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Abstract 

Background The routine diagnostic process increasingly entails the processing of high‑volume and high‑dimen‑
sional data that cannot be directly visualised. This processing may provide scaling issues that limit the implementation 
of these types of data into research as well as integrated diagnostics in routine care. Here, we investigate whether we 
can use existing dimension reduction techniques to provide visualisations and analyses for a complete bloodcount 
(CBC) while maintaining representativeness of the original data. We considered over 3 million CBC measurements 
encompassing over 70 parameters of cell frequency, size and complexity from the UMC Utrecht UPOD database. We 
evaluated PCA as an example of a linear dimension reduction techniques and UMAP, TriMap and PaCMAP as non‑
linear dimension reduction techniques. We assessed their technical performance using quality metrics for dimension 
reduction as well as biological representation by evaluating preservation of diurnal, age and sex patterns, cluster 
preservation and the identification of leukemia patients.

Results We found that, for clinical hematology data, PCA performs systematically better than UMAP, TriMap and PaC‑
MAP in representing the underlying data. Biological relevance was retained for periodicity in the data. However, we 
also observed a decrease in predictive performance of the reduced data for both age and sex, as well as an over‑
estimation of clusters within the reduced data. Finally, we were able to identify the diverging patterns for leukemia 
patients after use of dimensionality reduction methods.

Conclusions We conclude that for hematology data, the use of unsupervised dimension reduction techniques 
should be limited to data visualization applications, as implementing them in diagnostic pipelines may lead 
to decreased quality of integrated diagnostics in routine care.
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Introduction
The diagnostic process in a routine healthcare setting 
increasingly produces data in high volume, dimension-
ality and in multiple modalities, both structured and 
unstructured. Examples of these diagnostic data are 
‘omics’ data such as transcriptomics, proteomics and 
metabolomics as well as imaging data, yet routine haemo-
cytometer data of a complete blood count (CBC) can 
also be considered high-dimensional data. Visualisation 
of the data in a comprehensive way can be a challenge 
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due to the high dimensionality. More importantly, to 
help healthcare professionals interpret these data for the 
benefit of individual patients, integration of the different 
types of data into integrated diagnostics models is war-
ranted. One of the modelling challenges in the develop-
ment and deployment of these models is the combination 
of vast data volumes and their high dimensionality, which 
may lead to computational performance issues. There is 
thus a need to ensure feasibility of integrated diagnostics 
models. One of the ways to achieve this is by using a low-
dimensional representation of these data rather than the 
full dataset. Such a representation can be generated using 
dimension reduction techniques.

Dimension reduction has historically been performed 
by the use of principal component analysis (PCA). This 
linear transformation technique assumes normally dis-
tributed variables, and is primarily focused on establish-
ing a dimension reduction that is preserving the global 
structure. Global structure preservation aims at pre-
serving the global patterns in the data, such as obvious 
clusters that are present in the data, whereas the local 
structure preservation aims at preserving more intrinsic 
patterns in the data, i.e. preserving the neighbourhood 
for each point. Several more recent dimension reduction 
approaches aim to also preserve local structure. One way 
to do this is through (non-linear) manifold approxima-
tion, which is based on learning the underlying structure 
of the data, mostly based on nearest neighbours. Some 
examples for these type of methods are Uniform Mani-
fold Approximation and Projection (UMAP) [1], Pairwise 
Controlled Manifold Approximation (PaCMAP) [2], and 
TriMap, a triplet-based approach [3].

Applying these methods to high-dimensional biological 
data has been performed before, including flow cytom-
etry workflows, transcriptomics data, RNA sequencing 
data, and protein structure analysis among others [4–9]. 
However, to the best of our knowledge, comparative 
work on robustness of dimension reduction on large hae-
matological data has not been performed before.

A complete blood count (CBC) assessing red and white 
blood cells and platelets, is one of the most frequently 
performed diagnostic procedures. Haemocytometers, on 
the basis of flow-cytometry, use proprietary algorithms 
to combine cell characteristics such as size, granularity, 
lobularity and viability into clinically relevant parameters 
like hemoglobin levels or white blood cell differentiation 
patterns. However, next to these parameters currently 
reported to the clinic, each routine haematology meas-
urement actually encompasses research-only values and 
raw cell characteristics of red and white blood cells and 
platelets that are currently not used in clinical care. In 
the University Medical Center Utrecht (UMCU), Utre-
cht, the Netherlands, the raw hematology data of over 3 

million samples that were measured on Abbott CELL-
DYN Sapphire hematology analyzers were stored in the 
Utrecht Patient Oriented Database (UPOD) since 2005. 
The full content and extent of the database is described 
elsewhere [10]. Previous UPOD research shows there is 
biologically and clinically relevant information hidden 
in the unreported hematology measurements of these 
samples [11–16]. Using dimension reduction methods to 
enable processing of raw CBC and visualising or combin-
ing it into integrated diagnostics models may therefore 
eventually improve clinical practice.

Considering this vast amount of haematological data, 
and its high number of dimensions, we set out to find a 
robust approach in reducing the dimensions of the data, 
so that it can be better processed but also better visual-
ized. By investigating the performance of the dimension 
reduction methods, we aim to ensure their usability in 
routine haematological data to improve clinical care, for 
example in diagnostic pipelines. As a dimension reduc-
tion should be a good representation of the original data, 
we not only compared the preservation of global and 
local data structure by several current dimension reduc-
tion techniques (PCA, UMAP, TriMap, PaCMAP, and 
Gaussian Random Projection as negative control), but 
also assessed their ability of preserving any clinical, diag-
nostic or biological relevancy of the data.

Methods
Descriptives
We extracted all available CBC measurements from the 
Abbott CELL-DYN Sapphire from 2005 to 2020 from the 
UPOD. We filtered out samples for cases where a nega-
tive age was reported for a sample. We then applied rig-
orous quality control based on metadata retrieved from 
the CELL-DYN Sapphire machines, based on in-house 
knowledge, gained from clinical chemists and data man-
agers. Examples of such quality control included the han-
dling of erroneous measurements, or measurements that 
were otherwise suspicious. As some of the CBC measure-
ments are only available if the sample was measured in 
reticulocyte mode, we imputed these missing variables 
using the miceforest package in Python, based on the 
Multiple Imputation with Chain Equations (MICE) [17] 
approach using a gradient boosting approach [18]. In our 
data, samples were measured in reticulocyte mode by 
default from 2013 onwards, providing the opportunity to 
impute missing data before 2013, since these data could 
be considered Missing At Random (MAR).

Considering the possibility that extreme outliers would 
distort the overall quality of any dimension reduction 
model, we transformed white blood cell count param-
eters to log scale. Additionally, we decided to clip the 
bounds of each parameter to limit the effect of outliers, 
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while preserving the clinical relevance of the samples. 
A list of the analysed variables that required clipping 
thresholds can be found in table  S1. In addition, we 
applied score scaling to all variables, so that the mean is 0 
and the standard deviation is 1.

Dimension reduction
Dimension reduction methods
One of the most frequently used dimension reduc-
tion models historically is PCA, which tries to capture 
data in linear combinations, using vector decomposi-
tion. It creates perpendicular components, meaning that 
components are not correlated to each other, and using 
this principle, PCA can reduce the original data into a 
reduced space by explaining the variance in the original 
data. This method is very useful when working with col-
linear features, as these features will be captured in the 
same components, since they explain the same variance 
in the original data. For assessing the performance of a 
PCA, the cumulative explained variance is often used, 
and this will naturally increase when the number of com-
ponents are increased. PCA assumes linear relationships 
between variables, and assumes normally distributed 
variables.

Yet, as the probability exists that the original data might 
contain non-linear relationships, we decided to use man-
ifold dimension reduction techniques, which are based 
on the theory that any space can be reduced to lower 
dimensions based on the shape of the data. In order to 
achieve this, each data point should be placed in a simi-
lar neighbourhood compared to the original space. This 
makes sure that local structure of the data is better pre-
served, i.e., that data that is similar in the original space is 
also similar in the reduced space. Examples of non-linear 
dimension reduction techniques include Uniform mani-
fold approximation (UMAP), Triplets Manifold Approxi-
mation (TriMap), and Pairwise Controlled Manifold 
Approximation (PaCMAP). In addition to PCA, these 
methods were used in the current study to capture the 
large and complex CELL-DYN Sapphire dataset in lower 
dimension. Finally, we used Gaussian Random Projection 
(GRP) as a negative control. We will provide a brief over-
view of these techniques in this section.

Although UMAP, PacMAP and TriMap are initial-
ised with PCA by default, the individual components of 
UMAP, TriMap and PaCMAP have no specific meaning, 
unlike PCA. For PCA, the additional explained variance 
diminishes when a higher number of components are 
used.

UMAP UMAP estimates the shape of the data in 
the higher dimensionality using a weighted graph and 
then projects the graph onto the lower dimension for 

dimensionality reduction [1] (see Fig.  1). UMAP con-
structs a high-dimensional graph by extending branches 
from individual points with a radius r to connect the 
points to their neighbourhood in high-dimension. These 
branches then become a graph of various shapes to be 
projected onto the lower dimension, irrespective of dis-
tance between points. The k-nearest neighbours in r can 
be set, where a low k preserves the local structure, and 
a higher k preserves the global structure of the original 
data. Finally, the high-dimensional graph is projected 
onto a lower dimension using a force-directed graph 
approach, pulling together points that are close and 
pushing apart points are further away. This is done based 
on the weighted connectivity, meaning that points are 
drawn towards groups of points with which it has multi-
ple connections, rather than points/clusters with singular 
connections. Clusters are formed based on some thresh-
old, which also depends on the number of nearest neigh-
bours. Increasing the k-nearest neighbours will result 
in larger groups of interconnected points, at the cost of 
increased computational complexity.

TriMap TriMap is another manifold approach, and is 
primarily built around triplets constraints [3]. TriMap 
constructs triplets per point (i) and pairs this to n_inliers 
(j) according to the distance metric used. For each of 
these pairings, n_outliers are sampled (k) resulting in 
n_inliers ∗ n_outliers triplets per point (i, j, k). Addition-
ally, n_random triplets are constructed. TriMap then cre-
ates a low dimensional representation of the data where 
the ordering of the distances of these triplets is preserved 
( d(i, j) ≤ d(i, k) ), by weighting the triplets, according to 
the relative distance of j and k to i (Fig. 2).

PaCMAP Similarly to TriMap, PaCMAP samples 
both neighbours and non-neighbours (Near Pairs and 
Further Pairs respectively) in order to establish a low-
dimensional representation of the original data. Contrary 
to TriMap, it also focusses on Mid-Near Pairs [2]. Near 
Pairs are the nearest neighbours based on a scaled dis-
tance metric. Mid-near pairs are established by sampling 
6 points per observation and then selecting the second-
closest point based on distance. The amount of Mid-Near 
Pairs is set by the MN_ratio . Finally, Further Pairs are 
non-neighbours, and the amount of pairs is set using the 
FP_ratio . After initializing with PCA, PaCMAP uses a 
weighted loss function to optimize the low dimensional 
representation. The loss function is primarily driven 
by the Near Pairs and Mid-Near Pairs, but gradually is 
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mostly influenced by the Near Pairs. This means that the 
loss is highly increased if close points in original space 
are set further away in the reduced space.

Gaussian random projection Gaussian Random Pro-
jection (GRP) is a dimension reduction technique that 
is based on the Johnson-Lindenstrauss lemma, which 

Fig. 1 Explanation of UMAP: A graph is constructed based on nearest neighbours in a radius (r(i)). The original data (D) is then projected unto 
a lower dimension (D’) by drawing closer points together, and putting disconnected points further apart

Fig. 2 Explanation of TriMap: TriMap samples an inlier (j), and an outlier (k), and tries to project the distances from original space (D) unto a lower 
dimension (D’) so that structure is preserved
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states that any high-dimensional Euclidean space can 
be reduced onto a lower-dimensional Euclidean space 
with minimal distortion (at most 1+ ǫ ) of the pairwise 
distance [19], and a result by Hecht-Nielsen [20] who 
showed that a random selection of vectors in a high-
dimensional space can be considered an orthogonal 
projection. Gaussian Random Projection does this by 
projecting original data on a randomly generated matrix 
with Gaussian distributions. However, the accuracy 
of the projection and the amount of required compo-
nents for dimension reduction is highly dependent on 
the amount of samples and the permitted error ( ǫ ), spe-
cifically n_components ≥ 4ln(n_samples)/(ǫ2/2− ǫ2/3) 
[21]. This means that GRP can require more components 
than available dimensions when the number of dimen-
sions is sufficiently low and the number of observations 
is high. To that end, we included GRP as a negative con-
trol for the dimension reduction quality metrics, because 
we would expect that this method would perform worst 
when dimension reduction the data to a low number of 
dimensions ( ≤10) because of this constraint, since our 
data consists of over 3 million samples.

Parameter tuning
We tuned the amount of neighbours used for UMAP, Tri-
Map, PaCMAP ( n_neighbours ). For UMAP and PaCMAP 
we were interested in the number of neighbours, but for 
TriMap we were interested in the number of outliers and 
inliers, since this is important for the construction of tri-
plets in TriMap. Both PCA and GRP do not require any 
tuning on nearest neighbours, since they are not neigh-
bour-based. Additionally, we also investigated the num-
ber of dimensions ( n_components ) that were generated 
by all the dimension reduction methods, as this might 
increase the amount of information stored in the dimen-
sion reduction. For example, in PCA, the amount of total 
variation explained increases when the amount of com-
ponents is increased. As computing numerous distinct 
dimension reductions and their performance is computa-
tionally expensive using a nearest-neighbours approach, 
we also investigated the number of samples we could use 
for dimension reduction purposes.

Distance metrics
One important step in the assessment of dimension 
reduction techniques is the distance metric with which 
we assess the distances between data points and with 
which we perform the dimension reduction for the 
manifold approaches. As mentioned above, the num-
ber of dimensions of the reduced data with Euclidean 
distance is dependent on the number of samples and 
the permitted distortion ( ǫ ). For a dataset with roughly 

three million samples, and roughly one hundred dimen-
sions, this means that we are not able to project the data 
to a lower-dimensional Euclidean space while preserv-
ing the distortion 0 < ǫ < 1 . This practically excludes 
using the Euclidean distance metric from the perspective 
of distance preservation, and a fractional distance met-
ric is best suited for the description of distances in high 
dimensionality ( d > 30 ) [22]. We decided to pursue the 
Manhattan distance as the simplest expression of the 
fractional distance. The Manhattan distance is defined as: 

n

i=1 |ai − bi|.

Dimension reduction quality metrics
Two main ways that are used for dimension reduction 
quality metrics are evaluating the global and local struc-
ture [2]. Local structure metrics evaluate neighbourhoods 
of points and how well these are preserved in the reduced 
data, while global structure metrics evaluate how well the 
reduced data preserved the relationships between groups 
of points. In this study, both global and local distance 
metrics were used to find a balanced representation of 
the CELL-DYN Sapphire data in lower dimension. The 
metrics are generally rank-based, since these are insen-
sitive to scaling. One unifying framework for rank-based 
metrics is the co-ranking matrix (Q-matrix) [23]. The 
Q-matrix compares the pairwise ranks of the original 
data versus the reduced data, showing the preservation 
of local and global distances. Calculating a Q-matrix con-
sists of two steps. Firstly, a ranking of distances between 
points in both original and reduced data is calculated. 
Thereafter, a single matrix is constructed combining both 
rankings, explaining rank preservation in the low-dimen-
sional data.

For local preservation measures, we further used the 
proportion of neighbouring points being preserved (the 
neighbourhood-kept-ratio), and the trustworthiness 
score. The neighbourhood-kept-ratio [6] is computed 
using the number of nearest neighbours N(i) for all i in 
high-dimensional space and the k-nearest neighbours 
N

′(i) for all i in low-dimensional space, where i is each 
data point. Consequently, N(i) and N′(i) are compared to 
see the intersection between their neighbourhoods. The 
degree of overlap is calculated, and divided by the num-
ber of k to calculate a ratio for each i . Subsequently, this 
ratio is divided by the number of samples to get the aver-
age neighbourhood preservation. The trustworthiness 
score ranks neighbourhood points in accordance with 
how close they are to the observations i in low- and high- 
dimensional spaces [24]. If the ranks of neighbourhood 
points are misaligned in the reduced space, the metric 
will penalise these shifts, resulting in a lower score. A 
version of the trustworthiness score [24] was used in this 
study with help of the Q-matrix framework [25].
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For global preservation measures, we used random tri-
plet score and spearman rank correlation. The random 
triplet score is calculated by retrieving sets of two points 
(j, k) at random per i in the original data to form triplets 
(i, j, k) [2]. After this, it finds the same set of triplets in 
the reduced space and calculates the distance from i to 
j ( dij ) and k ( dik ) for both the original and the reduced 
data. It then orders dij and dik based on their distance in 
both datasets. The degree of order preservation indicates 
global structure preservation by the dimension reduction 
method. Five triplets per i were used in this study. Finally, 
pairwise distances can be measured using the Spearman 
rank correlation to assess distance preservation in the 
reduced data. Another strength of this method is that 
distance correlation is easily visualized in a graph (e.g., 
Figure S1 and S2) to assess the correlation of distances 
between low- and high-dimensional spaces. To compare 
the different dimension reduction methods with regards 
to their quality metrics, we performed the quality assess-
ments in 10-fold, and used a T-test for comparison.

Preservation of biological representation
Cluster preservation
Because biological relevance and meaning of the data 
should be maintained in the dimension reduction, we 
assessed preservation of biological relevance from four 
different angles. As a first angle, we studied the pres-
ervation of clusters of similar patients in the reduced 
data. We analyzed both the raw and the reduced data 
using HDBSCAN [26] and k-means clustering [27] and 
retrieved information on the preservation of cluster-
ing methods after using dimension reduction. For this 
analysis, we were interested in the number of clusters 
extracted, the Normalised Mutual Information (NMI) 
and Adjusted Rand Index (ARI) scores (higher is better). 
The NMI and ARI scores are ways to report the extent 
of cluster preservation in the reduced data, by taking the 
clusters in the original data as ground truth. K-means 
clustering retrieves a predefined number of clusters (k) 
based on the Euclidean distance towards a cluster cen-
tre, and tries to minimize the sum of distances over 
these k clusters. In practice, this can result in clusters 
that are of equal size and density, but are unintuitive for 
interpretation. HDBSCAN is assigning clusters based 
on the density of the data, and is therefore more suitable 
to retrieve clusters with varying densities. This increases 
the possibility of potentially retrieving meaningful clus-
ters. For our analysis, we used a pipeline with a z-score 
scaler, a dimension reduction method, and a clustering 
model (HDBSCAN). As a default we used the Manhat-
tan distance, with 50 neighbours and a random selec-
tion of 100.000 samples from the haematology set for 
dimension reduction in this analysis.

Diurnal patterns
The second and descriptive angle was by studying diurnal 
patterns in the reduced dataset, as the size of the origi-
nal dataset allowed us to investigate large patterns within 
the data. One of the broad epistemic features of, at least 
part of, the hematology parameters, is the presence of a 
diurnal pattern [28, 29]. We expected that dimension 
reduction algorithms preserve such broad qualitative 
features. We assessed the diurnal patterns in the reduced 
data with the use of a cosine fit, as implemented in the 
CosinorPy library [30]. We assessed the diurnal patterns 
with 100,000 random samples, and based the hour of day 
on the time of blood draw.

Age and sex
The third angle was to assess biological relevance by two 
classification tasks that should be identifiable in the data: 
firstly, sex prediction in samples of patients between the 
age of 20 to 50, as during this age-range a clear distinct 
difference of hemoglobin between men and women exists 
[31]. Secondly, prediction of samples of patients below 20 
versus patients above 60 years old, as the haematological 
characteristics of young people are known to be distinct 
from older people [32]. For this purpose, we used Gradi-
ent Boosting (GB) model to capture any non-linear asso-
ciations. To assess the performance of the resulting 
models, we decided to focus on the accuracy and the 
Matthews Correlation Coefficient (MCC) metric. The 
accuracy is the correct prediction of positive and nega-
tive cases, divided by the total amount of positives and 
negatives, i.e. TP+TN

TP+FP+TN+FN  , where TP, FP, TN and FN 
are true and false positives, and true and false negatives 
respectively. The MCC, or the φ coefficient, is a measure 
of the quality of a binary classification model that takes 
into account true and false positives and negatives, i.e., is 
a summary measure for the confusion matrix, compara-
ble to the F1 metric. MCC is calculated as follows: 

TP×TN−FP×FN√
(TP+FP)×(TP+FN )×(TN+FP)×(TN+FN )

 . The data were ana-
lysed using 10-fold cross validation with an inner valida-
tion set (as a result of the folds) and a dedicated outer 
validation set. 170,000 random samples were used for 
training, 30,000 random samples were used for the dedi-
cated validation set. Sampling was performed for compu-
tational reasons, with regards to dimensionality of the 
original data. We assessed the significance of perfor-
mance change using a T-test.

Identification of leukemia‑like patients
As a final angle to assess performance of preservation of 
biological relevance, we investigated a specific popula-
tion that is completely divergent from the general pop-
ulation in terms of CBC. To this end, we used samples 
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from patients with chronic lymphocytic leukemia that 
were diagnosed based on CBC characteristics together 
with clinical experts, more specifically: based on very 
high lymphocyte counts. If dimension reduction would 
preserve biological relevance, these samples should be 
clearly distinguishable in the lower dimension represen-
tation. Failure to detect these patients would significantly 
impact the use of the dimension reduction methods in 
clinical practice. To detect potentially significant dif-
ferences between the populations, we used an unpaired 
T-test, and considered a p-value below 0.001 to be 
significant.

Software and hardware
All analyses were performed with the Python program-
ming language (version 3.9). Imputation was performed 
using the miceforest package. Dimension reduction was 
done using the scikit-learn package for PCA and GRP. 
UMAP was performed using the umap-learn package, 
TriMap was performed using the trimap package, Pac-
MAP was performed using the pacmap package. Sex and 
age classification was performed using the xgboost pack-
age. All calculations were performed on CPU, namely 
the Xeon W-2125 at 4GHz and 8 logic cores with 64GB 
memory. The code for this project is available from 
https:// github. com/ UPOD- datas cience/ celld yn_ embed 
der.

Results
Descriptives
In total, we extracted 3, 093, 792 samples from 358, 614 
unique patients. We used 70 different blood cell 

characteristics for this study, all of them continuous vari-
ables. We used no categorical variables in our embedding. 
The descriptives and missingness for each variable in the 
data that were used in this study are described in Sup-
plementary File 2. 52.8% of the samples were from male 
patients, the median age at measurement was 51 (IQR: 
27–66). After preprocessing the haematological data, we 
applied imputation to 1,  107,  049 samples for haemato-
logical parameters that were missing as a result of labo-
ratory protocols (e.g., not using reticulocyte mode). The 
distribution of the samples per patient is shown in Fig. 3

Dimension reductions
Parameter tuning results

Number of neighbours First, we compared the amount 
of nearest neighbours used for dimension reduction 
for both UMAP, TriMap, and PaCMAP. The results are 
shown in Fig. 4 for UMAP, and in Figure S3 for PacMAP. 
For an increasing sample size and number of neighbours, 
we observed an initial improvement with a rapid stagna-
tion (Fig. 4, Figure S3).

The neighbourhood kept ratio ranged from 0.29 at 5000 
samples and 5 nearest neighbours to 0.33 at 160,000 
samples and 100 nearest neighbours for UMAP. How-
ever, the scores for any number of neighbours from 15 
and above were similar with increasing sample size. For 
trustworthiness, using 5 nearest neighbours yielded 
worse results than using 15 or more neighbours (rang-
ing from 0.89 to 0.91). For all other number of neigh-
bours, the trustworthiness was limited to 0.92. For 

Fig. 3 The distribution of measurements per patient in our dataset

https://github.com/UPOD-datascience/celldyn_embedder.
https://github.com/UPOD-datascience/celldyn_embedder.
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global distance preservation methods, UMAP was sta-
ble for random triplet score ranging from 0.72 for 5 
nearest neighbours at 5000 samples to 0.74 for all num-
ber of neighbours at 40,000 to 160,000 samples. The 
distance correlation increased from 0.64 at 5000 sam-
ples to 0.69 at 40,000 to 160,000 samples (Fig. 4).

For PaCMAP, a similar pattern was observed (Figure 
S3). Local distance preservation as measured through 
the neighbourhood kept ratio ranged from 0.33 at 5000 
samples and 5 nearest neighbours to 0.36 at 160,000 
samples with 30, 50, or 100 nearest neighbours. Trust-
worthiness ranged from 0.88 at 5000 samples for 5 
nearest neighbours to 0.90 at 160,000 samples for all 
other number of nearest neighbours. However, this 
performance was already reached at 10,000 samples 
by using 30, 50, or 100 nearest neighbours. Global dis-
tance preservation as measured by the random triplets 
score ranged from 0.73 to 0.74 for all number of neigh-
bours. Distance correlation remained relatively stable, 
with scores ranging from 0.66 to 0.67.

Considering the results, we decided to limit the sam-
ple sizes to 40,000 for TriMap to find the number of in- 
and outlying neighbours, because increasing the sample 
beyond this point yielded similar result, yet dramatically 
increased computational costs (data not shown). The 
result of this tuning are found in Figure S4. We observed 
no large differences for the number of outliers used for 
TriMap. However, we did observe substantial increased 
for global distance preservation metrics when increasing 
the number of inliers. Random triplets score increased 
from 0.75 (5 inliers) to 0.78 (100 inliers). Distance Corre-
lation increased from 0.75 (5 inliers) to 0.81 (100 inliers). 
However, we decided to move forward with 50 inliers 
and 15 outliers for TriMap, since increasing the number 
of neighbours was computationally not feasible for the 
entire data set of over 3 million samples (data not shown).

Number of components As we used 50 nearest neigh-
bours for the dimension reductions, we also used 
50 nearest neighbours for calculating the dimension 

Fig. 4 Evaluating UMAP with quality metrics across different numbers of neighbours and sample size along with the 95% Standard Error (SE) 
for each sample size and number of nearest neighbours
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reduction quality metrics. We then increased the num-
ber of components for the final dimension reduction. We 
used 40,000 random samples, which were matched across 
the dimension reduction methods.

We compared 2, 4, 6, 8, 10, 20 and 30 components to 
get a rough estimation of the increase in performance 
for each of these models. Figure 5 shows the results for 
the neighbourhood kept ratio, trustworthiness, ran-
dom triplet score and distance correlation. For all 
scores, PCA performed best across all number of com-
ponent ( p < 0.001 ) (Fig.  5). Additionally, performances 
for UMAP, TriMap, and PaCMAP barely increased by 
increasing the number of components.

Focussing on local distances, the neighbourhood kept 
ratio increased from 0.27 (2 dimensions) to 0.89 (30 
dimensions) for PCA, whereas it stagnated for UMAP 
around 0.32, TriMap around 0.36, and PaCMAP around 
0.35. GRP increased from 0.13 (2 dimensions) to 0.55 (30 
dimensions). Trustworthiness was high for all dimension 
reduction methods, except for GRP at lower dimensions. 

PCA (range 0.92–0.97) had the highest scores, UMAP 
and PaCMAP performed similarly (ranges 0.90–0.92 
for UMAP; 0.91–0.93 for PaCMAP). TriMap performed 
better than the other manifold approaches (range 0.92–
0.94). GRP performed worse at lower dimensions (range 
0.73 - 0.94).

When it comes to global distances, PCA outperformed 
all other dimension reduction methods on both ran-
dom triplets score (0.78 to 0.98) and distance correlation 
(range 0.81 - 0.93, max = 0.93 at 8 dimensions). The ran-
dom triplets score remained stable for the three manifold 
approaches, scoring 0.74 for UMAP, 0.78 for TriMap, and 
0.73 for PaCMAP. GRP increased from 0.66 at 2 dimen-
sions to 0.86 at 30 dimensions. Distance correlation for 
the manifold approaches increased primarily with lower 
dimensions, scoring 0.90 for UMAP, 0.91 for PaCMAP 
and 0.92 for Trimap to 0.92 for UMAP, 0.93 for PaC-
MAP and 0.94 for TriMap at 4 components, which then 
remained stable with increasing dimensions.

Although we observed an increase of performance 
for PCA and GRP with increasing components, we also 

Fig. 5 Dimension reduction metrics across a different number of dimensions along with the 95% SE for each number of components
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observed a stagnation for manifold approaches at 4 
components. Considering the increasing computational 
complexity of the manifold approaches with increasing 
components, we decided to limit the number of compo-
nents to 6 for all methods, in order to reduce the entire 
data set of over 3 million samples.

Preservation of biological representation
Cluster preservation
Table  1 shows the performances of clustering methods 
using the reduced data. We observed an excess of clusters 
with subsequent low values for the Normalised Mutual 
Information (NMI) score and Adjusted Rand Index 
(ARI), showing that the dimension reduction methods 
have a tendency to generate an excess of clusters in com-
parison with the real data. We identified 12 clusters in the 
original data, whereas we found 32, 31 and 12 for PCA 
at 3, 6 and 12 components respectively. For the manifold 
approaches, we found a large inflation of clusters. For 
UMAP we identified 115, 84, and 81 clusters; for TriMap 
we identified 45, 44 and 53 clusters; for PaCMAP we 
identified 42, 43 and 54 clusters, all with 3, 6 and 12 com-
ponents respectively. Finally, for GRP we identified 30, 22 
and 5 clusters for 3,6 and 12 components respectively.

Comparing the NMI score and ARI we found that, 
overall, scores were low ( ≤ 0.10 for NMI and ARI, and did 
not improve when increasing the number of components, 
except for GRP with a NMI of 0.01 at 3 components and 

0.12 at 12 components, and an ARI of −0.0003 at 3 com-
ponents to 0.19 (table 1).

Furthermore, we found that, in terms of cluster qual-
ity, UMAP stagnates to a value well under the optimum 
for increasing number of components being on par with 
PCA for smaller number of components (Figure S6). 
Additionally, we observed that all manifold approaches 
maintain a high level of cluster-inflation for increasing 
number of reduced dimensions. Finally, we observed 
that for a low number of reduced dimensions, all tested 
dimension reduction techniques produced a considerable 
inflated number of clusters as detected by HDBSCAN 
compared to the baseline cluster detection on the origi-
nal data (Figure S7, Table 1).

Diurnal patterns
Figure  6 shows the 6 UMAP dimensions. We observed 
a diurnal pattern for each of the components, primarily 
split between daycare (6:00–18:00) and care during the 
night, with clear progression within the daycare time-
period. The clearest diurnal patterns in the non-reduced 
data are obtained for the neutrophil and the eosinophil 
fractions. For these fractions, and all components for the 
dimension reduction techniques, we observed signifi-
cant results for the cosine-fit (table S2). The p-value rep-
resents the probability of the amplitude being zero [30]. 
Additionally, Fig. 7 shows the retention of periodicity in 
the dimension reductions compared to the periodicity of 
the neutrophil fraction. We chose neutrophil fraction as 
this parameter has a clear diurnal evolution.

Prediction performance
To assess preservation of biological relevance, we com-
pared age ( ≤ 20 versus ≥ 60) and sex prediction perfor-
mance of original data to the prediction performance 
of reduced data. Results of age at sampling predictions 
can be found in Fig.  8. We used data from 170,000 
random samples and matching the samples to their 
reduced data, and used 30,000 random samples for 
validation. We observed a significant ( p < 0.001 ) drop 
in performance when data from any dimension reduc-
tion method was used. We observed very stable perfor-
mances across the 10-fold cross validation, resulting in 
small variation for the accuracy and MCC. While the 
original data showed higher performance (accuracy = 
0.88, MCC= 0.74) for age-classification, we observed a 
lower accuracy, ranging from 0.76 for GRP to 0.80 for 
the manifold methods (PCA = 0.79, and a lower MCC, 
ranging from 0.47 for GRP to 0.56 for TriMap (PCA = 
0.55; UMAP = 0.55; PaCMAP = 0.56). This meant that 
applying dimension reduction negatively impacted 
classification tasks. The same pattern was observed in 
sex prediction (Figure S5). The original data showed 

Table 1 Comparison of cluster alignments, using a pipeline 
with a standard scaler, a dimension reduction method and a 
clustering model

Dimension 
reduction

Components # of clusters NMI ARI

n/a n/a 12 n/a n/a

PCA 3 32 0.06 0.06

UMAP 3 115 0.04 0.03

TriMap 3 45 0.07 0.05

PaCMAP 3 42 0.10 0.11

GRP 3 30 0.01 −0.0003

PCA 6 31 0.04 0.03

UMAP 6 84 0.09 0.10

TriMap 6 44 0.05 0.01

PaCMAP 6 43 0.05 0.02

GRP 6 22 0.03 0.02

PCA 12 12 0.07 0.09

UMAP 12 81 0.08 0.09

TriMap 12 53 0.08 0.08

PaCMAP 12 54 0.06 0.05

GRP 12 5 0.12 0.19
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an accurary of 0.76 and a MCC of 0.51. For the data in 
reduced space, the accuracy ranged from 0.61 for GRP 
to 0.7 for UMAP and TriMap (PCA = 0.68; PaCMAP 
= 0.69. The MCC ranged from 0.18 for GRP to 0.39 for 
UMAP (PCA = 0.34; TriMap = 0.38; PaCMAP = 0.36).

Identification of leukemia‑like patients
In the original data (Fig. 9) we found significant differ-
ences between patients that were identified as having 
chronic lymphocytic leukemia (CLL) with respect to 
our overall population for both white blood cell count 
as lymphocyte count. In total, we identified 3205 sam-
ples from patients with CLL, and compared these sam-
ples to all other samples in the data (n = 3,090,580). 
For all dimension reductions, we found similar results, 
where the CLL patients’ data had significantly differ-
ent distributions ( p < 0.001 ) compared to the general 
population for a large portion of the dimensions (Fig-
ures S8 to S12).

Discussion
In this study, we investigated the use of dimension 
reduction methods in a large set of routine CBC data 
from the Abbott CELL-DYN Sapphire haemocytom-
eter. We compared PCA, UMAP, TriMap, and PaCMAP 
with multiple performance metrics (neighbourhood 
kept ratio, trustworthiness, random triplet score, and 
distance correlation). We found that looking at dimen-
sion reduction metrics, PCA was best performing in 
comparison with UMAP, TriMap and PaCMAP. As the 
purpose of these dimension reductions lie in analy-
sis and interpretation, we investigated if any biologi-
cal representation was correctly maintained. We found 
that diurnal patterns were maintained, but that predic-
tive tasks (such as age and sex) performed significantly 
worse compared to the original data, and that clus-
tering tasks resulted in an overestimation of clusters 
compared to the original data. We conclude that using 
dimension reductions will result in a loss of information 

Fig. 6 Intraday variation of UMAP dimensions showing a clear diurnal pattern, as expected from prior work showing diurnality of hematology 
parameters, as well an offset between men/women in the 3rd and 4th dimensions

Fig. 7 Time evolution of (left) first component for different reducers with 95% SE, (center) the neutrophil fraction, (right) the eosinophil fraction
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compared to the original data, even in predictive tasks 
where subgroups should be apparently clear.

In literature, UMAP and other (non-linear) dimen-
sionality reduction techniques are evaluated as superior 
with respect to PCA [2, 3, 33, 34]. However, the utility 
of UMAP and other nearest-neighbours-based dimen-
sion reduction methods is seemingly limited to very-low 

dimensional representations for the purpose of visualisa-
tion [2, 3]. In our study, we observe that for increasing 
dimensionality, the manifold techniques converge to 
dimension reduction scores that are far from optimal, 
whereas PCA reaches near-optimal scores well before 
it is able to explain 95% of the variance (n components 
= 30). This is likely the case for other global methods, 

Fig. 8 Predictive performance for patients < 20 (‘young’) versus patients > 60 (‘old’) in the dedicated validation set. The prediction performances 
dropped significantly ( p < 0.001 ) after applying dimension reduction techniques. n = 170,000 for training; n = 30,000 for validation; n folds = 10. 
‘Celldyn’ refers to the original data. Circles represent an outlier in performance
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but further research is needed to study this. We deem 
that this effect is partly because of the large sample size, 
meaning that the neighbourhood for a certain sample is 
harder to define, or we need a larger number of neigh-
bours when increasing sample size. However, increasing 
the number of neighbours can result in computational 
issues, considering the pairwise nature of the dimension 
reduction techniques and performance measures.

When dealing with neighbourhood-based dimension 
reduction methods such as UMAP, TriMap and PaC-
MAP there is a trade-off between the preservation of 
local and global characteristics. Possible mitigations 
are to increase the number of components [35] and the 
number of nearest neighbours. The number of dimen-
sions and neighbours is dependent on the amount of 
samples in the dataset. However, increasing the number 
of dimensions and number of neighbours increases the 
complexity of dimension reduction. Furthermore, for 
an increasing number of samples of multiple modali-
ties, the heterogeneity of the data can increase, and it 
then becomes more difficult to embed the data with suf-
ficient accuracy i.e., more samples does not inherently 
equate to a better dimension reduction. Finally, PCA 
becomes competitive in terms of dimension reduction 
performance when increasing the number of dimen-
sions since the amount of explained variance increases, 
while being orders of magnitude more efficient compu-
tationally, especially if one considers the availability of 
Incremental PCA that has a constant memory complex-
ity [36]. Another PCA-related approach would be the 
application of Kernel PCA for non-linear PCA. How-
ever, Kernel PCA has notable scaling issues with sam-
ple size, and is therefore not useful in our setting [37]. 

Finally, the use of Independent Principal Component 
Analysis could be of interest, since it has no assumption 
concerning gaussian distributions of input variables. 
Additionally, through the combination of Independent 
and Principal Component Analysis, more biologically 
meaningful components may be identified [38].

Another way to mitigate the issue with the trade-off 
between global and local characteristics, is to limit the 
number of samples used for the dimension reduction 
such that it contains enough samples per stratification, 
but not more. This requires enough information for 
the stratifications we are interested in, which in turn 
requires labelling. This is a known issue when using 
(routine) healthcare data, as the administrative start of 
a disease that is indicated by registration of a certain 
diagnosis does not coincide with the physical start of 
the disease. As the physical start of the disease may 
affect some or all parts of the CBC, labelling of disease 
presence at the time of blood draw is intrinsically dif-
ficult. Moreover, most patients that visit our tertiary 
care centre suffer from complex diseases and multiple 
comorbidities, further complicating labelling of our 
haematology data. Because of these issues, we were 
unable to retrieve clear labels for our samples.

One other mitigation of the problem with large sam-
ple sizes and neighborhood-based dimension reduction 
methods that leads to improved tractability is the use of 
dimension reduction alignment, where we partition the 
datasets to create many dimension reductions that are 
subsequently aligned, using, e.g., the Procustes trans-
formation [39]. Another benefit of dimension reduction 
alignment is that adding new data to the dimension 
reduction is much faster.

Fig. 9 Boxplots showing the median and interquartile range of lymphocyte and leukocyte counts (x109) of patients with CLL (n = 3, 205) 
versus patients without leukaemia (n = 3, 090, 580) in the original data
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Biological performance
We investigated patterns in the data that are known to be 
present within haematology data. Indeed, we observed 
known diurnal patterns of white blood cells [29, 40, 41]. 
This pattern was also observed within the data after 
dimension reduction, showing preservation of intraday 
variation by dimension reduction methods.

With respect to the prediction of samples belong-
ing to subgroups in the data, we observed a significant 
decreased performance in the reduced data. We deem 
that dimension reduction before prediction tasks in these 
data is not a preferable approach, since the loss of infor-
mation or quality of data representation is an apparent 
issue. Increasing the number of dimensions might miti-
gate this [35], but can lead to more complex dimension 
reduction processes, and we observed that the manifold 
approaches did not convergence to an optimal data rep-
resentation of increasing dimensionality (Fig.  5). Rather 
than using dimension reduction, more emphasis should 
be given towards proper feature selection for analy-
sis when the amount of parameters is too high for the 
amount of samples. This can, of course, be combined 
with dimension reduction [42]. In literature, we found 
some beneficial results of using dimension reduction 
before prediction in different settings, since it can offer 
similar or better model performance to using original 
data at least in experimental circumstances [43–45], or 
that dimension reduction can be used for feature selec-
tion [46]. However, this requires a robust dimension 
reduction method, which also preserves the distances 
when applying this method. Considering our findings, 
the use of unsupervised dimension reduction techniques 
before modelling should be approached with caution or 
even refrained from.

Finally, we applied clustering to assess cluster preser-
vation in reduced data. We find that using dimension 
reduction will result in an overestimation of the amount 
of clusters when using HDBSCAN. This comes together 
with the loss of information, or quality. As mentioned 
before, this might be mitigable, but will increase compu-
tational costs and complexity. We do observe that CLL 
patients are still significantly different after applying 
dimension reduction methods. This means that, although 
dimension reduction methods do not completely pre-
serve biological or clinical relevancy, obvious extremes 
in the data are still apparent. However, the differences 
between CLL and non-CLL patients become less appar-
ent after dimension reduction, resulting in a limited 
clinical diagnostic applicability of dimension reduction 
methods. It must be noted that, although these patients 
were indeed CLL patients, not all data points from these 
patients may necessarily be overlapping with disease (e.g., 
blood samples taken before CLL was present). This may 

also result in overlap in counts with the general popula-
tion. We were able to retroactively identify patients with 
CLL, but had no information on the exact point in time 
where CLL was diagnosed.

Further research
Considering we have limited our study towards unsuper-
vised non-parametric dimension reduction methods, a 
logical next step is to use supervised and/or parametric 
dimension reduction. An improvement of non-paramet-
ric UMAP is parametric UMAP where a learnable param-
eterised model sits between the dimension reductions 
and the final loss, enabling the addition of e.g. a global 
loss contribution [47]. Additionally, when we are deal-
ing with large volume data, benefit might be gained from 
using fully parameterised dimension reduction methods 
such as Differentiating dimension reduction Networks, 
which is more interpretable compared to UMAP and 
t-SNE because of the parametric nature [48]. Finally, 
when it comes to generalizability of dimension reduction 
results, and working towards a more holistic integrative 
approach of data analysis within healthcare, fully param-
eterised models such as variational autoencoders are 
interesting from the perspective of transfer learning, as it 
adds flexibility to continue learning with incoming data 
and transferring the resulting model to other institutions 
to continue training on their on-premise data, which can 
play a role in federated learning, see e.g. DynAE [49]. An 
interesting approach is the use of a contrastive-loss func-
tion, as opposed to reconstruction loss function, see e.g. 
[50, 51], or a hybrid of reconstruction loss on the output 
representation plus a contrastive-loss on the latent repre-
sentation for autoencoder architectures.

In addition, research could study the use of (semi-)
supervised dimension reduction approaches. To ensure 
clinical relevance, sparsely available labels can be 
employed, and consequently semi-supervised UMAP/t-
SNE or Multi-Class, Multi-Label dimension reduction 
can be deployed. Possible other variables that can be of 
interest for this approach can consist of demographic 
data (e.g., sex or age), data on time of day, or other rel-
evant variables such as in-/out-patient status, hospital 
department, or even length-of-stay.

Limitations
Finally, our study is prone to some limitations. Most 
importantly, we lack a clear healthy control group, as our 
data is from tertiary care only. The data encompasses 
some samples that come from healthy individuals (such 
as patients that were referred to the UMCU, but their 
diagnostic work-up did not confirm any diseases), but 
because labels are not available, we cannot identify these 
samples definitively. Secondly, we can not completely rule 
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out any differences between haematology analyzers as 
well as differences throughout time due to software ver-
sioning. However, since the machines are used in clinical 
care, and are calibrated as such, we deem this effect to be 
limited. Thirdly, for our work, we focused on the effect of 
dimension reduction techniques on downstream clinical 
tasks. The imputation method played a faciliatory role in 
allowing for a comparison over all samples. The majority 
of samples showed no missingness and the same imputed 
data was used for all dimension reduction approaches. 
In addition, our missing data could be considered MAR, 
and therefore we do not believe that a potentially sub-par 
imputation method would skew the results favorable for 
any particular dimension reduction approach.

Moreover, there are some limitations considering the 
neighbourhood-based dimension reduction methods. 
One main limitation of UMAP is that the negative sam-
pling process does not take into account the distance to 
the current point outside the number of nearest neigh-
bours surrounding each point. This inaccuracy becomes 
more expressed if the number of samples with respect to 
the number of nearest neighbours is increased. The result 
of this is that points that are just outside the direct neigh-
bourhood are placed incorrectly, further away in the 
reduced data. Additionally, UMAP is a greedy algorithm, 
basically requiring a copy of the original data such that 
incoming data can be interpolated onto the low-dimen-
sional manifold. Furthermore, at the time of writing, nei-
ther TriMap nor PaCMAP provide a clear opportunity to 
embed unseen data into the space of the existing dimen-
sion reduction. This makes it harder for example to share 
dimension reductions between healthcare institutions, 
which might be beneficial, since this allows for easier 
interpretation of haematology measurements in the con-
text of the overall population. Another limitation in our 
study is that we did not use a topology preservation met-
ric. Scoring based on topology metrics might result in a 
higher ranking for the manifold approaches, as these are 
especially designed to preserve topology. Furthermore, 
we have limited our research to PCA, GRP and three 
manifold approaches. Of course, many more methods are 
available. For example, self-organising maps have been 
used successfully in haematological data, specifically at 
single-cell level [52].

Conclusion
When applying dimension reduction to high-dimen-
sional high-volume haematology data, we found that a 
global statistics based reduction technique such as PCA 
performs systematically better than much more recent 
non-linear minimum-distortion dimension reduc-
tion techniques in representing the underlying data. 
In general, the use of dimension reduction method had 

limited biological performance, especially as a precursor 
for prediction tasks. Therefore, we advise that dimen-
sion reduction techniques are limited to data visualisa-
tion applications, e.g. for exploratory data analysis and 
research dissemination. The use of dimension reduction 
techniques as components in diagnostic pipelines may 
lead to decreased quality of integrated diagnostics in 
clinical care.
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