
Sun et al. 
BMC Medical Informatics and Decision Making           (2025) 25:72  
https://doi.org/10.1186/s12911-025-02892-1

RESEARCH Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

BMC Medical Informatics and
Decision Making

A novel method for screening malignant 
hematological diseases by constructing 
an optimal machine learning model based 
on blood cell parameters
Dehua Sun1, Wei Chen2, Jun He3, Yongjian He1, Haoqin Jiang4, Hong Jiang5, Dandan Liu3, Lu Li6, Min Liu7, 
Zhigang Mao5, Chenxue Qu8, Linlin Qu9, Ziyong Sun10, Jianbiao Wang11, Wenjing Wu2, Xuefeng Wang11, 
Wei Xu9, Ying Xing8, Chi Zhang10, Jingxian Zhang6, Lei Zheng1, Shihong Zhang7, Bo Ye6*† and Ming Guan4*† 

Abstract 

Background  Screening of malignant hematological diseases is of great importance for their diagnosis and subse-
quent treatment. This study constructed an optimal screening model for malignant hematological diseases based 
on routine blood cell parameters.

Methods  The venous blood samples of 1751 patients collected from 10 tertiary hospitals in China were divided 
into a training set (1223 cases) and a validation set (528 cases). In addition to the clinical diagnostic information 
of the samples in the training set, 26 blood cell parameters including morphological parameters were selected using 
manual screening and filtering to construct eight machine learning models. These models were used to identify 
hematological malignancies among the validation set.

Results  Comparison of the discrimination, calibration and clinical detection performance of the eight machine learn-
ing models revealed that the artificial neural network (ANN) model performed the optimal in identifying malignant 
haematological diseases in the validation set (528 cases), with an area under the receiver operating characteristic 
curve (AUC), accuracy, sensitivity and specificity of 0.906, 0.857, 0.832 and 0.884, respectively.

Conclusion  The ANN model constructed can be used for screening of malignant hematological diseases, espe-
cially in primary hospitals that lack comprehensive diagnosis, and this ANN model will help patients to get diagnosis 
and treatment of malignant hematological diseases as early as possible.

Highlights 

• This study is the first to construct eight machine learning models for screening malignant hematological diseases 
using blood cell parameters.
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• Comparison of the discrimination, calibration and clinical detection performance of the eight machine learning 
models constructed in this study revealed that the artificial neural network (ANN) model had the best performance.

• This is a multicentre study involving up to 10 tertiary hospitals, which avoids data bias and provides convincing data 
from a diverse population.
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Introduction
According to the International Agency for Research on 
Cancer’s 2020 survey on the incidence of 36 types of 
cancers in 185 countries throughout the world, hemato-
logical malignancies (including non-Hodgkin lymphoma, 
leukemia, multiple myeloma and Hodgkin lymphoma) 
were experienced by more than 1 million new patients in 
2020 and resulted in more than 600,000 new deaths [1]. 
This group also found that due to the growth and aging 
of the population, the incidence of cancer is expected 
to increase by 47% in 2040, potentially imposing enor-
mous burdens on society and the economy and high-
lighting the need for the early prevention, diagnosis and 
treatment of these cancers [1, 2]. Due to the diverse and 
insidious clinical manifestations of the abovementioned 
malignant hematological diseases, whose clinical diag-
noses are particularly challenging, the World Health 
Organization (WHO) and the National Comprehensive 
Cancer Network have developed a series of identifying 
and classification tests, including peripheral blood count 
and morphological confirmation, bone marrow aspira-
tion and biopsy, imaging studies, immunophenotyping, 
cytogenetic testing, lymph node biopsy, and serum pro-
tein testing [3–5].

Among the above proposed examinations, periph-
eral blood count analysis and morphology are the easi-
est to perform and the least expensive. In addition, due 
to improvements in automated blood cell analyzer tech-
nology, the Mindray BC-7500 CRP not only provides the 
parameters on the report card, but also uses laser flow 
cytometry in conjunction with scatter fluorescence cube 
(SF cube) technology to collect a large amount of cellular 
information, such as volume or intracellular complexity, 
which can be further converted into study parameters 
(e.g. total nucleated cell—WNB (TNC- N), neutrophil-
to-lymphocyte ratio (NLR)). [6]. The automatic cell mor-
phology analyzer MC-80 can detect the morphology of 
peripheral blood. It can take high-definition images of up 
to 20 slices at a time with a 1000 × lens through depth-
of-field fusion. The images can be preclassified based on 
artificial intelligence (AI) [7]. The MC-80 and BC-7500 
CRP can comprehensively analyze the peripheral blood 
cell characteristics of samples. The large amount of blood 
cell parameter data makes it difficult for professional 
technicians to distinguish the subtle differences between 

different diseases. With the increasing use of AI in the 
medical field, existing research has established a machine 
learning (ML) model to identify relevant blood cell 
parameters in sepsis and blood system-related diseases, 
thereby allowing initial disease screening [8–11]. Based 
on the above, this study will combine all the parameters 
output by a BC-7500 CRP auto hematology analyzer 
and an MC-80 automated morphology analyzer to com-
prehensively present the whole picture of blood cells in 
patients with malignant hematological diseases (lym-
phoma, leukemia, multiple myeloma and MDS).

In recent years, ML and AI have been increasingly used 
in various branches of medicine [12]. For example, Logis-
tic regression (LR), Naïve Bayes (NB), K-nearest neighbor 
(KNN), Support vector machines (SVM), Random Forest 
(RF), Multi-layer perceptron (MLP), Gradient Boosting 
Decision Tree (GBDT) and Artificial Neural Networks 
(ANN) models have been applied in auxiliary disease 
diagnosis and prognosis prediction [8, 13, 14]. In 2020, 
Shabbir used cell population data (CPD) to establish an 
ANN model for preliminary screening malignant hema-
tological diseases, achieving an accuracy of up to 0.828 
[13]. However, according to the Transparent Reporting of 
a Multivariable Prediction Model for Individual Progno-
sis Or Diagnosis (TRIPOD) statement and recent studies, 
in addition to demonstrating its discriminability (with 
metrics including accuracy, receiver operating charac-
teristic curve (ROC) and precision-recall curve), basic 
information about ML models should also be presented 
in terms of calibration and clinical screening efficacy 
[15, 16]. This study comprehensively evaluated the per-
formance of eight ML models in terms of discrimination, 
calibration, and clinical detection efficacy according to 
the TRIPOD guidelines and selected the best predictive 
model to further analyze its predictive black-box efficacy.

Methods
Study design
In this study, the venous blood samples and case infor-
mation of 1751 patients who triggered routine blood 
re-examination rules at Nanfang Hospital, The First 
Affiliated Hospital of Xi’an Jiaotong University, Huashan 
Hospital Fudan University, The First Affiliated Hospital 
of Soochow University, West China Hospital of Sichuan 
University, The First Affiliated Hospital of Sun Yat-sen 
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University, Peking University First Hospital, The First 
Bethune Hospital of Jilin University, Tongji Hospital 
and Ruijin Hospital were collected from March to May 
2022 [17]. The venous blood samples were subjected to 
blood cell analysis on a Mindray BC-7500 CRP (Mind-
ray, Shenzhen, China) and blood cell morphology analy-
sis on an MC-80 (Mindray, Shenzhen, China). Then, the 
analysis results were recorded, and the patient’s disease 
information was organized according to the Interna-
tional Classification of Diseases (ICD-10). The entire pro-
cess of the study is shown in Fig.  1. All patients in this 
study underwent a complete diagnostic examination, in 
which the diagnosis of leukemia and related hematologi-
cal diseases was identified, confirmed, and classified by a 
series of tests established by the WHO [3]. This study was 
approved by the Ethics Committee of Nanfang Hospital 
[NFCC-2022–352].

Data preprocessing
Among the 1751 patients enrolled in this retrospective 
study, the percentage of male and female were 53.4% 
and 46.6%, respectively. The median age of the male 
patients was 48 years, and the median age of the female 
patients was 50 years. The blood cell analysis results of 
the collected 1751 samples were preprocessed, mainly 
via data cleaning and normalization. Data cleaning was 
performed mainly to check for outliers, duplicate val-
ues and incorrect inputs in the data and address with 
them accordingly to ensure that the data quality met 
the modeling requirements. Normalization was per-
formed because in the original data collected in this 
study, differences in the feature sources and measure-
ment units could result in a wide distribution of val-
ues. When calculating the Euclidean distances between 
different samples, features with a large value range 
would bias the performance of the model. Therefore, to 

normalize our dataset, we used min–max scalar as the 
scaling function and normalized each dimension fea-
ture to the same interval (0,1). Finally, the preprocessed 
patient information was divided into a training set and 
a validation set at a ratio of 7:3.

Feature selection
A total of 114 parameters were obtained for each sam-
ple analyzed on the BC-7500 CRP and MC-80 (93 and 
21 parameters, respectively). First, we removed the less 
commonly used channels and 59 parameters with lin-
ear relationships through manual screening, such as 
the RET channel-related parameters RBC-O, RET, and 
PLT-O, and then we used Filter to calculate the rela-
tionship between the remaining 55 parameters and 
malignant hematological diseases. Twenty-six param-
eters with strong correlations with malignant hemato-
logical diseases were selected to build the ML models, 
among which red blood cell volume distribution width-
standard deviation (RDW-SD), red blood cell distribu-
tion width-coefficient of variation (RDW-CV), white 
blood cell count (WBC), neutrophil percentage (Neu%), 
immature granulocyte percentage (IMG%), basophil 
percentage (Baso%), eosinophil percentage (Eos%), 
monocyte percentage (Mon%), lymphocyte percent-
age (Lym%), total nucleated cell count-WNB (TNC-N), 
red blood cell count (RBC), impedance channel platelet 
count (PLT-I), plateletcrit (PCT), hemoglobin concen-
tration (HGB), mean corpuscular hemoglobin content 
(MCHC), mean corpuscular volume (MCV), hema-
tocrit (HCT) and mean platelet volume (MPV) were 
obtained from the BC-7500 CRP. Monocytes, blasts, 
segmented neutrophils, neutrophils, basophils, abnor-
mal lymphocytes, immature granulocytes, and primi-
tive cells were obtained from the MC-80.

Fig. 1  Flowchart of model building. LR: Logistic regression; KNN: K-nearest neighbour; NB: Naïve Bayes; SVM: Support vector regression; RF: Random 
Forest; MLP: Multiple layer perceptron; GBDT: Extreme Gradient Boosting; ANN: Artificial Neural Network
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Construction of eight ML models
The 26 parameters screened above in this study were 
used to construct ML models, based on the LR, NB, 
KNN, SVM, RF, MLP, GBDT and ANN algorithms. 
The first 7 models were obtained from the Scikit-Learn 
library with default parameter values, while the ANN was 
obtained with the Keras model library.

The ANN consists of a 2-layer structure, optimized 
with the grid search method [18], The batch size was 96 
after 300 epochs of training. The first hidden layer has 16 
nodes with a ReLU activation function, and the second 
hidden layer has 48 nodes with a ReLU activation func-
tion. The output layer uses a single node with a sigmoid 
activation function. The output layer provides the predic-
tion of the model based on the input values as a continu-
ous variable ranging from 0 (nonmalignant hematological 
disease) to 1 (definite malignant hematological disease).

Evaluating the performance of eight ML models
In this study, 528 samples from the validation set were 
used to evaluate the eight ML models in terms of dis-
criminability, calibration efficiency, and clinical applica-
bility [15, 16]. 1. Discriminability reflects the ability of 
the ML model to screen malignant hematological dis-
eases from samples that could trigger peripheral blood 
re-examination. This study assessed the performance of 
the different ML models when given a default thresh-
old, the thresholds and performance of the different ML 
models when maximizing the area under the ROC curve 
(AUC) and the threshold and performance of the differ-
ent ML models when the precision and recall rate were 
maximized (i.e., precision-recall curve), to select the ML 
models that can achieve excellent classification perfor-
mance from different perspectives. 2. Calibration reflects 
the consistency between the predicted and actual risk 
of malignant hematological disease of the different ML 
models. The differences between the ML models were 
mainly observed by comparing their calibration curves/
Brier scores. ML models with good discriminability were 
further calibrated with Platt scaling. 3. Clinical applica-
bility for the different ML models is reflected through 
decision curve analysis (DCA). In addition to the above 
evaluations, we used confusion matrices to observe sam-
ple cases where the predicted results of the ML model 
did not match the actual results and further analyze the 
reasons. We also used the Shapley Additive Explana-
tion (SHAP) Python package (version 0.40.0) to address 
the black-box problem with respect to the predictions of 
the ML models. The rationale behind SHAP is to provide 
interpretability and transparency in ML models, while 
its principle is based on the Shapley value from game 
theory to quantify the contribution of each feature to the 

model’s prediction. This makes SHAP a powerful tool for 
understanding and explaining complex models, enhanc-
ing trust and reliability in their predictions.

This study used Python 3.7.0, Scikit-learn 0.19.2 and 
Keras 2.5.0 for statistical analysis. p value < 0.05 was con-
sidered to indicate statistical significance.

Results
Basic patient characteristics
A total of 1751 patients were enrolled in this study; 
detailed information on their diseases is shown in 
Table 1. After preprocessing the blood cell analysis results 
of the 1751 patients, they were divided into a training set 
and a validation set at a ratio of 7:3. The rank-sum test 
was used to compare the blood cell parameters between 
the two datasets, but no significant differences were iden-
tified (Fig. 2).

Discriminability of the ML Models
In this study, 26 blood cell parameters were obtained 
by feature selection in the construction of the eight ML 
models, and then the validation set samples were used 
to verify the ability of each model to distinguish malig-
nant hematological diseases (Supplementary Table  1). 
Table  2 shows the performance indicators of each 
model for three different thresholds: a threshold of 0.5, 
the threshold that maximized the AUC, and the thresh-
old that maximized the F1 score. At each threshold, the 
AUCs of the eight ML models were all greater than 0.8; 
specifically, those of ANN, RF and GBDT were all greater 
than 0.9, and the ANN model had the highest accuracy 
and F1 score (Fig. 3). Compared with other ML models, 
the ANN threshold had a smaller threshold range; addi-
tionally, its accuracy, precision, sensitivity and specificity 
were 0.857, 0.881, 0.832 and 0.884, respectively (Table 2).

Calibration efficiency of the ML Models
According to the TRIPOD guidelines [15], calibration 
is an important part of evaluating ML models. Figure 4 
shows the calibration curves for the eight ML models 
constructed in this study. Note that the calibration curve 
of the ANN model needs to be further optimized despite 

Table 1  Case numbers analyzed in the study

Other diseases hematological neoplasms

ICD-10 Code Type Sample size Label

C81-C96 Malignant neoplasms of lymphoid, 
haematopoietic and related tissue

910 1

D50-D53 Nutritional anemia 50 0

D55-D59 Haemolytic anemia 38 0

D60-D64 Aplastic and other anemia 33 0

Other diseases 720 0
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its excellent discriminability. Thus, we used Platt scal-
ing to calibrate the ANN model; the results are shown 
in Fig.  5. There was significant improvement in the 

agreement between the ANN model prediction of the 
risk of malignant hematologic disease and the actual pro-
portion of patients with said diseases.

Fig. 2  Wilcoxon rank-sum test to analyze parameters of the blood cells in the training and validation sets. A, B, C, E, F, G are all blood cell 
parameters of MC-80, which are segmented neutrophils, band neutrophils, lymphocytes, monocytes, eosinophils, basophils, blasts. H, I, J, K, L, M, N, 
O are all blood cell parameters of BC-7500CRP, which are WBC, RBC, PLT, HGB, Neu%, Lym%, MPV, and MCV
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Table 2  The performance measures evaluated for different ML and AI methods for screening malignant haematological diseases use 
different thresholds found in the validation set

Model Thresholds AUC​ Accuracy Precision Sensitivity Specificity F1-score

The thresholds of 0.5
  LR 0.5 0.834 0.749 0.722 0.825 0.671 0.671

  NB 0.5 0.836 0.709 0.897 0.485 0.942 0.942

  KNN 0.5 0.809 0.759 0.834 0.657 0.864 0.864

  SVM 0.5 0.881 0.808 0.804 0.825 0.791 0.791

  RF 0.5 0.907 0.838 0.830 0.858 0.818 0.818

  MLP 0.5 0.864 0.785 0.786 0.795 0.775 0.775

  GBDT 0.5 0.913 0.831 0.823 0.851 0.810 0.810

  ANN 0.5 0.906 0.857 0.881 0.832 0.884 0.884

The threshold for the best optimal ROC Youden index
  LR 0.602 0.834 0.760 0.786 0.728 0.795 0.795

  NB 0.000 0.836 0.760 0.848 0.646 0.880 0.880

  KNN 1.000 0.809 0.490 / 0.000 1.000 1.000

  SVM 0.646 0.881 0.821 0.869 0.765 0.880 0.880

  RF 0.440 0.907 0.842 0.818 0.888 0.795 0.795

  MLP 0.515 0.864 0.789 0.794 0.791 0.787 0.787

  GBDT 0.614 0.913 0.840 0.857 0.825 0.857 0.857

  ANN 0.522 0.906 0.857 0.891 0.821 0.895 0.895

The threshold for the best optimal precision-recall
  LR 0.446 0.834 0.749 0.705 0.873 0.620 0.620

  NB 0.000 0.836 0.757 0.713 0.873 0.636 0.636

  KNN 0.500 0.809 0.759 0.834 0.657 0.864 0.864

  SVM 0.615 0.881 0.821 0.851 0.787 0.857 0.857

  RF 0.440 0.907 0.842 0.818 0.888 0.795 0.795

  MLP 0.232 0.864 0.722 0.658 0.948 0.488 0.488

  GBDT 0.226 0.913 0.835 0.785 0.929 0.736 0.736

  ANN 0.522 0.906 0.857 0.891 0.821 0.895 0.895

Fig. 3  Model performance in the validation set. A. Receiver operating for screening malignant haematological diseases patients in the validation 
set. B. Precision-recall curves for screening malignant haematological diseases patients in the validation set. LR: Logistic regression; KNN: K-nearest 
neighbour; NB: Naïve Bayes; SVM: Support vector regression; RF: Random Forest; MLP: Multiple layer perceptron; GBDT: Extreme Gradient Boosting; 
ANN: Artificial Neural Network
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Clinical applicability of the ML models
In addition to discrimination and calibration, clini-
cal applicability is another aspect of ML models that 
needs to be assessed. According to decision curve 
analysis (Fig.  6), the net clinical benefits of the ANN, 
RF, and GBDT models were greater than those of other 
ML models across the range of different thresholds.

Analysis of the ANN model
By comparing the performance of the different ML 
models, we conclude that the ANN model had the best 
performance in all analyzed aspects. Therefore, we fur-
ther analyzed the screening efficacy of the ANN model 
with the 528 samples in the validation set through con-
fusion matrix analysis (Fig. 7). Of the 45 cases classified 

Fig. 4  Calibration plots of the ML models for screening malignant haematological diseases patients in the validation set. LR, logistic regression; 
NB,naïve Bayes; KNN, K-nearest neighbour; SVM, support vector regression; RF, Random Forest; MLP, multiple layer perceptron; XGBOOT, extreme 
gradient boosting

Fig. 5  Calibration curves for ANN models. A. The ANN model pre-Platt Scalling calibration curves. B. The ANN model post-Platt Scalling calibration 
curves
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as false-negative samples, 22 cases were lymphoma and 
6 cases were multiple myeloma; the changes in their 
peripheral blood parameters were not obvious. In addi-
tion, 8 patients were being treated for a malignant hema-
tological disease, 7 had acute leukemia, and 2 had MDS. 
Furthermore, thirty false-positive samples were analyzed, 
of which 10 were from patients with an infection, 15 were 
from anemia patients, and 5 were from patients with 
other diseases.

Next, we sought to address the black-box problem for 
the ANN model in screening malignant hematological 
diseases through SHAP analysis, which ranked the fea-
tures used during model construction according to the 

feature importance in predicting the status of the sam-
ples. Each point represents a sample, with those in red 
indicating high feature values and those in blue indicat-
ing low feature values. Features with positive SHAP val-
ues indicated that they are associated with an increased 
risk of malignant hematological disease (Fig.  8). It can 
be observed that PLT-I, blasts, and PCT were the most 
important features in our constructed ANN model.

Discussion
The clinical manifestations of malignant hematologi-
cal diseases are mostly increased tumor cells in the 
blood, bone marrow or lymphoid and other tissues; 
such diseases include leukemia, lymphoma and multiple 
myeloma [4]. According to the classification of hemato-
logical malignancies formulated by the WHO in 2016, 
there are more than 60 subtypes of leukemia, myeloma 
and lymphoma alone. The different manifestations of 
these numerous subtypes and their long disease courses 
make both clinical diagnosis and treatment difficult [3, 
4]. Peripheral blood may change during different courses 
of different malignant hematologic diseases [4, 19]. At 
present, peripheral blood cell analysis not only relies on 
blood cell analyzers to provide reliable count and classi-
fication results but also yields a large number of research 
parameters. Automatic cell morphology analyzers can 
also confirm abnormal cell morphologies in peripheral 
blood (such as blasts, abnormal lymphocytes, immature 
granulocytes), thereby improving the accuracy in the 
auxiliary diagnosis of malignant hematological diseases 
[20, 21].

ML models have been used to assist in diagnosing dif-
ferent malignant hematological diseases or predicting 
their prognoses. Most of these models include clinical 
data from different sources, such as imaging, laboratory 
tests, or admission-related records [22–25]. In contrast, 
this study established ML models based on blood cell 
parameters only to screen for malignant hematological 
diseases because blood cell analysis is the most readily 
available, least expensive, and less impacted examina-
tion, with less biological variability than other tests [26]. 
This study selected the best ML model mainly by com-
paring the performance among the eight constructed ML 
models.

The eight ML models were compared in terms of dis-
criminability (AUC, accuracy, precision, recall, specific-
ity and F1-score), calibration (plots and Platt Scaling), 
and decision curve analysis. To evaluate the models 
from different perspectives, this study selected the best 
thresholds in these three aspects to observe the basic 
performance of the ML models. The results showed that 
all models had good AUCs at different thresholds (0.83–
0.91), Among these models, the ANN, RF, and GBDT 

Fig. 6  Decision curve analysis. LR, logistic regression; NB, naïve 
Bayes; KNN, K-nearest neighbour; SVM, support vector regression; RF, 
Random Forest; MLP, multiple layer perceptron; XGBOOT, extreme 
gradient boosting

Fig. 7  Confusion matrix of the ANN models for screening malignant 
haematological diseases patients in the validation set
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models had the highest AUC values and highest net clini-
cal benefit according to decision curve analysis. The ANN 
model also had the highest accuracy and F1 score as well 
as the smallest range when selecting the optimal thresh-
old; that is, when the ANN model threshold was 0.5, had 
the best accuracy, sensitivity, specificity and precision. In 
terms of calibration ability, the SVM and MLP models 
performed well, but their accuracy was slightly inferior 
to that of the ANN model. We found a risk of overconfi-
dence in the calibration curve of the ANN model, so we 
calibrated it with Platt scaling [27]; the recalibrated ANN 
model had better performance. Among previous studies 
[13], Syed-Abdul also chose ANN as the model architec-
ture for screening malignant hematological diseases, but 
they only focused on classical indicators (AUC, sensitiv-
ity, specificity, etc.) and did not provide calibration infor-
mation. They also provided no further analyses of the 
black-box nature of the ANN model. Many ML models 
(e.g. SVM) produce raw scores that are not actual prob-
abilities. Platt Scaling converts these scores to probabili-
ties, ensuring that they fall within the range [0,1]. The 
probability improves the interpretability of the model, 

making it more intuitive and understandable, also pro-
viding more reliable confidence estimates. And it facili-
tates comparisons between multiple models.

We used the calibrated ANN model to identify malig-
nant hematological diseases among the 528 samples in 
the validation set, which yielded 45 false-negative sam-
ples. On further analysis, we found that 22 patients in 
the validation set had lymphoma. Lymphoma is a group 
of heterogeneous solid tumors of the immune system; it 
has long been reported that the complete blood count in 
these patients, even those with aggressive lymphoma, is 
still normal, and conditions reflecting abnormal complete 
blood counts, such as anemia, thrombocytopenia, and 
leukopenia/lymphocytosis, are more suggestive of pos-
sible complications of lymphoma [28, 29]. Therefore, it 
is difficult to construct an ANN model based on periph-
eral blood cell parameters only for lymphoma patients 
without complications, limiting their utility to a certain 
extent. Indeed, lymphomas demonstrating insubstan-
tial peripheral blood changes can be effectively identi-
fied with the model. Eight patients were in treatment for 
malignant hematological diseases, such as chemotherapy, 

Fig. 8  Results of Shapley additive explanation (SHAP) analysis of the ANN model. SHAP summary plot of 20 feature clusters, derived by aggregating 
related values of a particular feature (e.g., the average, minimum, and maximum). Each dot corresponds to the SHAP value of the feature cluster 
for the malignant haematological diseases risk score of a given case patient or control subject at a certain point in time. A feature’s SHAP value 
(x-axis) represents the contribution of the specific feature to the risk score, with positive values indicating a contribution that increases the risk score 
and negative values indicating a contribution that lowers the score. The location of the dot on the x-axis represents its SHAP value, whereas its color 
represents the cluster’s value (the actual value of the feature that is represented in the cluster), with red representing higher values (for features 
measured along a continuum) or affirmative responses (for binary features). The dots are piled up vertically to show their density. The feature 
clusters are sorted by their mean absolute SHAP values
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and their peripheral blood cell characteristics were not 
obviously affected. Thirty false-positive samples were 
also identified, 8 of the 15 anemia patients had aplastic 
anemia (AA). The model constructed in this study also 
used features such as blasts, but the levels were still indis-
tinguishable among individual samples, [30].

In addition, this study further explained the black-
box mechanisms of the models for screening of malig-
nant hematological diseases with SHAP analysis. We 
found that PLT, blasts and PCT were the most impor-
tant features in the constructed ANN model. Hemato-
logic neoplasms are malignant diseases originating from 
hematopoietic cells, mostly due to the proliferation of 
abnormal cells in the bone marrow that accumulate and 
inhibit normal hematopoiesis [3]. Doctors often suspect 
malignant hematologic diseases when blasts are present 
in the peripheral blood. In the WHO guidelines, blasts 
greater than 20% can be used as a diagnostic criterion for 
acute leukemia [3]. This is consistent with the results of 
SHAP analysis in this model, and the percentage of blasts 
has an important role in our model, when more blasts are 
present, the more it correlates with malignant hemato-
logic diseases. Platelets are nucleated fragments derived 
from mature megakaryocytes in the bone marrow and 
are the main effector cells involved in the hemostatic 
nuclear thrombosis [31]. Detection of platelet param-
eters in patients with malignant hematologic diseases can 
indirectly reflect the changes in bone marrow function in 
patients with different stages of malignant hematologic 
diseases, which can help in the diagnosis of the disease 
and evaluation of the efficacy of the treatment [31]. Our 
model SHAP analysis showed that the most relevant 
blood cell parameters are PLT and PCT, where PCT is 
obtained by multiplying PLT and MPV, which is influ-
enced by the number and size of platelets and usually 
coincides with changes in PLT [32]. Previous studies have 
concluded that this may be due to changes in blood rheo-
logical properties in patients with hematological diseases, 
thereby affecting platelet function and distribution, but 
the specific mechanism of action has not yet been eluci-
dated [13, 33]. In addition to these three, other important 
features in the model, such as neutral lobulated granulo-
cytes and RDW, were also considered significant in previ-
ous studies differentiating MDS patients from non-MDS 
patients. Studies have focused on neutrophil structural 
dispersion (Neu-WX), erythrocyte size, and hemoglobin-
containing heterogeneity when investigating the blood 
cell characteristics of MDS patients [10, 34]. We found 
that the same blood cell parameters had different feature 
importance in different models in different studies, which 
may be mainly related to differences in the distributions 
of the collected samples and the ML models constructed. 
Therefore, external validation in larger datasets is an 

essential step to verifying the ML model under study for 
clinical applicability [15, 25, 35].

There are limitations to this study in that, apart from 
the initial patient population, it lacked an external vali-
dation phase and did not consider factors that could 
potentially influence the model, such as the effect of 
treatment regimens on the model. These should be care-
fully analyzed in further studies. In addition, hematology 
analyzers produced by different manufacturers are based 
on different principles and threshold output parameters, 
which severely limits the widespread use of ML models 
based on blood cell parameters in clinical practice. This 
problem must be addressed if these ML models are to 
be generalized [36]. Finally, we must recognize that ML 
models can only serve to assist physicians in the ini-
tial screening of malignant hematologic diseases. The 
strength of this model lies in the incorporation and pro-
cessing of high-dimensional information on patients’ 
blood cell parameters through ML models [37], but not 
every patient can be fully predicted by ML models, and 
risks such as data sparsity, multicollinearity, and overfit-
ting can be expected [35, 38], and ultimately, it is still the 
physicians who will take the next steps in clinical diagno-
sis and treatment. Although the ML model constructed 
based on blood cell parameters in this study has some 
limitations in screening malignant hematological dis-
eases, the complete diagnostic process of acute leukemia, 
which includes cytomorphology, immunophenotyping, 
cytogenetics, and molecular biology, takes at least 3 days 
to complete, and in the future, the model will be applied 
to hematology analyzers, the convenience of blood cell 
analysis as the first screening test for patients admitted 
to the hospital, and its. The convenience and time-saving 
nature of blood cell analysis as the first screening test for 
patients admitted to the hospital is beyond doubt, and 
it is of particular importance for rural and community-
based hospitals that lack advanced diagnostic equipment.

Conclusions
In this study, eight ML models were constructed by 
using blood cell parameters, and their performance in 
screening malignant hematological diseases was com-
prehensively evaluated. Compared with the other ML 
models, the ANN model achieved higher accuracy and 
better performance. This study shows that ML mod-
els based on blood cell analysis parameters can screen 
patients for malignant hematological diseases inexpen-
sively and highly efficiently. Especially in the future, this 
ANN model combining with blood cell analyzers in the 
primary hospitals that lack comprehensive diagnosis and 
treatment measures will help the patients to receive the 
diagnosis and treatment of malignant hematological dis-
eases as early as possible.
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