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Abstract
Background  Postoperative pulmonary complications (PPCs) following cardiac valvular surgery are characterized 
by high morbidity, mortality, and economic cost. This study leverages wearable technology and machine learning 
algorithms to preoperatively identify high-risk individuals, thereby enhancing clinical decision-making for the 
mitigation of PPCs.

Methods  A prospective study was conducted at the Department of Cardiovascular Surgery of West China Hospital, 
Sichuan University, from August 2021 to December 2022. We examined 100 cardiac valvular surgery patients, where 
wearable technology was utilized to collect and analyze nocturnal physiological data at the 24-hour admission, in 
conjunction with clinical data extraction from the Hospital Information System’s electronic records. We systematically 
evaluated three different input types (physiological, clinical, and both) and five classifiers (XGB, LR, RF, SVM, KNN) 
to identify the combination with strong predictive performance for PPCs. Feature selection was conducted using 
Recursive Feature Elimination with Cross-Validated (RFECV) for each model, yielding an optimal feature subset for 
each, followed by a grid search to tune hyperparameters. Stratified 5-fold cross-validation was used to evaluate the 
generalization performance. The significance of AUC differences between models was tested using the DeLong test 
to determine the optimal prognostic model comprehensively. Additionally, univariate logistic regression analysis was 
conducted on the features of the best-performing model to understand the impact of individual feature on PPCs.

Results  In this study, 22 patients (22%) developed PPCs. Across classifiers, models combining both physiological and 
clinical features performed better than physiological or clinical features alone. Specifically, including physiological 
data in the classification model improved AUC, ACC, F1, and precision by an average of 8.32%, 1.80%, 3.28% and 6.06% 
compared to using clinical data only. The XGB classifier, utilizing both dataset, achieved the highest performance 
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Introduction
Postoperative pulmonary complications (PPCs) are a 
significant concern following heart surgeries, associated 
with increased morbidity, prolonged hospital stay, and 
mortality [1]. With more than 40 million people afflicted 
with mitral or aortic valve disease and over 180,000 
heart valve replacement surgeries performed annually, 
the prevalence of PPCs remains a critical issue in car-
diac surgery patients [2]. While cardiac valve surgery 
patients face a greater risk due to specific surgical sites 
and procedures, PPCs incidence can still surge to 23% in 
non-cardiothoracic surgeries [3]. Preoperative pulmo-
nary evaluation presents a promising approach to iden-
tify patients at risk for PPCs, guide decision-making for 
interventions, and minimize the adverse effects of sur-
gery [4].

Despite the availability of high-scoring models for iden-
tifying individuals at high risk for PPCs, current methods 
face limitations in guiding preoperative interventions. 
Several risk scoring tools focus on a single pulmonary 
complication, such as “respiratory failure risk index” for 
respiratory failure [5], “postoperative pneumonia risk 
index” for pneumonia [6], “surgical lung injury predic-
tion” for postoperative acute lung injury [7], which do 
not offer a comprehensive analysis of lung risks in the 
complex pulmonary complications situation. While stud-
ies like ARISCAT [8] and LasVegas [9] employ compre-
hensive outcome measures for PPCs, their inclusion of 
intraoperative factors restricts their predictive utility 
to a preoperative setting. The advent of artificial intel-
ligence algorithms has led to machine learning mod-
els that demonstrate impressive predictive capabilities 
in prediction of PPCs risk [10, 11]. Unfortunately, these 
studies have also utilized intraoperative factors, causing 
an inability to assess patient risk before surgery. Notably, 
Bing Xue established a prediction model using preopera-
tive electronic medical record information alone through 
machine learning algorithms, whose performance is 
much lower than the model using both preoperative 
and intraoperative information [10]. Predicting postop-
erative pulmonary complications before surgery requires 

more patient information, and using preoperative clinical 
information alone is insufficient.

Compared to the discrete data of electronic medi-
cal records, the paradigm of wearable technology inte-
grated with artificial intelligence(AI) potentially offers 
new insights for addressing this issue. Wearable devices 
provide a continuous and multidimensional monitor-
ing of vital signs in both inpatient and remote settings, 
enabling a noninvasive patient assessment with minimal 
user input. Amidst the epidemic’s mandated push, nota-
ble advancements have been achieved in wearable device 
clinical applications, including utilizing sensors to pre-
dict individualized lab measurements [12], and explor-
ing wearables’ role in remote cardiovascular screening, 
diagnosis, and management [13]. These advancements 
underscore the value of wearable devices for continuous 
and longitudinal clinical assessment. We hypothesize 
that wearable devices, with their ability to monitor vari-
ous physiological parameters continuously, could sig-
nificantly enhance the preoperative risk assessment for 
PPCs. Factors such as respiratory function, type of sur-
gery, and diaphragmatic dysfunction have been identi-
fied to associate with PPCs [14]. Sleep disturbances and 
deprivation, particularly, emerges as significant factors, 
with ties to increased anesthesia and postoperative com-
plications. For instance, obstructive sleep apnea is recog-
nized as a preoperative PPCs risk factor [15]. Wearable 
devices effectively monitor sleep, demonstrating high 
concordance with polysomnography [16] and improved 
precision in extreme vital signs, with less measurement 
bias [17]. To our knowledge, this study first assesses the 
PPCs risk of heart valve patients based on wearable con-
tinuous physiological during nocturnal sleep and clini-
cal data before surgery. It is expected to assist doctors in 
identifying high-risk populations before surgery and pro-
vide guidance for preoperative interventions.

Methods
Design and participants
A prospective study was conducted at the Department of 
Cardiac and Major Vascular Surgery of West China Hos-
pital, Sichuan University in adherence to the principles 

with an AUC of 0.82 (± 0.08) and identified eight significant features. The DeLong test indicated that the XGB model 
utilizing the both dataset significantly outperformed the XGB models trained on the physiological or clinical datasets 
alone. Univariate logistic regression analysis suggested that surgical methods, age, nni_50, and min_ven_in_mean are 
significantly associated with the occurrence of PPCs.

Conclusion  The integration of continuous wearable physiological and clinical data significantly improves 
preoperative risk assessment for PPCs, which helps to optimize surgical management and reduce PPCs morbidity and 
mortality.

Keywords  Postoperative pulmonary complications, Wearable devices, Continuous physiological signals, Heart valve 
surgery, Preoperative assessment
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outlined in the Declaration of Helsinki [18], from August 
2021 to September 2022. This study was approved by the 
Ethics Committee of the West China Hospital of Sichuan 
University, Ethics No.20,211,023, Clinical Registration 
No. ChiCTR2100050005 (http://www.chictr.org.cn). All 
participants provided written informed consent, affirm-
ing their full comprehension and voluntary participation 
in the study. All personal information collected during 
the study is kept confidential and not disclosed to third 
parties without participants’ consent.

Inclusion criteria: (1) patients undergoing elective car-
diac valve surgery; (2) aged 18 or above; (3) no rehabili-
tation training or other intervention before surgery; (4) 
agreeing to participate in the study and sign informed 
consent; (5) wearing data collection equipment through-
out the process.

Exclusion criteria: (1) emergency surgery; (2) refusal 
to participate in the trial; (3) consciousness dysfunction; 
(4) expected life less than six months; (5) participation in 
other drug or device clinical trials have not reached the 
endpoint before inclusion; (6) poor compliance and fail-
ure to complete the study as required.

Data collection
Continuous physiological data, including 
electrocardiograph(ECG), SpO2, respiratory signals from 
the chest and abdomen, and triaxial acceleration signals, 
were collected from patients with heart valve disease at 
the 24-hour admission using a medical-grade portable 
monitoring device (SensEcho ®). SensEcho consists of a 
flexible vest and a signal acquisition terminal embedded 
in it. The fabric electrodes embedded in the vest enable 
the collection of single-lead ECG signals. The sensor coils 
located on the chest and abdomen acquire chest/abdo-
men respiratory signals through respiratory inductive 
plethysmography. The accelerometer sensor integrated in 
the terminal collected posture/body movement signals. 
A ring worn on the thumb collected blood oxygen sig-
nals in real-time and transmits them to the terminal via 

Bluetooth synchronization [19]. The physiological signal 
collection process lasted for 24 h, during which a senior 
physiotherapist operated SensEcho. After the comple-
tion, the data files were exported for subsequent analy-
sis. This device has been validated in our previous clinical 
studies for monitoring sleep apnea [20], and six-minute 
walk test [21].

Medical electronic case information was collected from 
the Cardiac Surgery Database by the investigators using 
a data collection form, including demographics, diag-
nosis, preoperative history, examinations, and surgical 
methods.

Outcome
PPCs, were diagnosed in 14 days postoperatively accord-
ing to the Melbourne Group Scale (MGS) [22] listed in 
Table 1.

Data pre-processing
We extracted continuous physiological data from the 
nighttime sleep phase to characterize the individu-
al’s essential state. The raw physiological signals were 
smoothed using a moving average filter. Outliers exceed-
ing three standard deviations are identified and removed 
from the signal. Hamilton’s method [23]was used to 
detect R peaks of ECG signals. Khodadad’s method [24] 
was used to detect peaks and valley values of respiratory 
signals. Moreover, the physiological data quality for each 
patient was assessed by the ECG and respiratory signal 
quality assessment algorithms [25] combined with expert 
experience. Data will be excluded with the following situ-
ations: sleep duration less than 4  h, poor signal quality 
(available ECG less than 50%, available blood oxygen less 
than 50%, etc.), equipment failure (frequent packet loss, 
signal loss, etc.), severe baseline drift, high noise impact, 
etc.

Feature extraction
In this paper, we extracted 45 physiological features 
from continuous physiological signals covering relevant 
aspects such as ECG, respiration, blood oxygenation and 
sleep, and 45 clinical features from electronic medical 
records, including demographic information, clinician 
diagnosis, preoperative history, examinations and surgi-
cal methods. The accuracy and reliability of sleep feature 
calculation methods have been validated [20]. Extract the 
temporal and frequency-domain features of the physi-
ological signals. Additionally, calculate statistical metrics 
such as the mean, standard deviation, maximum, mini-
mum, coefficient of variation for the temporal features 
to gain further insights. The feature extraction process is 
shown in Fig. 1.

Table 1  Melbourne Group Scale Evaluation Criteria
At least the following four items can be determined to occur PPCs:
1. Chest radiograph report of collapse/consolidation;
2. Leukocyte cell count > 11.2 × 109/L or prescription of an antibi-

otic specific for respiratory infection (except for those routinely 
used after surgery);

3. Oral temperature > 38 °C, without fever caused by reasons other 
than lung;

4. Microbiological evidence of sputum (+);
5. Yellow or green sputum different from preoperative assessment;
6. SpO2 is < 90% in indoor environment;
7. Clinical diagnosis of pneumonia or pulmonary infection;
8. Stay in the care unit for > 36 h or enter the care unit again due 

to respiratory problems.
PPCs, Postoperative pulmonary complications

http://www.chictr.org.cn
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Model
After data pre-processing and feature extraction, physi-
ological and clinical features were obtained. Try different 
feature combinations as input separately: physiological, 
clinical, and both (physiological combined with clinical) 
datasets. Each input combination are experimented with 
various machine learning classifiers, including XGBoost 
(XGB), Logistic Regression (LR), Random Forest (RF), 
Support Vector Machine (SVM), and k-Nearest Neigh-
bor (KNN), to build powerful PPCs risk prediction mod-
els. The model with the best performance was ultimately 
chosen for identifying PPC risks. See Fig.  2 for details. 
Stratified 5-fold cross-validation was used to evaluate the 
generalization performance considering the imbalance 
between positive and negative samples. The predictive 
ability was evaluated from multiple perspectives by cal-
culating the area under the ROC curve (AUC), accuracy 
(ACC), F1 score (F1) and precision.

Furthermore, the Delong test was used to measure the 
differences between models based on both datasets and 
those based on physiological or clinical datasets only. 

Univariate logistic regression was conducted on the opti-
mal feature subset of the best-performing model to exam-
ine the impact of individual features on the outcome. All 
statistical analyses were conducted using Python Version 
3.7 with the libraries scikit-learn 0.22.1 and XGBoost 
1.2.0. A Windows 10 desktop with an Intel Core i7 pro-
cessor (2.8 GHz, 8 cores) was used for data analysis.

Results
Postoperative pulmonary complications
Among 112 eligible patients, 100 had physiological sig-
nals that met the quality requirements (Fig. 3), which are 
involved in the analysis. No unexpected events or study 
withdrawals were reported throughout the study. Among 
patients, 68% were male, with a mean age of 64.35, a 
mean BMI of 23.62, a mean NYHA classification of 2.52, 
and a mean EuroSCORE II of 4.97. 54% of the patients 
underwent TAVR surgery, while the remaining patients 
underwent SVAR surgery. According to the Melbourne 
Group Scale, 22 patients (22%) developed PPCs. The 

Fig. 1  Schematic of feature extraction. The fragment lengths are not the full 24-hour or nocturnal sleep stages, and the screenshots of physiological sig-
nals in the figure are illustrative only. SDNN, the standard deviation of the normal heart beats (RR intervals); RMSSD, the square root of the mean of the sum 
of successive differences between adjacent RR intervals; pnni50, the proportion of RR intervals greater than 50ms, out of the total number of RR intervals; 
LF, low frequency; HF, high frequency; arrhythmic burden, the proportion of the number of the difference between the two RR intervals greater than 145 
ms in the total number of RR intervals; NREM1_per, percentage of NREM (Non-Rapid Eye Movement)1 sleep periods; NREM2_per, percentage of NREM2 
sleep periods; NREM3_per, percentage of NREM3 sleep periods; REM_per, percentage of REM (Rapid Eye Movement) sleep periods; AHI, apnea-hypopnea 
index; BMI, body mass index; NYHA, New York Heart Association; EuroSCORE II, the European System for Cardiac Operative Risk Evaluation II; PPCs, postop-
erative pulmonary complications; TAVR, transcatheter aortic valve replacement; SAVR, surgical aortic valve replacement
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demographic and surgical characteristics are detailed in 
Table 2.

Model performance
Feature selection was conducted on 45 physiologi-
cal and 45 clinical features, resulting in distinct optimal 
feature subsets for each classifier. Each model was then 
fine-tuned for its specific optimal subset of features. We 
explored the predictive performance of different com-
binations (physiological, clinical, and both) and mod-
els (XGB, LR, RF, SVM, KNN), as detailed in Table  3. 
The P-value represented the results of the DeLong 

test, comparing the model based on the both dataset 
against those using the clinical or physiological dataset 
individually.

Across different classifiers, models combining both 
physiological and clinical features tended yield better 
performance compared to physiological or clinical fea-
tures alone. Including physiological data in the classifi-
cation model improved AUC, ACC, F1, and precision 
by an average of 8.32%, 1.80%, 3.28%, 6.06% compared to 
using only clinical data. The DeLong test results showed 
that the XGB model utilizing the both dataset signifi-
cantly outperformed the XGB models trained on the 

Fig. 2  Modelling procedure. XGB, XGBoost; LR, Logistic Regression; RF, Random Forests; SVM, Support Vector Machine; KNN, k-Nearest Neighbor

 



Page 6 of 11Li et al. BMC Medical Informatics and Decision Making           (2025) 25:47 

physiological or clinical datasets alone. Additionally, the 
Random Forest and K-Nearest Neighbors models that 
incorporated both datasets demonstrated a significant 
improvement in performance compared to those that 
relied solely on the physiological dataset. The results 
indicated that the integration of physiological and clini-
cal data typically enhances the capability in preoperative 
evaluation of PPCs risk.

When using physiological and clinical features as 
inputs, the XGB model achieved the highest AUC (0.82) 
and ACC (0.80), as well as relatively high F1 score (0.74) 
and precision (0.75) among models. This indicated that 
the XGB model demonstrates high overall performance 
and stability on the classification task, able to correctly 
identify most high PPCs risk events while maintaining a 
low false positive rate. The optimal hyperparameters for 
the XGB model were determined as follows: learning_
rate = 0.1, n_estimators = 32, max_depth = 3, random_
state = 1. The RF model had acceptable AUC and ACC, 
as well as the highest F1 score and precision. The model 
with the lowest AUC was KNN. Figure 4 compares differ-
ent classifiers’ ROC curves using both physiological and 
clinical features as inputs.

The XGB model selected eight features, including four 
physiological features: RSBI_in_mean (the ratio of respi-
ratory frequency to inspiratory tidal volume), min_ven_
in_mean (mean inspiratory minute ventilation), rem_per 
(percentage of REM sleep duration in total sleep), nni _ 
50 (number of intervals greater than 50ms between two 
NN), and four clinical features: surgical methods, age, 
MIP (maximum inspiratory pressure), dPA (pulmonary 
artery diameter, mm). Among features, the importance 
of surgical methods ranked first, indicating that differ-
ent surgical methods have a significant impact on PPCs 
risk. In addition, the proportion of deep sleep was also 
an important risk factor for PPCs. Figure  5 shows the 
importance ranking of the ten features.

To further understand the individual contribution of 
each feature to PPC, we performed univariate logistic 
regression on the subset of 8 optimal features identified 
by the XGB model. The results, as presented in Table 4, 
revealed that all the features demonstrated AUCs exceed-
ing 0.6, which underscored the predictive strength of 
this selected feature subset for PPCs. Notably, our anal-
ysis indicated that surgical methods, age, nni_50, and 
min_ven_in_mean were significantly associated with 
the occurrence of PPCs. This suggested that these fea-
tures have a substantial influence on the ability to predict 
outcomes.

Discussion
Although there have been a series of studies on risk pre-
diction models of PPCs, the complex factors of the dis-
ease and human body make the risk stratification of 

Table 2  Demographic data
Variable PPCs

(N = 22)
Non-PPCs
(N = 78)

Total
(N = 100)

Demographics
  Gender (male), n (%) 13 (59.0) 55 (70.5) 68 (68)
  Age (years), mean ± SD 57.77 ± 10.54 66.21 ± 11.62 64.35 ± 11.87
  Height (cm), 
mean ± SD

160.95 ± 8.45 160.59 ± 8.15 145.67 ± 8.18

  Weight (kg), mean ± SD 62.75 ± 15.53 60.59 ± 10.08 61.07 ± 11.45
  BMI, mean ± SD 24.11 ± 4.97 23.48 ± 3.35 23.62 ± 3.75
Principal Diagnosis, n (%)
  NYHA classification
    II 11 (50.0) 40 (51.3) 51 (51)
    III 10 (45.5) 36 (46.2) 46 (46)
    IV 1 (4.5) 2 (2.5) 3 (3)
  EuroSCORE II, 
mean ± SD

4.36 ± 3.32 5.14 ± 2.80 4.97 ± 2.92

  Hypertension 8 (36.3) 39 (50) 47 (47)
  Preoperative smoking 
history

6 (27.2) 20 (25.6) 26 (26)

  Preoperative anemia 1 (4.5) 3 (3.8) 4 (4)
  Respiratory infection in 
the past month

1(4.5) 2 (2.5) 3 (3)

  Congestive heart 
failure

16 (72.7) 64 (82.1) 80 (80)

  Preoperative 
hypoxemia

6 (27.2) 28 (35.9) 34 (34)

  Previous thoracotomy 2 (9.0) 5 (6.4) 7 (7)
Surgical method, n (%)
  TAVR 3 (13.6) 51 (65.3) 54 (54)
  SAVR 19 (86.3) 27 (34.6) 46 (46)
Notes: Demographic data is given as ‘mean ± standard deviation’ or ‘N (%)’, 
as appropriate. PPCs, postoperative pulmonary complications; SD, standard 
deviation; BMI, body mass index; NYHA, New York Heart Association; EuroSCORE II, 
the European System for Cardiac Operative Risk Evaluation II; TAVR, transcatheter 
aortic valve replacement; SAVR, surgical aortic valve replacement

Fig. 3  Recruitment flowchart
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PPCs without a “one size fits all” model [3]. This is the 
first study to evaluate the risk of postoperative pulmo-
nary complications in patients with heart valve disease 
using wearable continuous physiological data combined 
with clinical information before surgery. The results are 
encouraging, as the addition of continuous physiological 
state information captured by wearable devices improved 

the prediction of an individual’s risk of future pulmo-
nary complications, demonstrating the potential value of 
wearable data in longitudinal prediction. Later sections 
discuss the incidence of PPCs in patients undergoing 
heart valve surgery, data inputs for preoperative assess-
ment of PPCs risk, and a preoperative PPCs risk predic-
tion model.

High PPCs rate in patients undergoing cardiac valve 
surgery
PPCs have a high incidence rate and are more closely 
associated with postoperative mortality than cardiac 
complications [26]. In particular, in the realm of cardiac 
surgery with cardiopulmonary bypass (CPB), the inci-
dence of PPCs was reported to be 6.96%, with pneumo-
nia, respiratory failure, and reintubation at 5.45%, 3.11%, 
and 0.54%, respectively [27].

In this study, the pulmonary complication rate after 
heart valve surgery was 22%, higher than in other stud-
ies. The possible reasons are two-fold. One reason is 
that West China Hospital of Sichuan University admits 
patients with heart valve diseases who often have long 
disease durations, severe symptoms, complex condi-
tions, and greater surgical difficulties. These factors may 
contribute to a relatively higher incidence rate of post-
operative complications. Another reason is that differ-
ent studies may have variations in the definition of PPCs 
and types of surgeries, leading to different rates of PPCs 
occurrence.

Table 3  Comparison of model performance for different feature combinations
Model Feature combination AUC ACC F 1 Precision P-Valuea

XGB Physiological 0.69 ± 0.15 0.79 ± 0.06 0.73 ± 0.07 0.74 ± 0.14 0.01*
Clinical 0.78 ± 0.08 0.77 ± 0.03 0.68 ± 0.03 0.61 ± 0.04 0.05*
Both 0.82 ± 0.08 0.80 ± 0.01 0.74 ± 0.0 0.75 ± 0.10 /

LR Physiological 0.60 ± 0.08 0.75 ± 0.05 0.67 ± 0.02 0.60 ± 0.02 0.17
Clinical 0.75 ± 0.11 0.78 ± 0.03 0.70 ± 0.04 0.66 ± 0.11 0.65
Both 0.77 ± 0.09 0.75 ± 0.05 0.69 ± 0.06 0.65 ± 0.09 /

RF Physiological 0.63 ± 0.07 0.76 ± 0.04 0.67 ± 0.04 0.61 ± 0.04 0.00*
Clinical 0.73 ± 0.03 0.77 ± 0.05 0.71 ± 0.03 0.69 ± 0.09 0.08
Both 0.80 ± 0.10 0.80 ± 0.04 0.75 ± 0.04 0.77 ± 0.10 /

SVM Physiological 0.64 ± 0.15 0.77 ± 0.05 0.68 ± 0.05 0.61 ± 0.05 0.82
Clinical 0.54 ± 0.29 0.76 ± 0.04 0.67 ± 0.04 0.61 ± 0.04 0.45
Both 0.77 ± 0.17 0.78 ± 0.03 0.68 ± 0.04 0.61 ± 0.04 /

KNN Physiological 0.42 ± 0.08 0.72 ± 0.06 0.65 ± 0.04 0.60 ± 0.04 0.00*
Clinical 0.66 ± 0.13 0.71 ± 0.02 0.68 ± 0.02 0.65 ± 0.03 0.96
Both 0.70 ± 0.10 0.75 ± 0.06 0.73 ± 0.06 0.74 ± 0.08 /

Notes: AUC, ACC, F1, and precision values were expressed as mean ± standard deviation of five-fold cross-validation. AUC, the area under the ROC curve; ACC, 
accuracy; F1, F1 score; XGB, XGBoost; LR, Logistic Regression; RF, Random Forests; SVM, Support Vector Machine; KNN, k-Nearest Neighbor

a. The p-value indicates the significance of performance differences between the model based on the both dataset against those using the clinical or physiological 
dataset individually, as evaluated by the DeLong test

* p < 0.05

Fig. 4  ROC curves for different machine learning models using both 
physiological and clinical features as inputs. The ROC curves for machine 
learning models were the average score of the results of a five-fold cross-
validation. XGB, XGBoost; LR, Logistic Regression; RF, Random Forests; SVM, 
Support Vector Machine; KNN, k-Nearest Neighbor
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Continuous physiological data in tandem with clinical 
information
Our study explored the PPCs’ predictive performance of 
three different data inputs: physiologic parameters, clini-
cal parameters, and physiologic parameters combined 
with clinical parameters, respectively. Multiple classifi-
ers showed predictive power when clinical features were 

used as inputs alone, with AUCs above 0.7 and acceptable 
performance for ACC, F1, and precision. This observa-
tion confirms the importance of clinical data, consistent 
with the findings of numerous researchers [3]. The clas-
sification performance was not good, with an AUC of 
around 0.6, when physiological features alone were used 
as inputs. However, the predictive performance was 
improved by an average of 8.32%, 1.80%, 3.28%, 6.06% in 
AUC, ACC, F1, and precision when physiological features 
were combined with clinical features as inputs across 
classifiers. Moreover, DeLong test results showed that the 
integration of physiological and clinical data significantly 
enhances the performance of machine learning models, 
including XGB, Random Forest, and K-Nearest Neigh-
bors, in the preoperative risk assessment of PPCs com-
pared to using single datasets. These demonstrated the 
ability of physiological data to add additional information 
to the model for preoperative identification of PPCs, and 
also highlighted the great potential of such highly indi-
vidualized, long-term, continuous data captured by wear-
able devices for longitudinal data analysis and predictive 
analyses of disease [28]. Our research suggested that 
combining wearable and clinical data provides a more 
comprehensive approach to predicting individual states.

Table 4  Univariate logistic regression analysis of each feature in 
the optimal subset of the XGB model versus PPCs
Feature AUC 95% CI Sensitivity Specificity p-value
surgical methods 0.76 (0.63, 0.88) 0.86 0.65 0.00*
age 0.73 (0.60, 0.86) 0.68 0.77 0.01*
nni_50 0.67 (0.54, 0.81) 0.82 0.60 0.05*
min_ven_in_mean 0.67 (0.53, 0.80) 0.82 0.54 0.03*
rem_per 0.64 (0.50, 0.78) 0.46 0.89 0.12
dPA 0.64 (0.50, 0.77) 0.77 0.49 0.28
RSBI_in_mean 0.63 (0.49, 0.77) 0.64 0.69 0.16
MIP 0.60 (0.46, 0.74) 0.41 0.89 0.10
XGB, XGBoost; PPCs, Postoperative pulmonary complications; Surgical methods, 
transcatheter aortic valve replacement (TAVR) and surgical aortic valve 
replacement (SAVR); rem_per, percentage of rapid eye movement (REM) sleep 
duration in total sleep; age, age of patient; nni_50, number of interval differences 
of successive normal heart beats greater than 50 ms; MIP, maximum inspiratory 
pressure; min_ven_in_mean, mean inspiratory minute ventilation; RSBI_in_mean, 
mean inspiratory rapid shallow breathing index (RSBI_in), RSBI_in is breath rate 
divided by inspiratory tidal volume; dPA, pulmonary artery diameter. * p < 0.05

Fig. 5  Importance ranking of the ten filtered features. Surgical methods, transcatheter aortic valve replacement (TAVR) and surgical aortic valve replace-
ment (SAVR); rem_per, percentage of rapid eye movement (REM) sleep duration in total sleep; age, age of patient; nni_50, number of interval differences of 
successive normal heart beats greater than 50 ms; MIP, maximum inspiratory pressure; min_ven_in_mean, mean inspiratory minute ventilation; RSBI_in_
mean, mean inspiratory rapid shallow breathing index (RSBI_in), RSBI_in is breath rate divided by inspiratory tidal volume; dPA, pulmonary artery diameter
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A machine learning model for preoperative PPCs risk 
assessment
Our results showed that XGB outperforms other 
machine learning algorithms in constructing risk pre-
diction models for PPCs. A recent study emphasized the 
effectiveness of XGB within ensemble models for cardiac 
surgery risk prediction, demonstrating improved predic-
tive accuracy and variable interpretability [29]. This fur-
ther supports our conclusion that XGB is a robust tool 
for handling complex datasets and capturing non-linear 
relationships, making it valuable for developing high-per-
formance health risk prediction models. Additionally, the 
interpretability of XGB is crucial for understanding vari-
able importance and enhancing clinical application.

Our study identified eight PPCs risk factors, includ-
ing four clinical factors and four physiological charac-
teristics. Univariate logistic regression showed that each 
of the eight features, when used individually, yielded 
an AUC greater than 0.6 for PPCs. Additionally, surgi-
cal methods, age, nn_50, and min_ven_in_mean were 
found to be significantly associated with the occurrence 
of PPCs.

Among all the features selected, the surgical method 
ranked first in importance. As SAVR requires a ster-
notomy, patients face large surgical trauma, prolonged 
recovery, and lengthy hospitalization. Compared to tra-
ditional SAVR, TAVR adopts transcatheter heart valve 
replacement or repair surgery, which has the character-
istics of not requiring extracorporeal circulation and 
cardiac arrest, less trauma, and quicker postoperative 
recovery. Postoperative pain also varies between surgical 
approaches, with the site of open-heart surgery dictat-
ing that postoperative pain will inhibit patient breathing 
and forceful coughing to some extent [30]. The signifi-
cant differences between the two surgical methods may 
lead to different PPCs risks, consistent with the results of 
numerous studies [5, 6, 9]. Also, its ranking importance 
suggests that we should develop separate PPCs risk pre-
diction models for the different surgical approaches in 
follow-up work.

Elderly age is one of the high-risk factors for many 
surgical procedures [14] and a cause of respiratory fail-
ure [31]. They typically face higher surgical risks and 
poorer outcomes because of frailty and reduced cardio-
respiratory fitness. MIP is a frequently assessed data to 
detect inspiratory muscle strength. High preoperative 
prevalence of inspiratory muscle weakness in patients 
undergoing elective cardiac surgery has been reported 
to be significantly associated with a high risk of PPCs 
[32] and prolonged mechanical ventilation [33]. Preop-
erative inspiratory muscle training (IMT) significantly 
improves postoperative MIP, promotes recovery of lung 
function, and reduces the risk of pulmonary complica-
tions after cardiothoracic or upper abdominal surgery 

by approximately 50% [34]. The dPA reflects the degree 
of pulmonary artery dilatation. Increased dPA is a feature 
of pulmonary hypertension, and preoperative pulmonary 
hypertension is a known predictor of increased mortal-
ity in TAVR patients with severe aortic stenosis. The 
dPA > 29.3 mm was associated with higher 1-year mortal-
ity after TAVR [35].

Rem_per is commonly used in polysomnography (PSG) 
to assess sleep disorders in the surgical population and 
reflects the quality of a patient’s sleep. Min_ven_in_mean 
provides information on the dynamics of breathing dur-
ing sleep. OSA is considered one of the risk factors for 
PPCs [15, 36]. REM sleep-related OSA, one of the most 
common sleep-related breathing disorders, worsens car-
diac autonomic function and is very common in patients 
undergoing cardiovascular surgery [37]. RSBI_in_mean 
has been commonly used to predict weaning failure 
with a cut-off of 105 breaths/min/L [38]. Patients with 
a lower RSBI are more likely to be weaned successfully 
[39]. Inversely, a high RSBI leads to progressive hypoven-
tilation by increasing dead space ventilation [40], which 
further suggests impaired lung function. The nni _ 50 
indicates cardiac rhythm. About 90% of tricuspid valve 
replacement patients may have atrial fibrillation before 
surgery [41], which may lead to a worse prognosis [42].

Combining multi-parameter wearable monitoring 
devices, clinical medical records and machine learning 
algorithms may present an opportunity to reveal the risk 
of PPCs in the valve surgery population at an early pre-
operative stage. Compared to traditional preoperative 
screening methods for PPCs that rely on patient history, 
clinical questionnaires or scales, and static clinical exami-
nations, our approach involves a more detailed dynamic 
assessment by incorporating low-load, comprehensive 
physiological indicators. The Risk factors included in 
the model are common, easily accessible, and have good 
interpretability, providing new ideas for PPCs risk predic-
tion. Identifying high-risk patients preoperatively facili-
tates optimized surgical management, prevents PPCs, 
and reduces patient morbidity and mortality. The porta-
bility of the wearable device and its potential to enhance 
surgical care represent a significant advancement, prom-
ising to improve patient outcomes and support clinical 
decision-making through real-time monitoring.

Limitations
There are still some limitations in this study. First, this 
research is a single-center exploratory research with a 
moderate sample size. In the past years, due to the medi-
cal resource relocation for the unforeseen epidemic con-
trol, only 100 cases of 24-hour continuous physiological 
data were obtained in this study. Another challenge is 
that patients were admitted for various clinical exami-
nations and often interrupted, making this sample size 
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moderate but invaluable. On this sample set, we con-
ducted an exploratory study of nocturnal sleep stages, 
confirming that predicting PPCs risk preoperatively using 
wearable devices is feasible. Further work will investigate 
the clinical value of 24-hour continuous physiological 
data, increase the sample size, and conduct a prospec-
tive multi-center observational study involving different 
regions and population characteristics in China.

Secondly, this study found that surgical methods have a 
crucial impact on the risk of PPCs. To adequately reflect 
advances in surgical technology, there is a need to estab-
lish respective predictive models for different surgical 
methods as the number of valve replacement surger-
ies increases. In addition, it is necessary that the model 
undergoes more external validation before it can be 
widely applied in clinical practice, especially among hos-
pitals whose surgical populations have mild or moderate 
severity of heart valve disease and lower risks of post-
operative complications. Hence, further work will focus 
on refining the model by fine-tuning the limited dataset 
from a specific hospital, taking into account factors such 
as disease severity and PPCs incidence, and improving 
the accuracy of the model through transfer learning or 
other methods. Moreover, presented in risk calculation 
software or an online calculator, the model would be 
more easily applied in clinical practice.

Conclusions
Our study confirms the feasibility of using continuous 
physiological data collected by wearable devices to pre-
dict a patient’s risk of developing PPCs after valve surgery. 
Combining of continuous physiological data, clinical data 
and the XGBoost algorithm yields a well-performing and 
interpretable model. The results are expected to provide 
clinicians with an easy-to-use tool to identify people at 
high risk of PPCs before valve surgery, hoping to prompt 
targeted prehabilitation.
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