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Abstract
Background  Medical imaging techniques for diagnosing sarcopenia have been extensively investigated. Studies 
have proposed using the T-score and patient information as key diagnostic factors. However, these techniques have 
either been time-consuming or have required separate calculation processes after collecting each parameter. To 
address this gap, we propose an artificial intelligence (AI)-based web application that automates the collection of 
data, classification of the lumbar spine 3 (L3) slices, segmentation of the subcutaneous fat, visceral fat, and muscle 
areas in the classified L3 slices, and quantitative analysis of the segmented areas.

Methods  We developed an automated lumbar spine slice classification model using the CNN (EfficientNetV2) 
algorithm and an automated domain segmentation model to identify the subcutaneous fat, visceral fat, and 
muscle areas using the U-NET algorithm. These models were used to identify L3 slices from abdominal computed 
tomography images and divide the images into the three-segmented domains for sarcopenia diagnosis. Additionally, 
we developed an algorithm for the calculation of T-Score calculated as (measurement value-Young adult mean)/
(Young adult SD) using the Aggregation Pipeline by MongoDB, with the mean and standard deviation for skeletal 
muscle area (SMA), SMA/height2, SMA/weight, and SMA/body mass index (BMI) for both sexes and different age 
groups.

Results  The proposed system demonstrated high accuracy and precision, with an overall accuracy of 97.5% in 
classifying L3 slices and a segmentation accuracy of 92% for muscle, subcutaneous fat, and visceral fat areas. The 
T-Score-based analysis provided reliable diagnostic thresholds for sarcopenia, facilitating consistent and accurate 
assessments. Our diagnostic cutoff points for each index were as follows: SMA (-1.0: 152.55, -2.0: 125.89), SMA/height² 
(-1.0: 38.84, -2.0: 14.50), SMA/weight (-1.0: 2.14, -2.0: 1.89), and SMA/BMI (-1.0: 6.10, -2.0: 5.18) for men; SMA (-1.0: 96.08, 
-2.0: 76.96), SMA/height² (-1.0: 37.20, -2.0: 29.36), SMA/weight (-1.0: 1.80, -2.0: 1.61), and SMA/BMI (-1.0: 4.56, -2.0: 
4.01) for women. SMA/BMI best reflected the loss of muscle mass in healthy populations by age, showing a more 
remarkable decrease in muscle mass in men than in women. The values for men gradually decreased after their 20s, 
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Background
Sarcopenia can be diagnosed by assessing physical per-
formance, muscle mass, and muscle strength. These 
diagnostic criteria were first established by the European 
Working Group on Sarcopenia in Older People in 2010. 
Subsequently, the Asian Working Group for Sarcopenia 
was established in 2014, and diagnostic standards specific 
to Asia were proposed [1–3]. Sarcopenia was assigned a 
disease code in the United States (ICD-10-CM) in 2016 
and in South Korea (KCD-8) in 2021, leading to increased 
research interest. Hospitals frequently use computed 
tomography (CT) images for the diagnosis and treatment 
of this condition and utilize these images for retrospec-
tive studies.

Among the several modalities for measuring muscle 
mass, such as dual-energy X-ray (DXA) and ultrasound, 
CT has been utilized to quantify muscle mass in areas 
around various spinal levels. However, CT and muscle 
mass measurements are time-consuming and resource-
intensive. Automated tools, specifically muscle mass 
quantification tools that utilize artificial intelligence (AI), 
have the potential to simplify the diagnosis of sarcope-
nia, making it more accessible and consistent in various 
clinical settings [4–6]. However, the complexity of the 
task is evident in the challenge of creating a system that 
can automate this process and improve diagnostic accu-
racy by considering the variability in muscle composition 
across various spine levels.

Despite advances in medical imaging and the recogni-
tion of sarcopenia as a critical health issue, a more accu-
rate and efficient diagnosis of this disease is still needed. 
One of the major issues is that muscle mass can be under-
estimated or overestimated owing to inconsistencies in 
diagnostic criteria, especially the reliance on single-slice 
analysis of CT scans [7]. The lack of standardized cutoff 
values for different populations and variability in muscle 
composition across different slices of the lumbar spine 
further add to this discrepancy. Additionally, despite the 
potential for diagnostic process automation offered by 
AI-based technologies, difficulties in guaranteeing accu-
racy, dependability, and generalizability across various 
patient populations limit the use of these techniques in 
clinical practice [8, 9]. To solve these ambiguous prob-
lems and enhance patient outcomes, a more thorough 

and standardized sarcopenia diagnostic strategy that can 
fully utilize AI is required.

We developed an application that segments and quan-
titatively analyzes the lumbar spine 3 (L3) region into 
three areas (subcutaneous fat, visceral fat, and muscle) 
using abdominal CT images. However, this previous 
application was not as efficient, as it required physicians 
to manually input data from the identified L3 region. For 
AI research, diverse case inputs are necessary for effec-
tive AI learning, and by the same token, our study also 
required the collection of various patient cases to be 
entered for learning [10]. However, the manual classifica-
tion of the L3 region in all abdominal CT images is time-
consuming and challenging. Therefore, we propose an 
application that automatically identifies the L3 region in 
abdominal CT images and segments it into three specific 
domains (subcutaneous fat, visceral fat, and muscle). This 
application will also quantitatively analyze each domain 
and calculate the T-score for diagnosing sarcopenia 
using data from individuals aged 20–49 years as well as 
determine the prevalence of sarcopenia using the entire 
dataset.

Methods
Study population
This study was conducted in accordance with the pro-
tocol approved by the Institutional Review Board (IRB) 
of Wonkang University Hospital (IRB no. WKUH 2023-
05-030) and in compliance with Good Clinical Practice. 
Informed consent was waived because of the obser-
vational nature of the study. Before being analyzed, all 
patient records and data were de-identified and anony-
mized. Healthy patients who underwent abdominal CT at 
our hospital’s health examination center were recruited, 
and abdominal muscle mass was measured from the CT 
findings using an automated AI analysis to predict sarco-
penia. The data were collected from 765 patients who vis-
ited our health examination center from January 1, 2013 
to December 31, 2022. This method was chosen to create 
a representative cohort of healthy adults, which is essen-
tial for developing and validating the AI-based diagnostic 
tool. Specifically, data were obtained from 421 men and 
344 women aged 20–79 years (seven age groups: 20–29, 
30–39, 40–49, 50–59, 60–69, 70–79, ≥ 80) who do not 

and that for women gradually decreased after their 40s, which progressed to a more dramatic decline in the 70s for 
both sexes.

Conclusion  This AI-based web application addresses the limitations of previous diagnostic techniques by 
automatically analyzing medical images for the classification, segmentation, and calculation of T-scores. The study 
findings provide a more reliable and accurate diagnostic technique for sarcopenia that can consequently impact 
patient treatment and outcomes.
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meet the exclusion criteria. Patients who were under-
weight with a body mass index (BMI) < 18.5  kg/m2 and 
patients with a history of diabetes mellitus, kidney dis-
ease, or trauma, as reported in the patient questionnaire, 
were excluded.

Dataset
The abdominal CT scans of the 765 patients were clas-
sified. However, due to image boundary uncertainties 
caused by conditions such as scoliosis and disc com-
pression in patients in their 60s and 70s, we excluded 
78 cases, resulting in a final dataset of 687 patients for 
model development. The classified imaging data were 
then labeled and divided into training and testing sets in 
an 8:2 ratio. Supplementary 1 provides detailed informa-
tion about the distribution of CT images across different 
spinal segments for both sets. Additionally, we included 
information about the segmentation model training and 
testing sets for the L3 region, as shown in Supplementary 
2. Initially, abdominal images were categorized into tho-
racic, lumbar (L1, L2, L3, L4, and L5), and sacral sections 
for training. Subsequently, imaging data corresponding 
to the L3 region were separately compiled to train the 
model to segment muscle mass, subcutaneous fat, and 
visceral fat.

AI-based web system for the diagnosis of Sarcopenia
The AI model for sarcopenia diagnosis consisted of two 
main components: the L3 classification model and the 

segmentation model for the L3 region. Identifying L3 
from abdominal CT scans and locating image data for 
the corresponding domain is a time-consuming process 
[11]. To address this issue, we developed an algorithm for 
automatic segmentation of muscle mass, subcutaneous 
fat, and visceral fat at the identified L3 level.

The AI models for classification and segmentation were 
developed and validated using four multicenter valida-
tion datasets. The results included T-score calculations 
and prevalence predictions generated automatically by 
the model. Finally, a user-friendly web-based platform 
was developed for end users.

Development of the AI model for the diagnosis of 
Sarcopenia
An automatic lumbar classification model was developed 
using EfficientNetV2. Figure 1 shows the overall structure 
of the lumbar classification model. The model was trained 
using a dataset comprising seven classes: thoracic, L1, L2, 
L3, L4, L5, and sacral. To compensate for the limited size 
of the dataset, augmentation techniques such as rotation, 
zooming, vertical flipping, and horizontal flipping were 
applied. The model was trained to classify images using 
transfer learning by identifying the features of each class 
using EfficientNetV2 in ImageNet. Supplementary 3 lists 
the hyperparameters used for training. Although larger 
datasets typically slow training, the EfficientNetV2 model 
was designed for faster learning. Compared to Efficient-
NetV1, it achieves a similar accuracy with a learning 

Fig. 1  Study design and study workflow. The AI ​​model used abdominal CT to develop a classification and segmentation model, and a prediction model 
was developed based on this. The validation was performed by building a dataset not used for learning. Finally, the quantitatively analyzed results were 
automatically calculated statistically, and the T-Score, age-specific SMA analysis results, and prevalence rates were developed into a user-friendly web-
based platform
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speed of four times faster and 6.8 times fewer param-
eters. The model was initially trained using an original 
CT image of size 512 × 512 pixels. EfficientNetV2 tends 
to slow down with larger image sizes; however, owing to 
the limited amount of training data, the original size was 
used for training. We plan to reduce the image size for 
training to improve the accuracy once a sufficient dataset 
is available. The training results of the developed auto-
matic lumbar classification model were as follows: val_
loss = 0.1222 and val_accuracy = 0.9757. Historical plots 
are shown in Supplementary 4. After adjusting the set-
tings for the best model, the model at the 23rd epoch was 
saved. The performance of the automatic lumbar clas-
sification model was evaluated using the test data, and 
the confusion matrix is presented in Supplementary 5. A 
well-performing confusion matrix is indicated by higher 
numbers along the diagonal from top left to bottom right; 
the matrix shows that the model performed well at the L3 
level. As illustrated in Supplementary 5, a few slices along 
the diagonal were misclassified as adjacent classes; how-
ever, misclassifications as distant slices were rare. This 
indicates that the proposed classification model exhibits 
excellent performance. Although we obtained the desired 
results using the classification model, it was equally 
important to analyze the features extracted by AI to make 
predictions [12, 13]. Identifying these key influencing 
factors enhances the predictive reliability of the model 
and allows for a better interpretation of the underlying 
reasons for its predictions. Grad-CAM is frequently used 
for this purpose. Supplementary 6 shows Grad-CAM for 
the L3 slice, which is significant in diagnosing sarcopenia. 
Typically, the characteristics of the L3 are determined by 
its shape. Although each lumbar vertebra varied slightly, 
it was determined that the model made predictions based 
on the shape.

Segmentation model for skeletal muscle measurement
We developed an AI image segmentation model to mea-
sure muscle mass using U-Net. Supplementary 7 shows 
the overall structure of the U-Net model. The model was 
trained using abdominal CT and labeled data. We previ-
ously published a study on the development process and 
data composition for the development of an AI model for 
sarcopenia [14]. In our previous study, the segmentation 
model was trained and tested using 100 and 50 datas-
ets. However, this was insufficient for adequate training; 
therefore, we modified the image windowing and aug-
mented the data to establish a dataset of 20,000 images. 
We used 18,000 data points for training and 2,000 for 
validation. However, as shown in Supplementary 8, 
unsatisfactory segmentation outcomes were observed 
in the images after applying different windowing values 
and data augmentation. There were instances in which 
the modified windowing led to the segmentation of other 

areas with similar windowing, as indicated by the yellow-
boxed areas. To address these problems, we obtained 
actual training data and labeled them. We only used a 
dataset of 1,480 images for training and 370 for testing 
without applying windowing or data augmentation modi-
fications. Supplementary 9 details the hyperparameters 
used for training. A notable feature is the loss function. 
Although dice loss is commonly used in segmentation 
models, using it alone often leads to segmentation errors, 
diminishing the model’s performance [15, 16]. Thus, we 
used combined loss consisting of the dice loss and cross-
entropy loss at a 1:1 ratio. The rationale for using dice loss 
is to counter the class imbalances frequently observed in 
CT data segmentation, where an extensive black back-
ground can overshadow the smaller area representing 
the human body. This imbalance could inadvertently 
skew the training process for the less-represented class. 
Integrating dice loss and cross-entropy loss helps cor-
rect class imbalances with dice loss and maintains pixel 
accuracy with cross-entropy loss. The training results 
of the developed segmentation model were as follows: 
val_loss = 0.1730 and val_accuracy = 0.9713. Supplemen-
tary 10 shows historical plots. The performance of the 
segmentation model was evaluated using the test dataset, 
and the intersection over union (IOU) values are shown 
in Supplementary 11. Because the three segmented areas 
are important markers for the diagnosis of sarcopenia, 
we calculated the IOU by dividing them into subcuta-
neous fat (S), visceral fat (V), and muscle (M), as well as 
their combined area (M + S + V). The IOU calculations 
revealed that 92% of the entire dataset had an accuracy 
of greater than 90%. We developed a segmentation model 
by training it with abdominal CT data and validated the 
model using separately collected test data. However, the 
370 cases used for testing were not sufficient to enable 
the application of the AI segmentation model to real-
world data. For the validation, we obtained data from 
four facilities and identified the L3 region from the col-
lected data [17].

Quantitative analysis
We conducted an analysis using the abdominal disease 
dataset according to the method proposed for the diag-
nosis of sarcopenia using the proposed system. This 
involved labeling 1,161 abdominal images and conducting 
quantitative analyses to measure muscle mass, subcuta-
neous fat, and visceral fat. Based on these measurements, 
we calculated the cutoff values of T-score = -0.1 and − 0.2 
for a healthy young adult population. Patients show-
ing signs of sarcopenia were identified based on their 
T-scores. The error range was nearly identical to that 
of diagnostic markers in a previous study [8]. This error 
could potentially be attributed to the differences in the 
number of subjects. To calculate the T-scores, we used 
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a formula comparing the measured skeletal muscle area 
(SMA) or skeletal muscle index (SMI) of an individual 
with the average SMA or SMI of a healthy young popula-
tion adjusted for height, weight, and BMI. The difference 
was then divided by the sex-specific standard deviation 
(SD) of the young adults. The statistical analysis refer-
ence values underlying the T-score calculation in our 
study were based on the reference data presented in the 
previous study [8]. To ensure accurate and reproducible 
diagnostic results, the p-values and confidence interval 
values analyzed in the previous study were utilized in the 
development of an automated AI system conducted in 
our study.

Results
L3 classification results
The sarcopenia labeling tool developed in this study 
restructures axial images into sagittal images, allows 
for manual selection of L3 slices, and enables automatic 
extraction of the lumbar region using the lumbar classi-
fication model. Figure 2 shows the prediction results for 
the thoracic, L1, L2, L3, L4, L5, and sacral regions for all 
abdominal CT scan data.

Segmentation results
Figure  3 shows how the sarcopenia AI segmentation 
model automatically identifies subcutaneous fat, visceral 
fat, and muscle and produces labeled data. If the segmen-
tation is performed erroneously, a labeling tool can be 
used to revise the label. The labeled data were then quan-
titatively analyzed, as shown in Fig. 3. After the labeling 
is completed, a quantitative analysis of the entire labeled 
data can be performed by clicking on the quantitative 
analysis tab. The surface area, mean, and SD are pre-
sented for the labeled areas (muscle, subcutaneous fat, 

and visceral fat). Additionally, the proportions of muscle, 
visceral fat, and subcutaneous fat were calculated. Height 
and body weight were first acquired from medical imag-
ing tags; however, if unavailable, they could be manually 
entered to automatically calculate BMI. Quantitative data 
for each domain were used as markers to diagnose sar-
copenia. Data were downloaded from Excel for statistical 
analysis.

Web application for the diagnosis of Sarcopenia
Figure 4 shows the Study List screen of the AI-based web 
application. Abdominal CT images can be uploaded with 
the de-identification of personal data and are shown on 
the screen in the study units. If there is linked patient 
information, the connection status can be easily veri-
fied through an icon in the “Person” row, as shown in 
Fig.  4. By clicking the “Lumbar” button at the top, the 
app automatically performs the tasks of classifying the 
L3 slice from the abdominal CT images uploaded from 
the server, segmenting the three areas, and calculating 
the T-score. The “Process” row indicates the progress 
of these automated tasks. Once all tasks are completed, 
they are marked as “Analyzed.” If an error occurs at any 
stage, an “error” message pops up, allowing the user 
to manually identify and resolve the issue. The “Result” 
button appears at the top-left corner once all workflow 
tasks are completed for the images. Clicking the “Result” 
button generates a report with the mean and SD, calcu-
lated T-scores, and prevalence rates for each age group 
and gender. Supplementary 12 shows the SMA, SMA/
height2, SMA/weight, and SMA/BMI, as well as the SD 
of each factor for men and women aged 20–49 years. 
With reference to a T-score of -2.0, the SMA/BMI is 5.18 
in men and 4.01 in women. Supplementary 13 shows the 
sarcopenia prevalence rates by age group. Sarcopenia 

Fig. 2  Visually shows the results of spine-based classification of the uploaded image. Here, muscle mass, subcutaneous fat, and visceral fat are classified 
and quantified in each image of the nine slices at the L3 level
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prevalence for the collected patient data was determined 
by defining a T-score of < -2.0 as class II sarcopenia, 
-2.0 to -0.99 as class I sarcopenia, and ≥ -1.0 as normal. 
In men, SMA increases until the 40s and subsequently 
declines. In women, SMA increases until the 30s and 
subsequently declines. The SMA/height2 increased until 
the 40s and subsequently declined in both men and 
women. The SMA/height ratio decreases with advanc-
ing age in women. In men, it increases slightly in their 
60s and decreases gradually after that. SMA/BMI peaks 
in the 20s in both men and women and declines subse-
quently. The prevalence dramatically spiked in men and 
women aged ≥ 60 years, and the BMI-adjusted results 
were particularly significant. The prevalence of class I 
and class II sarcopenia ranged widely from 14.4 to 24.8% 

and 2.3–5.2%, respectively, in men and 13.8–27.2% and 
1.0–8.7%, respectively, in women. When the cut-off for 
sarcopenia was set at a T-score of < -2.0, SMA/BMI led to 
the highest sarcopenia prevalence (4.2% in men and 8.7% 
in women), and SMA/height2 led to the lowest sarcope-
nia prevalence (2.8% in men and 1.0% in women). Sar-
copenia prevalence increased with advancing age when 
predicted by the SMA and all three indicators, except 
for those aged 20–29 and 30–39 years, which had small 
sample sizes.

Discussion
This study presents the validation and implementation 
of an AI-based web application designed to diagnose 
sarcopenia using abdominal CT scans. This application 

Fig. 3  The image shows the quantified results from the L3 region. It shows the quantified numerical values ​​of muscle mass, subcutaneous fat, visceral 
fat, age, weight, height, and BMI
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automated the classification of vertebral regions, mus-
cles, subcutaneous fat, visceral fat, and bone segmenta-
tion in CT images. The T-scores were calculated based 
on the SMA index. We found that among several indices, 
SMA/BMI best reflected the age-related loss of muscle 
mass in healthy populations. SMA/BMI peaks in the 
20s in both men and women and declines subsequently. 
In addition, the AI-based system is distinct from previ-
ous approaches that usually deal with only a single slice. 
It can automatically analyze each slice at the L3 level and 
determine the average value. This method guarantees 
more consistent and reproducible results, especially in 
clinical settings where an accurate diagnosis can signifi-
cantly impact patient treatment and outcomes.

The Foundation for the National Institutes of Health 
(FNIH) reported that appendicular skeletal muscle mass 
(ASM)/BMI correlates with muscle weakness and slow-
ness [18]. In line with this, confirmation of sarcopenia 
prevalence in the Korea National Health and Nutrition 
Examination Survey (KNHANES) dataset was defined at 
less than 2 SD of DXA and showed a tendency to under-
estimate the prevalence of sarcopenia in women [19]. 
In contrast, we showed the difference in outcome val-
ues when DXA was height- or weight-adjusted. In addi-
tion, there were differences in muscle mass according 
to age group. We identified a tendency for the SMI to 
increase in men and women in their 30s and 40s. SMA/
weight and SMA/BMI tended to peak in men and women 
in their 20s and decrease in their 70s. SMA/weight and 
SMA/BMI reflected the age-related muscle loss pattern 

better than SMI in that the muscle mass peaks in the 20s 
and decreases with age. In the KNHANES study, ASM/
height2 peaked in men in their 30s and 40s in women, 
whereas ASM/weight gradually showed a downward 
trend and peaked in their 20s for both men and women; 
therefore, it would be reasonable to adjust the weight [19, 
20]. Based on these results, we also used BMI as a correc-
tion factor to reflect weight.

The results of this study have important implications 
in clinical practice, especially for improving the practi-
cality and effectiveness of muscle mass assessment. By 
confirming that the SMA/BMI ratio is the most accurate 
measure for altering muscle mass with age, this study 
contributes to our understanding of muscle mass loss. 
According to earlier research, this is significant because 
there is a clear correlation between muscle mass and the 
diagnosis, treatment, and prognosis of sarcopenia. Clini-
cians can implement prognostic assessments and nutri-
tional support measures to improve clinical outcomes 
and quality of life during the early detection of sarcopenia 
[6, 15, 21, 22]. In addition, the time and effort involved in 
manually analyzing images are decreased by developing 
AI-based solutions that automate the diagnosis proce-
dure. This reduces the risk of human error, resulting in a 
more consistent and reliable evaluation. These advances 
can facilitate faster decision-making in a clinical setting 
when time and resources are limited. Ultimately, they 
may be essential for enhancing patient care. These find-
ings are especially pertinent in the context of an aging 
population where sarcopenia is becoming more common. 

Fig. 4  Study Lists. The Study list manages abdominal CT images uploaded for analysis. Images that are automatically analyzed are displayed as analyzed 
in the process status. The TscoreResult shows the results of each uploaded image, whether sarcopenia or normal
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Recognizing and managing sarcopenia can lessen the 
potential for hospital stays, falls, mobility impairments, 
and patient outcomes.

Another finding of this study was the capability of the 
AI-based system to perform comprehensive analysis 
across all L3 slices in abdominal CT scans rather than 
relying on a single slice, as done in previous studies [23]. 
Several muscles are distributed, including the psoas, 
erector spinae, quadratus lumborum, abdominal wall 
muscles (transversus abdominis, external and internal 
obliques, and rectus abdominis), and many tissues that 
are distinguished from muscles, such as visceral fat and 
subcutaneous fat, are at the L3 level, which has been used 
in various studies as a landmark for SMA measurements. 
The fact that fat-free muscles should be used to mea-
sure muscle volume or cross-sectional area using CT is 
also one of the reasons for this [6, 8, 11, 24, 25]. Whether 
the L3 level of the psoas muscle represents total body 
muscle mass has not yet been established. Our research 
is meaningful because we have developed an applica-
tion that can easily accomplish this goal. This method 
has the potential to significantly affect clinical practice 
by providing a more accurate and holistic representa-
tion of the patient’s muscle mass, leading to more reliable 
diagnostic outcomes. Additional research is needed on 
standard or representative survey markers for the spinal 
level and specific muscles that can define sarcopenia and 
clinical outcome correlation for each type of disease. The 
traditional method of analyzing only one slice may over-
look the variability in muscle composition across differ-
ent slices, potentially leading to an underestimation or 
overestimation of sarcopenia prevalence. The ability of 
the AI system to analyze multiple slices and average the 
values addresses this limitation by offering a more con-
sistent and representative measure of SMA. This method 
reduces the risk of misclassification owing to anatomical 
variations or technical inconsistencies in image acquisi-
tion. By ensuring that the entire L3 region is evaluated, 
the AI system enhances the accuracy of sarcopenia diag-
nosis, providing reassurance about the reliability of the 
diagnostic outcomes.

This study addressed some of the limitations of previ-
ous studies. For instance, Kim et al. provided reference 
data for the SMA measured using a CT scan based on a 
single L3 slice analysis [8]. Although this method is com-
monly used for measuring muscle mass, it risks under-
estimating or overestimating muscle mass owing to the 
anatomical variability within the L3 region. In contrast, 
our study overcame these limitations by analyzing all 
available slices at the L3 level and evaluating muscle 
mass via volume measurements rather than cross-sec-
tional measurements. Similarly, Ha et al. developed a 
deep learning system for automatic L3 selection and 
body composition evaluation, which was a significant 

advancement in automating the sarcopenia diagnosis 
process [11]. However, their work primarily focused on 
developing and verifying deep learning models for slice 
selection rather than a detailed quantitative analysis of 
multiple slices. Our study integrates these advancements 
with a comprehensive quantitative analysis of muscle, 
subcutaneous fat, and visceral fat for all slices and auto-
mates slice selection. By automating both the L3 classi-
fication and segmentation processes and applying them 
across the entire L3 domain, our study introduces a more 
reproducible sarcopenia diagnostic method that can 
be used in various patient populations. We have intro-
duced our model’s features, including the comprehen-
sive analysis of all L3 slices, integration of automated 
processes, volume-based muscle mass evaluation, and 
a user-friendly web platform. These features collectively 
contribute to a more practical, efficient, and clinically 
applicable diagnostic tool compared to other AI methods 
in sarcopenia diagnosis.

This study had some limitations. First, the study popu-
lation was selected from a health examination center in 
a single institution, where there may be selection bias, 
and the study population needs to be representative of 
the general population, which can limit the generalizabil-
ity of the study results. A cohort consisting primarily of 
individuals undergoing routine health examinations may 
only partially represent the diversity of the general pop-
ulation, particularly with respect to age, ethnicity, and 
underlying health conditions. We are planning a follow-
up study that integrates as much data as possible from 
multiple centers. It aims to reduce the impact of selec-
tion bias by increasing the generalizability of the results 
across diverse populations. Despite these limitations, 
the dataset used in this study was an attempt to provide 
a starting point for evaluating the effectiveness of AI-
based sarcopenia diagnosis. By demonstrating the mod-
el’s applicability within a controlled, healthy population, 
we sought to lay the groundwork for building a more 
comprehensive study in the future. Second, the sample 
size of the reference group used to calculate the T-score, 
especially for the study population aged 20–49 years old, 
was relatively small. This may have affected the accuracy 
of the T-score threshold and the subsequent estimates 
of sarcopenia prevalence. Larger and more diverse data-
sets are required to improve the diagnostic accuracy of 
AI-based systems. To overcome the limitations of the 
relatively small reference groups for establishing T-score 
references, we plan to work with other organizations to 
expand our dataset to include various cohorts. In addi-
tion, continuous data collection and integration into AI-
based systems can update the T-score calculations in real 
time. This will enhance the diagnostic accuracy of our 
AI-based system and ensure our findings are relevant to 
various populations. Third, although AI-based systems 
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automate the classification and segmentation of the L3 
domain, they did not evaluate the clinical outcomes asso-
ciated with low muscle mass, such as disability, weakness, 
or mortality. Evaluating these results is necessary to vali-
date the clinical usefulness of diagnostic tools and under-
stand their impact on patient care [26–28]. Longitudinal 
studies that track these results can assess the possibility 
of adopting this technique in clinical practice. This study 
can improve the tools for understanding the impact of 
sarcopenia diagnosis on long-term health outcomes and 
for better predicting and managing risks by tracking clin-
ical outcomes associated with low muscle mass. Finally, 
although the system showed high accuracy in segmenting 
the muscle and adipose tissue, this study was limited to 
abdominal CT scans. The applicability to other examina-
tion tools, such as magnetic resonance imaging or DXA, 
is yet to be investigated. To address this study’s focus on 
abdominal CT scans, we will use cross-modal verification 
to determine whether it can be effectively used in dif-
ferent imaging modalities and clinical settings. We have 
identified that integrating AI-based diagnostic tools into 
clinical workflows may pose logistical and technologi-
cal challenges. These challenges include ensuring com-
patibility with various imaging systems and electronic 
health records (EHRs). Another challenge is the scalabil-
ity of AI-based diagnosis and management, especially in 
resource-limited settings. Lastly, maintaining the model’s 
relevance and accuracy over time is crucial, given the 
rapid evolution of AI technology and clinical guidelines. 
To address these issues, we plan to conduct future studies 
that incorporate strategies to reduce algorithmic bias and 
utilize multi-center datasets to ensure broader generaliz-
ability and improved model robustness.

In conclusion, an artificial intelligence web application 
for the diagnosis of sarcopenia was proposed. The pro-
posed system automatically calculates the artificial intel-
ligence module linkage, quantitative analysis, T-Score 
calculation, and prevalence by uploading abdominal CT 
medical images to classify and segment the lumbar 3 
spine slices. Based on this, the prevalence by age was cal-
culated. Our proposed system has the advantage of being 
automatically calculated with continuous data collection, 
and the diagnosis and prevalence of sarcopenia could be 
confirmed in patients in various disease groups with the 
same T-score-based cut-off point value. This result is pre-
dicted to offer basic information for understanding and 
comparing the clinical significance of sarcopenia and 
exploring its impact on patient outcomes. Our findings 
suggest that this AI-based tool could enhance the assess-
ment and management of sarcopenia in clinical prac-
tice, providing a helpful resource for future research and 
patient care improvement.
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