model
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Lasso-based Cox model
The lasso-based Cox model is a type of Cox model that 
includes a penalty term to encourage sparsity in the 
model coefficients. In this case, all ten predictors were 
returned as non-zero coefficients, as the data-driven 
pre-feature selection was conducted before the model 
development phase. In the order of their effect size, acute 
rejection, chronic rejection, post-transplant regular phys-
ical exercise, post-transplant urological complications, 
post-transplant nonadherence, blood urea nitrogen level, 
and marital status were found to be the top seven signifi-
cant prognostic predictors of graft survival, as presented 
in Table 2. Consistent with the result of the standard Cox 
model, regular physical exercise and marital status (being 
married or cohabited) appear to have a protective effect 
against the risk of graft failure.

Ridge-based Cox model
This is another regularized version of the Cox model 
that shrinks the regression coefficients towards zero 
(not exactly zero) by imposing a penalty on the sum 
of the squared values of the coefficients. Similarly, it 
returns ten features with non-zero coefficients, indicat-
ing that the coefficients were penalized but not reduced 
to zero. According to Table 3, the seven leading predic-
tors of graft survival, ranked by effect size, are acute 
rejection, chronic rejection, post-transplant urological 

complications, post-transplant regular physical exercise, 
post-transplant nonadherence, post-transplant delayed 
graft functioning, and marital status.

Elastic Net-based Cox model (EN-based Cox)
The EN-based Cox model is a hybrid of lasso-based and 
ridge-based Cox regression models. Based on the EN-
based Cox results in Table  4, acute rejection, chronic 
rejection, post-transplant regular physical exercise, post-
transplant urological complications, post-transplant non-
adherence, blood urea nitrogen levels, and marital status 
have been identified as the top seven significant prognos-
tic predictors of graft survival, ranked by the magnitude 
of their effect size. Post-transplant regular physical exer-
cise and marital status (being married or cohabited) still 
have a protective effect against the risk of graft failure.

Identification of significant predictors
To determine the significant predictors of renal graft 
survival, we employed a combination of statistical and 
machine-learning models. The selection of predictor 
variables was based on their identification as the top 
seven significant predictors by most models, with par-
ticular emphasis on the best-performing and most inter-
pretable models. Each predictor selected within the top 
seven was ranked from 1 to 7 across each model and 
marked with an ‘x’ if not selected (Table  5). Through a 
comprehensive ranking of predictors across the prog-
nostic models, episodes of acute and chronic rejection, 
post-transplant regular physical exercise, post-transplant 
urological complications, post-transplant nonadherence, 
blood urea nitrogen levels, and marital status emerged as 
the most significant prognostic predictors of renal graft 
survival.

The findings suggest that regular physical exercise and 
being married or cohabiting are significantly associated 
with a reduced risk of graft failure. Consistent physical 
activity not only enhances overall health but also pro-
motes better immune function and adherence to medi-
cal protocols. Likewise, having a supportive partner can 

Table 2  Lasso-Cox Regression Analysis results for predictors of 
renal graft survival
Variable Coef. Exp (Coef.)
An episode of acute rejection 1.247 3.480
An episode of chronic rejection 0.785 2.192
Post-transplant Urological complication 0.449 1.567
Post-transplant nonadherence 0.411 1.508
Blood Urea Nitrogen level 0.300 1.350
Post-transplant delayed graft functioning 0.230 1.258
Post-transplant glomerulonephritis 0.117 1.124
Number of post-transplant admissions 0.049 1.050
Marital status -0.372 0.689
Post-transplant regular physical exercise -1.032 0.356

Table 3  Ridge-Cox Regression Analysis results for predictors of 
renal graft survival
Variable Coef. Exp (Coef.)
Blood Urea Nitrogen level 0.288 1.334
Number of post-transplant admissions 0.084 1.087
Post-transplant regular physical exercise -1.015 0.362
Post-transplant nonadherence 0.469 1.598
Post-transplant Urological complications 0.533 1.705
An episode of acute rejection 1.154 3.171
An episode of chronic rejection 0.741 2.098
Post-transplant glomerulonephritis 0.156 1.169
Post-transplant delayed graft functioning 0.336 1.400
Marital status -0.463 0.630

Table 4  EN-Cox Regression Analysis results for predictors of 
renal graft survival
Variable Coef. Exp (Coef.)
Blood Urea Nitrogen level 0.291 1.338
Number of post-transplant admissions 0.063 1.065
Post-transplant regular physical exercise -0.998 0.369
Post-transplant nonadherence 0.423 1.526
Post-transplant Urological complications 0.474 1.606
An episode of acute rejection 1.200 3.321
An episode of chronic rejection 0.765 2.149
Post-transplant glomerulonephritis 0.125 1.133
Post-transplant delayed graft functioning 0.262 1.299
Marital status -0.394 0.674
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improve psychological well-being, which is crucial for 
maintaining adherence to post-transplant care.

In contrast, several factors contribute to an increased 
risk of graft failure. Episodes of acute and chronic rejec-
tion are critical events that can severely compromise 
graft integrity and function. Additionally, urological 
complications may lead to further medical issues that 
jeopardize graft health. High blood urea nitrogen levels 
serve as vital indicators of kidney function; elevated lev-
els often signify deteriorating graft health. Furthermore, 
post-transplant nonadherence to prescribed medication 
regimens significantly undermines the likelihood of long-
term graft success. A more detailed discussion of these 
predictors is provided in the discussion section.

Validation and comparison of the candidate models
The prediction performance of each model was validated 
using the testing dataset. We compared different statisti-
cal and machine learning models using various prediction 
performance metrics and clinical relevance. The ROC 
curve, calibration plot, concordance index (C-index), 
brier score, and interpretability of the model were used 
as evaluation criteria to compare the prognostic models. 
The ROC curve was used to compare the discrimination 

performance of the models. The result of the ROC curve 
in Fig.  5 indicated that the stochastic gradient boosting 
models had the highest discrimination performance with 
an AUC of 0.89, followed by the random survival forest 
with an AUC of 0.88. The ridge-based Cox model was 
ranked third in discrimination performance with an AUC 
of 0.84, while the standard, lasso-based, and EN-based 
Cox models shared the fourth-highest discrimination 
performance with an AUC of 0.83.

The calibration plot in Fig. 6 suggests that the random 
survival forest and stochastic gradient boosting models 
have superior calibration performance, as indicated by 
their proximity to the ideal 45-degree line. The overlaid 
black line represents the penalized versions of the Cox 
model (lasso, ridge, and EN-based Cox), which also dem-
onstrate good calibration. In contrast, the standard Cox 
model’s calibration lines are noticeably further away.

Based on the C-index in Table  6, the Stochastic Gra-
dient Boosting (SGB) model emerged as the best per-
former, with a C-index of 0.943. The Ridge-based Cox 
model came in second with a C-index of 0.932. A C-index 
above 0.80 is generally considered adequate for clinical 
applications, and our results demonstrate that both the 
SGB and the Ridge-based Cox model meet this criterion. 

Table 5  The variables chosen as the top seven predictors by at least one model
Variable Cox. Lasso-Cox Ridge-Cox EN-Cox RSF SGB
An episode of acute rejection 1 1 1 1 3 3
Blood Urea Nitrogen level 6 6 x 6 1 1
An episode of chronic rejection 2 2 2 2 2 4
Urological complications 4 4 3 4 4 5
Post-transplant nonadherence 5 5 5 5 x 7
Regular physical exercise 3 3 4 3 6 6
Marital status 7 7 7 7 7 x
Number of post-transplant admissions x x x x 5 2
Delayed graft functioning x x 6 x x x

Fig. 6  The calibration plot for each candidate model

 

Fig. 5  The ROC curves for each candidate model
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These scores demonstrate the model’s superior ability 
to rank individuals according to their predicted survival 
probabilities. In terms of the Brier score, which evalu-
ates the accuracy of predicted survival probabilities, the 
SGB model maintained its lead with the lowest score of 
0.000351, highlighting its remarkable precision in sur-
vival probability predictions. The Ridge-based Cox model 
closely follows SGB with a Brier score of 0.000389. This 
low score highlights its precision in providing reliable 
risk assessments, which is essential for clinical decision-
making. Accurate predictions can help clinicians tailor 
treatment plans and improve patient outcomes by effec-
tively stratifying risk among renal transplant recipients.

The Cox model and its penalized versions are widely 
utilized in survival analysis due to their high interpret-
ability. These models provide hazard ratios, which help 
in understanding the impact of predictor variables on 
survival outcomes. In contrast, while Stochastic Gradient 
Boosting (SGB) achieves impressive predictive perfor-
mance, its interpretability is limited compared to Cox-
based models, as it does not offer explicit hazard ratios 
or easily interpretable coefficients. However, SGB can 
provide insights into variable importance through fea-
ture importance rankings. For those Cox-based models, 
we primarily focused on interpreting the standard Cox 
model. The penalized versions yielded results consistent 
with those of the standard model when fitted based on 
features selected from the penalized Cox models. Thus, 
our interpretation of significance and effect size was cen-
tered on the standard Cox model’s hazard ratios.

Although the SGB model demonstrated superior cali-
bration and discrimination performance, it lacks the 
interpretability of the Ridge-based Cox model, which 
is our second-best model. The Ridge-Cox model not 
only delivers robust performance but also offers clear 
insights into the impact of individual predictors on renal 
graft survival. This balance between predictive accuracy 
and interpretability is crucial in clinical settings, where 
understanding the rationale behind model predictions 
can significantly influence decision-making. When the 
primary goal is accurate prediction, the SGB model is 
preferable. Conversely, if interpretability is prioritized, 
we recommend the Ridge-Cox model, even if it entails a 
slight trade-off in predictive performance. This nuanced 
approach allows clinicians to select the most suitable 
model based on their specific needs and the context of 
their practice.

Discussions
This study aimed to compare statistical and machine 
learning models for predicting renal graft survival and 
identify significant prognostic predictors. The main find-
ings of the study have been discussed. In the evaluation 
of various models, the study found that the Stochastic 
Gradient Boosting model demonstrated the best calibra-
tion and discrimination performance. This finding is con-
sistent with previous studies [20, 30]. Based on the global 
performance measures, the Ridge-based Cox model has 
the second-best calibration and discrimination perfor-
mance. As a Cox-based model, it also offers the advan-
tage of interpretability, allowing for a clear understanding 
of the impact of predictors on renal graft survival. This 
finding is supported by previous studies [31, 32] that con-
firmed the superiority of the Cox-based model over the 
tree-based models in terms of interpretability.

Therefore, the choice of model should consider the 
trade-off between prediction performance and interpret-
ability. It is crucial for clinicians to carefully evaluate the 
strengths and limitations of each model and consider the 
context of their clinical practice when making a decision. 
If the primary concern is an accurate prediction (calibra-
tion and discrimination), the SGB model demonstrates 
the best prediction performance. On the other hand, 
if interpretability on the impact of predictors with the 
expense of a slight loss in accuracy the Cox (Ridge-Cox) 
model would be recommended.

Regarding prognostic predictors, our analysis identi-
fied several variables that were significant predictors of 
renal graft survival, including an episode of acute and 
chronic rejection, post-transplant urological complica-
tions, post-transplant nonadherence, blood urea nitrogen 
level, post-transplant regular exercise, and marital status. 
The discussion of each significant predictor is provided 
as follows.

Episodes of chronic rejection were significant predic-
tors of graft survival. Chronic rejection occurs when the 
recipient’s immune system gradually damages the trans-
planted kidney over time. This predictor suggests that 
the occurrence of chronic rejection significantly impacts 
renal graft survival. This finding agrees with previous 
studies [33, 34] which states that patients with chronic 
rejection were subjected to shorter graft survival. Manag-
ing immunosuppressive therapy and closely monitoring 
patients with a history of chronic rejection may be cru-
cial for improving graft survival.

Episodes of acute rejection were found as significant 
predictors of graft survival. Acute rejection refers to an 

Table 6  Model comparison using global performance measures
Metrics Cox PH Ridge-Cox Lasso-Cox EN-Cox RSF SGB
C-index 0.930 0.932 0.929 0.929 0.925 0.943
Brier Score 0.0181 0.000389 0.000435 0.000431 0.012769 0.000351
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immune response against the transplanted kidney shortly 
(days to months) after the transplantation. This predic-
tor indicates that experiencing episodes of acute rejec-
tion can negatively impact graft survival. This result is 
in line with the literature [20, 35, 36]. Prompt diagnosis, 
effective immunosuppression, and close monitoring are 
crucial in managing acute rejection and improving graft 
outcomes.

Post-Transplant Urological Complications were also 
found to be significant predictors of renal graft survival. 
Urological complications following a kidney transplant 
include urinary tract infections, ureteral obstruction, 
and vesicoureteral reflux. This predictor suggests that the 
occurrence of post-transplant urological complications is 
associated with decreased graft survival. This finding is 
consistent with previous studies [37, 38] Early detection, 
appropriate management, and preventive measures can 
help mitigate the impact of urological complications on 
graft outcomes.

Post-transplant nonadherence significantly affects 
graft survival. Nonadherence refers to a patient’s failure 
to adhere to the prescribed medication regimen or fol-
low recommended lifestyle modifications after trans-
plantation. This predictor indicates that nonadherence is 
a significant risk factor for graft failure and is associated 
with poor graft survival. This finding is well supported 
by the literature [39–41]. Patient education, counseling, 
and support systems are crucial in promoting adherence 
to immunosuppressive medications and post-transplant 
care, thereby improving graft survival.

The study found that blood urea nitrogen (BUN) level 
is a significant predictor of renal graft survival. BUN is a 
well-known biomarker of kidney function. Elevated BUN 
levels indicate impaired kidney function and inadequate 
clearance of urea, which can be attributed to poor graft 
function, medication non-adherence, or the presence 
of comorbidities. This is supported by previous stud-
ies [42, 43]. Monitoring BUN levels in kidney transplant 
recipients allows for early detection of graft dysfunc-
tion and the need for intervention, such as medication 
adjustments, patient education, lifestyle modifications, 
and comorbidity management, thereby improving graft 
survival.

Post-transplant regular physical exercise has been 
shown to have a protective effect against the risk of graft 
failure. Physical exercise can help maintain a healthy 
body weight, improve cardiovascular health, and reduce 
the risk of metabolic complications that can contribute 
to graft failure. It can also boost the immune system and 
help prevent rejection of the transplanted kidney. This 
finding is consistent with a previous study [44]. Health-
care providers should encourage their patients to main-
tain a regular exercise routine for overall well-being, 

which can significantly reduce the risk of renal graft fail-
ure in transplant recipients.

Being married or cohabitated has been identified as a 
factor that can reduce the risk of renal graft failure com-
pared to patients who live alone. Married or cohabitated 
individuals often have a spouse or partner who can pro-
vide valuable support, such as helping with medication 
adherence, attending medical appointments, and assist-
ing with daily self-care tasks. This support system can 
improve the transplant recipient’s mental health, reduce 
their stress levels, and encourage healthier behaviors - 
all of which contribute to better outcomes for the trans-
planted kidney. This protective effect of being married 
(cohabitated) against the risk of graft failure is supported 
by a previous study [45].

Clinical implication, strength, and limitation of the study
This study has important clinical implications. The 
prognostic models developed can help clinicians make 
informed decisions about the management of transplant 
patients. Early identification of high-risk patients for 
graft failure allows for early interventions, such as inten-
sifying immunosuppression or closer monitoring. The 
models can also be used to track changes in the predicted 
probability of graft survival over time. Furthermore, the 
best models can guide the development of personalized 
treatment plans by incorporating patient-specific fac-
tors. These clinically relevant models can also inform 
patients and their families about the expected outcomes 
of renal transplantation ultimately leading to optimized 
long-term outcomes for recipients. We recommend 
that healthcare providers incorporate these models into 
clinical routine practice to standardize risk assessment 
and improve long-term outcomes for renal transplant 
recipients.

The main strength of this study is the use of a time-to-
event dataset, which is more suitable for modeling graft 
survival compared to assuming known event status for 
all subjects. The comprehensive comparison of statis-
tical and machine learning models provides a deeper 
understanding of the strengths and limitations of each 
approach, helping to identify the most effective method 
for predicting renal graft survival. The study’s rigorous 
evaluation using measures like calibration, discrimina-
tion, and interpretability enhances the reliability and 
credibility of the findings. The inclusion of advanced 
techniques in survival prediction, such as random sur-
vival forest and stochastic gradient boosting survival, 
adds novelty and expands the methodological landscape. 
The study also addressed potential issues of data imbal-
ance and overfitting and incorporated relevant clinical 
and prognostic predictors to improve the clinical rele-
vance of the models.
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The study has some limitations. While these issues 
have been effectively addressed, using small sample sizes 
and resampling techniques to tackle class imbalance 
can still introduce biases and restrict the generalizabil-
ity of the models developed. The lack of external valida-
tion in independent datasets makes it difficult to assess 
the models’ performance in different clinical settings. 
Lastly, the limited interpretability of ensemble machine 
learning models poses a challenge for clinical applica-
tions. Future research should address these limitations 
by using a larger sample and conducting external valida-
tion to strengthen the validity and generalizability of the 
findings.

Conclusions
This study compared various statistical and machine 
learning predictive models for renal graft survival. The 
study found that the Stochastic Gradient Boosting model 
had the best calibration and discrimination performance. 
Moreover, Cox-based models offer great interpretability 
with a comparable prediction performance. Clinicians 
should consider the trade-off between accuracy and 
interpretability when choosing a model. The significant 
prognostic factors for renal graft survival were an episode 
of acute and chronic rejections, post-transplant urologi-
cal complications, post-transplant nonadherence, blood 
urea nitrogen level, post-transplant regular exercise, and 
marital status (alone or cohabited). Incorporating these 
findings into clinical practice can improve personalized 
medicine and long-term outcomes for kidney transplant 
recipients.
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