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Abstract 

Background  Type 1 diabetes (T1D) is a chronic endocrine disorder characterized by high blood glucose levels, 
impacting millions of people globally. Its management requires intensive insulin therapy, frequent blood glucose 
monitoring, and lifestyle adjustments. The accurate prediction of the short-term course of glucose levels in the subcu-
taneous space in T1D people, as measured by a continuous glucose monitoring (CGM) system, is essential for improv-
ing glucose control by avoiding harmful hypoglycaemic and hyperglycaemic glucose swings, facilitating precise 
insulin management and individualized care and, in turn, minimizing long-term vascular complications.

Methods  In this study, we propose an ensemble univariate short-term predictive model of the subcutaneous glu-
cose concentration in T1D targeting at improving its error in the hypoglycaemic region. As such, the underlying basis 
functions are selected to minimize the percentage of erroneous predictions (EP) in the hypoglycaemic region, with EP 
being evaluated with continuous glucose error grid analysis (CG-EGA). The dataset comprises 29 individuals with T1D, 
who were monitored for 2 to 4 weeks during the GlucoseML prospective observational clinical study.

Results  Among six different basis models (i.e., linear regression (LR), automatic relevance determination (ARD), sup-
port vector regression (SVR), Gaussian process regression (GPR), eXtreme gradient boosting (XGBoost), and long short-
term memory (LSTM)), XGBoost and SVR showed a dominant performance in the hypoglycaemic region and were 
selected as the constituent basis models of the ensemble model. The results indicate that the ensemble model signifi-
cantly reduces the percentage of EP in the hypoglycaemic region for a 30 min prediction horizon to 19% as compared 
with its individual basis models (i.e., XGBoost and SVR), whilst its errors over the entire glucose range (hypoglycaemia, 
euglycaemia, and hyperglycaemia) are similar to those of the basis models.

Conclusions  The consideration of the performance of the basis functions in the hypoglycaemic region dur-
ing the construction of the ensemble model contributes to enhancing their joint performance in that specific area. 
This could lead to more precise insulin management and a reduced risk of short-term hypoglycaemic fluctuations.
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Background
Diabetes mellitus, is a group of chronic metabolic dis-
orders characterized by consistently elevated levels of 
blood glucose [1]. The main types of diabetes are type 1 
diabetes (T1D), formerly known as insulin-dependent 
or juvenile diabetes, which is characterized by the auto-
immune destruction of pancreatic ß-cells, leading to 
insulin deficiency, and type 2 diabetes, which involves 
insulin resistance and pancreatic ß-cell dysfunction. Both 
types are associated with the development of long-term 
complications, including damage to blood vessels and 
nerves. Strict control of blood glucose levels has been 
shown to reduce microvascular complications affecting 
small blood vessels of peripheral nerves, the retina, and 
kidneys, as well as macrovascular complications such 
as atherosclerosis [2]. According to the International 
Diabetes Federation Type 1 Diabetes Index, as of 2022, 
8.75  million individuals are living with T1D globally, 
with 1.52 million of them being under the age of 20. In 
the same year, 530,000 new cases of T1D were diagnosed 
across all age groups, resulting in 182,000 deaths annually 
attributable to T1D. Notably, an estimated 35,000 deaths 
related to T1D in 2022 occurred in undiagnosed indi-
viduals under 25 years of age, who died within a year of 
symptomatic onset [3]. A lack of regular access to treat-
ment poses serious and potentially life-threatening health 
risks for those with this condition. The management of 
T1D necessitates daily insulin treatment, frequent blood 
glucose self-monitoring, regular physical activity, and 
a healthy diet to mitigate complications and premature 
mortality. Although advancements in medical care and 
technology have facilitated the survival into adulthood of 
millions diagnosed with T1D during childhood, optimal 
control of the disease remains challenging at a worldwide 
level [4]. Prediction of short-term glucose levels is cru-
cial for T1D patients, allowing more effective day-to-day 
self-management of the disease and tighter glucose con-
trol, thus contributing to the reduction of both danger-
ous short-term blood glucose fluctuations and the risk of 
severe long-term complications. For instance, advanced 
diabetes-technology treatment systems, such as con-
tinuous glucose monitoring (CGM) and insulin pumps, 
integrate prediction models to automate insulin delivery 
and produce real-time alerts of hyper- or hypo-glycaemic 
events [5].

Univariate glucose predictive modelling approaches in 
T1D are based on deep neural network algorithms, with 
the incorporation of time-domain features emerging as a 
promising approach, showcasing significantly improved 
performance with a root mean squared error (RMSE) 
of 6.31 mgdL−1 over a 30-minute prediction horizon 
[6]. Deep-ensemble models, including linear regres-
sion (LR), vanilla long short-term memory (LSTM), and 

bidirectional LSTM, which are enhanced with novel 
meta-learning approaches, significantly outperform tra-
ditional nonensemble models in glucose prediction, dem-
onstrating their superior accuracy and effectiveness for 
T1D management [7]. Additionally, systems that predict 
glucose levels up to one hour in advance without requir-
ing feature engineering or extensive data preprocessing 
are crucial for effective T1D management [8].

Research on glucose predictive modelling in T1D 
underscores the importance of comprehensive mod-
els that integrate various factors, such as food carbo-
hydrate intake, insulin doses, and physical activity [9]. 
Prendin et  al. [10] evaluated stochastic models consid-
ering contextual factors beyond meal size, i.e., mealtime 
and insulin dosing. Jaloli and Cescon [11] developed a 
convolutional neural network (CNN) and LSTM, (CNN-
LSTM)-based deep neural network, which improved 
long-term (90  min) glucose prediction by integrating 
multiple data sources. Li et  al. [12] employed convo-
lutional recurrent neural networks (RNN) to enhance 
prediction accuracy. Several studies have focused on 
real-time blood glucose prediction using CGM systems 
to improve diabetes management. A significant contribu-
tion by Zhu T et al. [13] introduces a population-specific 
glucose prediction model based on the temporal fusion 
Transformer, personalized with demographic data and 
integrated into a low-power, wearable device. The tem-
poral fusion Transformer model outperformed several 
baseline methods in prediction accuracy, highlighting 
its potential for improving diabetes management. Butt 
et  al. [14] proposed transforming event-based data into 
discriminative continuous features using a multilay-
ered LSTM-based RNN to predict glucose levels in T1D 
patients. Hybrid and advanced techniques have also 
shown significant potential: (i) Isfahani et  al. [15] used 
a hybrid dynamic wavelet-based modelling method, (ii) 
Hidalgo et  al. [16] combined Markov chain-based data 
enrichment with random grammatical evolution and 
bagging, and (iii) Rabby et al. [17] implemented a stacked 
LSTM-based deep RNN with Kalman smoothing. How-
ever, deep learning models often require large datasets 
for accurate personalized glucose predictions. Daniels 
et  al. [18] demonstrated that multitask learning outper-
forms sequential transfer learning and subject-specific 
models with neural networks and support vector regres-
sion (SVR), achieving at least 93% clinically acceptable 
predictions using the Clarke Error Grid (EGA) across 
various prediction horizons (30, 45, 60, 90, and 120 min). 
This shows that multitask learning enables effective per-
sonalized models with less subject-specific data. Cluster-
ing and seasonal stochastic methods have demonstrated 
good accuracy for long prediction horizons. Montaser 
et  al. [19] proposes a framework based on CGM data 
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that partitions variable-length subseries and incorporates 
indices for detecting abnormal glucose behavior, effec-
tively addressing intra-patient variability and enhancing 
model performance in supervision and control applica-
tions. Furthermore, several challenges hinder the clini-
cal implementation of deep learning algorithms, such 
as unclear prediction confidence and limited training 
data for new T1D subjects. To address these issues, Zhu 
et al. [20] proposed the fast-adaptive and confident neu-
ral network (FCNN), which employs an attention-based 
RNN and model-agnostic meta-learning to provide per-
sonalized glucose predictions with confidence and enable 
fast adaptation for new patients. These studies demon-
strated the benefits of integrating diverse biological and 
behavioural factors into glucose prediction models, lead-
ing to improved performance compared with univariate 
approaches. Some studies have incorporated mechanistic 
models of carbohydrate and insulin absorption, although 
these techniques often rely on several assumptions that 
limit their widespread use [21, 22]. Comparative studies 
have shown similar short-term prediction results (up to 
60  min) between linear and nonlinear models [23–26]. 
This observation may be attributed to the linear dynam-
ics of short-term glucose regulation or the presence of 
unaccounted factors in the models.

In this study, we investigate the ability of an ensemble 
univariate short-term subcutaneous glucose predictive 
model, which consists of basis models that individually 
optimize the performance in the hypoglycaemic region, 
to further improve the error in that region while retain-
ing high accuracy in the hyperglycaemic and euglycae-
mic regions. As basis functions, we examine models of 
four different classes: (i) one linear function, i.e., LR, (ii) 
three kernel-based functions, i.e., automatic relevance 
determination (ARD), SVR, and Gaussian process regres-
sion (GPR), (iii) one tree-based function, i.e., eXtreme 
gradient boosting (XGBoost), and (iv) a deep learning 
model, i.e., an LSTM neural network. Subsequently, we 
construct an ensemble model that factors in the outputs 
of the two top performing basis models (i.e., SVR and 
XGBoost) with respect to their hypoglycaemic predic-
tions, as assessed by the continuous glucose error grid 
analysis (CG-EGA). The utilized dataset was generated 
within the framework of the GlucoseML clinical study; 
29 adults with T1D were followed-up for a period of 2 
to 4 weeks under real-life conditions. The glucose con-
centration in the subcutaneous space was measured via 
a CGM sensor featuring a sampling period of 1 min. All 
the models were trained and tested individually by care-
fully employing cross validation over the training set of 
each patient. In this context, the ensemble model showed 
a consistently better performance, in terms of the CG-
EGA, over all the examined prediction horizons of 15-, 

30- and 60-minutes. Herein, we focused on the develop-
ment of a univariate glucose predictive model aiming at 
examining the linear or nonlinear autoregressive capacity 
of the glucose time series itself with respect to short-term 
hypoglycaemia prediction, which, in parallel, comprises 
the simplest input case reducing the need for extensive 
data collection. This study’s technical novelty lies in the 
incorporation of the CG-EGA outputs in the hypoglycae-
mic region in the selection of basis functions of the uni-
variate ensemble model, whereas its clinical impact lies 
in the verification of the examined hypothesis, i.e., the 
improvement of the model’s capability in the hypogly-
caemic region. Focusing on hypoglycaemia is crucial due 
to the immediate risks it poses, such as seizures, coma, 
and even death. Accurate prediction of hypoglycaemia is 
essential for ensuring patients’ safety and effective glu-
cose management.

Methods
Study population
The dataset analysed in the present study was gener-
ated by the GlucoseML-Phase I prospective study, which 
aimed to collect real-world data systematically from T1D 
people monitored for a period of 2–4 weeks. The patients 
used the GlucoMen Day CGM Menarini®1 system featur-
ing a sampling frequency of 1  min. The study enrolled 
32 patients, with 26 individuals (82%) completing the 
entire 4-week monitoring period, 3 patients (9%) com-
pleting a 2-week monitoring period, and 3 patients (9%) 
discontinuing their participation. Informed consent was 
obtained from all participants prior to their enrollment 
in the study. As shown in Table 1, the study population 
consisted of 62% males and 38% females, with an average 
age of 38 years. 66% of the study patients were on mul-
tiple daily insulin injections (MDI), whereas 34% were 
on a continuous subcutaneous insulin infusion (CSII) 
regimen. The average baseline HbA1c level across indi-
viduals was 7.5%, with a history of severe hypoglycaemia 
reported by 59% of the patients.

Ensemble framework
Figure 1 illustrates the methodological approach adopted 
in this study. First, the subcutaneous glucose concentra-
tion time series of each participant p , represented by a 
vector glp , is visually inspected via a comprehensive 
exploratory data analysis including analysis of the distri-
bution of data (histogram and Poincaré plot) and auto-
correlation plots (autocorrelation function and partial 
autocorrelation function plot). Missing data in glp are 
imputed prior to dataset splitting into training and test 

1  https://​gluco​menday.​com.

https://glucomenday.com
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Table 1  Descriptive characteristics of the GlucoseML-Phase I study cohort

Feature Distribution of values

Demographics Gender Male: 62% (18)
Female: 38% (11)

Age 38 ± 12 years

Anthropometrics BMI Normal weight: 24% (7 kg/m2)
Overweight: 41% (12 kg/m2)
Obese: 34% (10 kg/m2)

Waist circumference Female: 86 (71-124 cm)
Male: 96 (71-126 cm)

T1D management Years since diagnosis 0-12 years: 38% (11)
12-24 years: 35% (10)
24-36 years: 17% (5)
36-48 years: 10% (3)

Type of insulin treatment MDI: 66% (19)
CSII: 34% (10)

History of severe hypoglycaemia 59% (17)

Baseline HbA1c 7.5 ± 1%

Chronic Complications of T1D Albuminuria: 10% (3)
Retinopathy: 10% (3)
Neuropathy: 3% (1)

Other metabolic comorbidities Dyslipidaemia 52% (15)

Central obesity 31% (9)

Thyroid disease 24% (7)

Hypertension 10% (3)

Lifestyle Smoking 52% (15)

Alcohol 7% (2)

Fig. 1  Machine Learning Pipeline of the proposed glucose prediction model
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sets by employing linear interpolation [27]. In particular, 
we set the maximum length of the missing data inter-
val to 60 min (i.e., 60 consecutive values) to balance the 
introduction of the error in the raw data. Subsequently, 
the subcutaneous glucose concentration time series of 
each participant, glp , is split into the training time series 
( glptrain ) and test time series ( glptest ) using a 70:30 ratio 
retaining the temporal order of the data in glp . The train-
ing time series is normalized using the min-max scaler 
within the range [0,1], and the learnt scaling properties 
( min, max ) are applied to the normalised test time series 
[28]:

Accordingly, the training vectors (xpi, train, y
p
i, train) and 

the test vectors x
p
i, test , y

p
i, test  , constituting the training 

set (Xtrain, Ytrain) and the test set (Xtest , Ytest) , are formu-
lated by iterating, for each time point ti , over the glucose 
time series glptrain and glptest , respectively, using a history 
window (or “look-back” window) of 30 min (i.e., the pre-
vious 30 time points) and a prediction horizon (or “look-
forward” window) of 15, 30 and 60 min.

(1)gl
p
test,norm =

gl
p
test −min

(
gl
p
train

)

max
(
gl
p
train

)
−min

(
gl
p
train

) .

The basis functions of the ensemble model are selected 
among the LR, ARD, SVR, GPR, XGBoost, and LSTM 
models. All the models are first finetuned with respect 
to their hyperparameters by employing the Bayesian 
optimization algorithm [29] wrapped into a cross-vali-
dation scheme over the training set (Xtrain, Ytrain) ; the 
hyperparameters optimizing the cross-validation perfor-
mance are selected. We employ time series 5-fold cross-
validation to systematically tune hyperpatameters and 
minimize the risk of overfitting, where in each iteration 
the validation set is ahead of the training set to retain 
the temporal order of glucose data. Table 2 presents the 
examined hyperparameter space. Subsequently, each 
model is trained and evaluated on the training and test 
sets, respectively. As described in Sect.  2.3, CG-EGA 
enables the assessment of one model’s performance in 
each glycaemic region (i.e., hypoglycaemia, euglycae-
mia, hyperglycaemia), separately. Considering the clini-
cal importance of reducing the error of hypoglycaemic 
predictions, we selected the two models minimizing the 
percentage of erroneous predictions (EP) in the hypogly-
caemic region according to the CG-EGA analysis of their 
predictions over the training set. More specifically, SVR 
and XGBoost exhibit the best behaviour with respect 
to the prediction of hypoglycaemic values, without 

Table 2  Hyperparameter space based on Bayesian optimization for each model

RBF Radial Basis Function, POLY polynomial, RMSPROP Root Mean Square Propagation, *using log-uniform distribution

Model Hyper-parameters Range

Automatic Relevance Determination (ARD) Regression alpha_1 10-10– 10-6*

alpha_2 10-10– 10-6*

lambda_1 10-10 – 10-6*

lambda_2 10-10 – 10-6*

Support Vector Regression (SVR) C 10-4 – 10-1*

Kernel Linear, rbf, poly, sigmoid

Gaussian Process Regression (GPR) length scale 0.01- 10

Linear Regression (LR) alpha 0.001 - 10.0*

eXtreme Gradient Boosting (XGBoost) Learning rate 10-4 – 10-1*

n estimators 50 - 200

Max depth 3 - 10

Min child weight 1 - 5

Subsample 0.5 - 1.0

Colsample bytree 0.5 - 1.0

gamma 0 - 1.0

Long-Short Term Memory (LSTM) Batch size 8, 16, 24, 32, 64

Learning rate 10-4 – 10-1*

Num units 1- 10

Dropout rate 0.0 -0.5

Activation function tanh, relu

Number of layers 1 - 5

Optimiser adam, rmsprop
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compromising their performance in the hyperglycaemic 
and euglycaemic regions.

The ensemble model comprises a linear combination 
(weighted average) of the SVR and XGBoost basis func-
tions. The optimal weights are likewise selected to opti-
mise the time series 5-cross-validated negative mean 
squared error (MSE) via grid search over the training set. 
Grid search is a hyperparameter optimization technique 
that systematically explores a predefined set of parameter 
values. This method ensures that the best combination of 
hyperparameters is identified, enhancing model perfor-
mance [30]. The search space of the weights is set to [0.0, 
0.5, 1.0]. Τhe weight optimisation is followed by the fit-
ting of the ensemble model to the training data.

SVR Method
SVR is a supervised learning algorithm for regression, 
based on a support vector machine (SVM). Given a set 
of N  training samples 

{(
xi, yi

)}N
i=1

 , where xi ∈ R repre-
sents the univariate input feature and yi ∈ R represents 
the corresponding glucose value, SVR seeks to find a 
function f (x) that minimizes errors within an ǫ -insensi-
tive margin. The prediction function for SVR is given by:

where w is the weight and b is the bias term. SVR uti-
lizes an ǫ insensitive loss function to define acceptable 
deviations, while balancing the model complexity and the 
tolerance for deviations:

where ξ i and ξ ∗
i  are slack variables that allow devia-

tions outside the ǫ -insensitive margin and C is a regu-
larization parameter controlling the trade-off between 
model complexity and error tolerance [31, 32].

XGBoost Method
XGBoost iteratively builds an ensemble of K  decision 
trees by -correcting- prior errors to improve training and 
prediction at each iteration. The predicted glucose value 
ŷi for a given observation xi is the sum of predictions 
from all K  trees:

Each tree fk contributes an additive prediction, which 
is refined iteratively to minimize a specified objective 
function. The objective function L(φ ) combines a loss 
function l measuring prediction error and a regulariza-
tion term Ω controlling model complexity:

(2)f (x) = wT
· x + b,

(3)minw,b,ξ i ,ξ
∗
i

[
1

2
||w||2 + C

∑
N
i=1(ξ i + ξ ∗

i )

]
,

(4)ŷi =
∑

K
k=1fK (xi),

where yi represents the actual glucose value, ŷi denotes 
the predicted glucose value, l(yi, ŷi) = (yi − ŷi)

2 is the 
squared error loss function for regression, and Ω

(
fk
)
 is 

the regularization term for the k-th term [33, 34].

Model evaluation
The performance of the glucose predictive model is 
assessed individually for each patient p using: (i) three 
pure error metrics, i.e., the RMSE, the mean absolute 
percentage error (MAPE) and the mean absolute error 
(MAE), (ii) the Time Lag, which expresses the tempo-
ral delay between the actual ( yp) and the predicted ( ̂yp ) 
subcutaneous glucose concentrations, and (iii) the CG-
EGA, which evaluates the potential clinical impact of the 
errors given the glycaemic range in which the actual glu-
cose concentration value lies. Equations  (6), (7) and (8) 
provide the formulas for the RMSE, the MAPE and the 
MAE, respectively:

where ypi  denotes the actual subcutaneous glucose 
concentration value observed at time ti , ŷ

p
i  denotes the 

respective predicted value, and n is the length of yp and 
ŷp . The Time Lag, also known as the prediction delay, is 
defined as the Time Lagτ maximizing the cross correla-
tion between yp and ŷp:

In addition to the above performance metrics, we 
employ the CG-EGA aiming at gaining insight into one 
model’s performance across the glycaemic regions of 
hypoglycaemia, euglycaemia and hyperglycaemia. The 
CG-EGA is composed of: (i) point-error grid analysis 
(P-EGA), which assesses the glucose prediction errors, 
and (ii) rate-error grid analysis (R-EGA), which evalu-
ates the rate of change of ŷp as compared with that 
of yp . The grid is divided into zones on a scatter plot, 
where the x-axis represents the reference glucose val-
ues, and the y-axis represents the predicted glucose 
values. This plot is divided into different zones, each 
reflecting varying degrees of clinical significance. Zone 

(5)L(ϕ) =
1

n

∑
n
i=1l(yi, ŷi)+

∑
K
k=1Ω

(
fk
)
,

(6)RMSE =

√
1

n

∑ n

i=1
(y

p
i − ŷ

p
i )

2
,

(7)MAPE =
1

n

∑ n

i=1

∣∣∣∣∣
y
p
i − ŷ

p
i

y
p
i

∣∣∣∣∣ × 100%,

(8)MAE =
1

n

∑ n

i=1

∣∣ypi − ŷ
p
i

∣∣,

(9)Time Lag = argmaxτ (corr(y
p
[t], ŷp[t − τ ]).
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A is characterized by minimal prediction errors that 
have little to no impact on clinical decisions. Zone B 
indicates errors that could have minor clinical implica-
tions, suggesting a need for caution but not immediate 
intervention. In contrast, Zones C and D reflect errors 
with moderate to severe clinical consequences, which 
could result in inappropriate treatment changes or mis-
management of glucose levels. Factoring in both the 
P-EGA and R-EGA results, the overall CG-EGA classi-
fies errors within each glycaemic region as follows: (i) 
accurate predictions (AP), where the predicted glucose 
values are very close to the actual reference glucose 
values, meaning that these predictions are reliable for 
clinical decisions, (ii) benign errors (BE), which involve 
predictions that slightly deviate from actual values 
but are minor enough not to have significant clinical 
impact, and (iii) EP, where the predicted values differ 
substantially from the actual reference values, leading 
to significant inaccuracies and potential clinical risks or 
implications [35].

Results
The glycaemic profile of the GlucoseML-Phase I study 
patients is presented in Fig. 2; Table 3. Figure 2 illustrates 
the box plots of the percentage of time patients spent in 
the 5 glycaemic zones, according to the Ambulatory Glu-
cose Profile (AGP) report [36]. This was calculated using 
the individual subcutaneous glucose concentration time 
series collected over the monitoring period.

In particular, the distribution of the percentage of time 
spent within the 5 zones (represented by the median 
(25th percentile, 75th percentile)) is as follows: (i) 1.4 (0.3, 

3.1) in Time Below Range–Very Low: (< 54 mgdL−1), (ii) 
3.8 (1.4, 5.2) in Time Below Range–Low: (< 70 mgdL−1), 
(iii) 61.6 (57, 70.1) in Time in Range: (70–180 mgdL−1), 
(iv) 22.1 (18.3, 25.4) Time Above Range – High: (> 180 
mgdL−1), and (v) 7.7 (4.6, 12.1) Time Above Range – Very 
High: (> 250 mgdL−1). For clearer insights, we have added 
Additional File 1: Table S1, which presents the same 
information in a tabular format. In addition, Table 3 pre-
sents the average values of the complementary subcuta-
neous glucose statistics in the AGP report.

Figure 3 illustrates the optimal weights assigned to the 
ensemble model following its fitting to the training data. 
These weights are determined based on the optimization 
algorithm and hyperparameter space detailed in Sect. 2.2. 
Table  4 shows the distributions of the RMSE, MAPE, 
MAE and Time Lag associated with the predictions of 
the subcutaneous glucose concentration by the ensem-
ble model and the individual basis models for prediction 
horizons of 15, 30, and 60 min. We observe that LR, ARD 
and GPR show a comparable performance with respect to 
the error metrics and the Time Lag for all the prediction 

Fig. 2  The Time in Ranges based on AGP report

Table 3  The glucose statistics based on AGP report across all 
patients using CGM data

Data are presented in the form mean ± standard deviation

AGP Report Variables Mean ± 
Standard 
Deviation

Average Glucose (mgdL-1) 159.9 ± 26.2%

Glucose Management Indicator (%) 7.1 ± 0.6%

Glucose Variability (%) 39.5 ± 6.3%
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horizons, with the average MAPE being close to 13.5% 
for 30-min predictions and the respective average Time 
Lag close to 22 min. The LSTM, SVR and XGBoost yield 
greater errors and, hence, time delays, with the average 
MAPE associated with 30-min predictions becoming 
~16 −17% and the respective average Time Lag rang-
ing from ~24 to ~27  min. The behavior of the ensem-
ble model resembles that of its constituent basis models 
(SVR and XGBoost) retaining the average RMSE and 
Time Lag of 30-min predictions equal to ~15.5% and 
~25.2%, respectively. As described in Sect.  2.2, we used 
a 30-minute history window for model predictions. To 
evaluate the impact of longer history window, we com-
pared the performance of a 60-minute history window 
across RMSE, MAPE, MAE, and Time Lag metrics, as 
presented in Additional File 1: Table S2. The differences 
between the two history windows were minor, suggest-
ing that extending the history window beyond 30  min 
does not offer significant advantages. Studies have shown 
that extending the input window beyond 30 min does not 
necessarily lead to significant improvements in predictive 
accuracy but can increase computational burden [37]. In 
clinical settings, where real-time predictions are crucial 
for timely interventions, a longer history window could 
introduce processing delays, limiting the utility of predic-
tions for immediate decision-making. Therefore, limiting 
the input window to 30 min ensures a balance between 
prediction accuracy and the need for real-time applica-
bility [38]. Based on these findings, our model focuses on 
30-minute history window. Figure 4 compares the RMSE 
values, which are the most commonly used metric across 
research studies, for ARD, SVR, LSTM, XGBoost, and 

the proposed ensemble model overprediction horizons 
of 15, 30, and 60 min. The ensemble model demonstrates 
competitive RMSE values with relatively tight distri-
butions and a moderate number of outliers, indicating 
consistent performance across all prediction horizons. 
However, ARD regression achieves the lowest RMSE 
values, as shown in Table 4, while the median RMSE for 
the Ensemble model is slightly higher compared to other 
methods, as depicted in Fig. 4.

To evaluate the statistical significance of the results, 
we first assessed the data distribution using the Shap-
iro-Wilk test. The results, as shown in Additional File 1: 
Figure S1indicate that some metrics follow a normal dis-
tribution, while others do not. Consequently, we applied, 
the non-parametric statistical test, Mann-Whitney U 
test [39] to compute p-values across all evaluation met-
rics RMSE, MAPE, MAE, and Time Lag comparing the 
performance of all models against the ensemble model 
for each prediction horizon across all patients. Figure  5 
presents the Mann-Whitney U test p-values that com-
pare the RMSE, MAPE, MAE, and Time Lag of all the 
models with those of the ensemble model for each pre-
diction horizon across all the patients. These p-values 
indicate the statistical significance of the performance 
metric differences between the ensemble model and 
other models, thereby enabling an assessment of the rela-
tive effectiveness of the ensemble model in diverse pre-
diction scenarios. Notably, the differences in the means 
of the RMSE distribution associated with ARD, LR, or 
GPR and the proposed model, are statistically significant 
at the 15-minute horizon across all metrics. Furthermore, 
based on the Time Lag results, ARD, LR, or GPR show 

Fig. 3  The best weights for all patients in the ensemble model
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statistically significant differences at all prediction hori-
zons. Moreover, LSTM exhibits statistical significance 
at the 60-minute horizon. The results reveal that as the 
prediction horizon increases to 30 and 60  min, fewer 
comparisons show statistically significant differences, 
indicating that the performance differences between 
methods become less pronounced at longer horizons.

Table  5 presents the CG-EGA of the predictions 
derived by the examined models. On the one hand, we 
observe that the LR, ARD and GPR have mediocre per-
formance in the hypoglycaemic region, reaching 50% of 
their 30-min predictions in hypoglycaemia to be char-
acterized as erroneous. On the other hand, LSTM, SVR 
and XGBoost, although associated with greater errors 
and delays over the entire glycaemic range as compared 
to the LR, ARD and GPR, they eventually improve the 
predictions’ accuracy in the hypoglycaemic region for 
all prediction horizons. More specifically, SVR and 
XGBoost outperform the LSTM, resulting in 30% erro-
neous 30-min predictions in hypoglycaemia. The ensem-
ble model: (i) perfectly balances the outputs of its basis 
models for 15-min predictions in the hypoglycaemic 
region, (ii) significantly reduces the EP in hypoglycae-
mia to 19% for a 30-min horizon, and (iii) cannot resolve 
the mediocre performance of SVR in the hypoglycaemic 
region for 60-min predictions (SVR: 53%), which leads 

to an increase in the EP to 42% compared with its best 
performing underlying function (XGBoost: 22%). In the 
hyperglycaemic region, the SVR model performs equally 
well to its best performing underlying basis model for 
all prediction horizons (15 min: 7%, 30 min: 9%, 60 min: 
12%) and, in parallel, outperforms LR, ARD, GPR, and 
LSTM.

Figure  6 illustrates the best and worst outputs of the 
ensemble model with respect to the CG-EGA for 30-min 
predictions. The CG-EGA results from the plots in 
Fig. 6a reveal how strong the performance across differ-
ent glucose states is for the patient with the best results. 
In the hypoglycaemia region, the system achieved a 
high accuracy rate of 90%, with only 8% of the predic-
tions being erroneous and 2% being classified as benign 
predictions. For euglycaemia, the accuracy is also high 
at 84%, with 6% EP and 10% benign predictions. In the 
hyperglycaemia region, the accuracy is good at 71%, with 
12% EP and 16% benign predictions. Overall, the system 
demonstrates excellent accuracy and reliability, particu-
larly under hypoglycaemic and euglycaemic conditions, 
with the potential for slight improvement in hypergly-
caemic predictions. In contrast, the CG-EGA results 
from the plots in Fig. 6b reflect the patient with the worst 
performance. In the hypoglycaemia region, the accuracy 
is moderate at 50%, with 42% of the predictions being 

Fig. 4  A box plot diagram of RMSE results for each model across all prediction horizons
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erroneous. For euglycaemia, the accuracy is lower at 65%, 
with 15% EP. In the hyperglycaemia region, the accuracy 
is 59%, with 16% of the predictions being erroneous.

For comparison purposes, we further evaluated the 
accuracy of the models across different glycaemic ranges, 
we computed the RMSE, MAE, and MAPE for the fol-
lowing ranges: CGM < 70 mg/dL, 70 < CGM < 180 mg/dL, 
and CGM > 180 mg/dL. These results, presented in Addi-
tional File 1: Table S3, provide a comparison of model 
performance across the specified glycaemic ranges. In 
the analysis of these results, we should consider that the 
RMSE, MAE, and MAPE evaluate the magnitude of pre-
diction errors, ignoring particualrly the sign of the errors 
and the location of both the actual and predicted glucose 
values. On the other hand, CG-EGA categorizes errors 
into clinically meaningful zones considering: (i) both 
the magnitude and sign of the errors in tandem with the 
location (hypoglycaemia, euglycaemia, hyperglycaemia) 

of the actual/predicted glucose values (via the point-error 
grid analysis), and (ii) the direction and rate of change of 
predicted vs. the actual time series (via the rate-error grid 
analysis).
Discussion

In this study, we developed an individualized ensemble 
glucose predictive model, comprising those basis func-
tions (i.e., SVR and XGBoost) that achieved the best per-
formance in the hypoglycaemic region while retaining 
low errors across the hyperglycaemic and euglycaemic 
regions. The utilized dataset comprised CGM time series 
of 29 T1D patients monitored for a period of 2–4 weeks. 
The proposed model was trained and tested separately for 
each patient, with the hyperparameters of both individual 
basis functions and the weights of the ensemble model 
being tuned via time series 5-fold cross-validation over 
the training dataset. The high-frequency sampling rate of 

Fig. 5  Mann-Whitney U test results (p-values) comparing the ensemble model with the examined basis functions
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CGM data, equal to 1  min−1, provides a detailed profile 
of glucose fluctuations and, in particular, more accurate 
observations of rapid glucose changes than CGM data of 
a 5  min−1 or 15  min−1 sampling rate [40], which might 
benefit the prediction of hypoglycaemic values. The pro-
posed study introduces a significant innovation through 
the application of the CG-EGA for both model selection 
and performance evaluation, emphasizing the clinical 
implications of prediction errors. By integrating SVR and 
XGBoost within an ensemble framework, we successfully 
bridged the gap between numerical accuracy and clini-
cal relevance. On the one hand, SVR, as a kernel-based 
method, features a high generalization ability in learning 
nonlinear functions. On the other hand, XGBoost, as a 
boosting approach, yields, iteratively, to error correc-
tion. Ensemble modelling effectively mitigates the inher-
ent limitations of individual models by leveraging their 
complementary attributes. To this end, the ensemble 
modeling approach reduces overfitting by leveraging the 
diversity of individual model predictions.

Our analysis indicates that the ensemble model sig-
nificantly enhances 30-minute predictions in the hypo-
glycaemic region, yielding a percentage of EP equal to 

19% compared with its individual basis functions, while 
maintaining similar performance to the less erroneous 
basis model in the hyperglycaemic range across all pre-
diction horizons (15 min: 7%, 30 min: 9%, 60 min: 12%). 
The ARD model outperforms all other examined mod-
els in terms of numerical error metrics (RMSE, MAPE, 
MAE); however, its clinical effectiveness, as assessed by 
the CG-EGA, is considered to be moderate. This aligns 
with our perspective that CG-EGA, by evaluating the 
clinical impact of errors rather than solely their numeri-
cal magnitude, presents a more comprehensive met-
ric for optimizing and evaluating the performance of a 
glucose predictive model [41]. To address differences in 
data availability between patients with 2 weeks and those 
with 4 weeks of CGM data, we conducted a comparative 
evaluation of the model performance across these two 
groups, as presented in Additional File 1: Table S4 and 
Additional File 1: Table S5. The observed differences in 
model performance (RMSE, MAPE, and MAE) across all 
prediction horizons between patients with 2-week and 
4-week CGM data underscore the importance of moni-
toring duration in training predictive models. This is fur-
ther verified by the results presented in Additional File 

Table 5  The classification of the prediction errors according to the CG-EGA

Data are presented in the form mean ± standard deviation

AP Accurate Predictions, BE Benign Errors, EP Erroneous Predictions

Bold values indicate the best model based on the specified glycaemic region and prediction horizon

15 min 30 min 60 min

Hypo Hyper Hypo Hyper Hypo Hyper

Linear Regression (LR) AP 0.54±0.21 0.60±0.09 0.42±0.22 0.58±0.08 0.27±0.24 0.55±0.09

BE 0.1±0.04 0.26±0.07 0.09±0.05 0.27±0.07 0.08±0.08 0.28±0.07

EP 0.36±0.21 0.14±0.05 0.49±0.23 0.14±0.05 0.65±0.27 0.16±0.06

Automatic Relevance Determination 
(ARD) Regression

AP 0.53±0.21 0.59±0.09 0.41±0.21 0.57±0.08 0.26±0.23 0.55±0.08

BE 0.1±0.04 0.26±0.07 0.09±0.05 0.28±0.07 0.08±0.07 0.29±0.06

EP 0.37±0.22 0.15±0.05 0.5±0.23 0.15±0.05 0.66±0.26 0.17±0.06

Gaussian Process Regression (GPR) AP 0.55±0.21 0.61±0.09 0.41±0.25 0.6±0.08 0.25±0.26 0.58±0.08

BE 0.1±0.04 0.28±0.06 0.09±0.06 0.3±0.06 0.05±0.06 0.3±0.06

EP 0.35±0.22 0.11±0.04 0.5±0.25 0.11±0.04 0.7±0.28 0.12±0.05

Long-Short Term Memory (LSTM) AP 0.64 ± 0.21 0.7 ± 0.13 0.53 ± 0.19 0.68 ± 0.12 0.54 ± 0.26 0.68 ± 0.15
BE 0.1 ± 0.1 0.2 ± 0.08 0.08 ± 0.11 0.22 ± 0.1 0.06 ± 0.09 0.21 ± 0.11

EP 0.26 ± 0.2 0.1 ± 0.06 0.38 ± 0.18 0.1 ± 0.05 0.4 ± 0.25 0.11 ± 0.07

Support Vector Regression (SVR) AP 0.67±0.3 0.72±0.1 0.62±0.3 0.68±0.1 0.41±0.35 0.64±0.11

BE 0.19±0.25 0.18±0.06 0.09±0.08 0.2±0.06 0.05±0.07 0.22±0.06

EP 0.14±0.25 0.1±0.05 0.29±0.29 0.12±0.06 0.53±0.35 0.14±0.07

eXtreme Gradient Boosting (XGBoost) AP 0.77±0.15 0.73±0.09 0.66±0.29 0.71±0.09 0.73±0.05 0.68±0.08

BE 0.06±0.05 0.21±0.06 0.04±0.04 0.22±0.06 0.04±0.03 0.23±0.05

EP 0.17±0.12 0.07±0.04 0.29±0.29 0.07±0.03 0.22±0.07 0.09±0.05

Ensemble AP 0.75 ± 0.17 0.73±0.09 0.75±0.19 0.71±0.08 0.55±0.34 0.67±0.09

BE 0.1±0.11 0.2±0.06 0.06±0.05 0.21±0.06 0.02±0.02 0.22±0.05

EP 0.15±0.1 0.07±0.04 0.19±0.15 0.09±0.04 0.42±0.34 0.12±0.06
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1: Table S5, where the 4-week CGM data outperformed 
the 2-week in the hypoglycaemic region across all pre-
diction horizons. However, the models’ robustness, even 
with shorter datasets, demonstrates their applicability 
to real-world scenarios where data availability may be 
limited. This is particularly relevant in  situations where 
obtaining extended CGM data is impractical, making 
the models valuable for diverse clinical applications. 
Furthermore, Additional File 1: Table S4 compares the 
predictive performance of the models for MDI and CSII 
groups, highlighting differences in overall error metrics 
such as RMSE, MAPE, MAE and Time Lag. Additional 
File 1: Table S5 also presents the results from the CG-
EGA. While the CSII group generally showed slightly 
lower prediction errors across RMSE and MAE, the MDI 
group exhibited the best performance in the hypogly-
caemic zone across all prediction horizons according to 
the CG- EGA. Additionally, Additional File 1: Table S4 
compares the predictive performance of the models for 
patients with a target baseline HbA1c of 7.0% or lower 
versus those with HbA1c above 7.0%, as well as between 
patients who have experienced at least one severe hypo-
glycaemic event and those who have never experienced 

such an event. Since our models are personalized, sub-
group analyses were performed based on these factors. 
We observe that patients with a target HbA1c of 7.0% 
or lower outperformed those with higher HbA1c values 
across all error metrics and prediction horizons. Addi-
tionally, patients with history of severe hypoglycaemic 
events demonstrated better performance in RMSE and 
MAE compared to those without such a history. These 
results are further supported by the CG-EGA, particu-
larly for the 15- and 30-minute prediction horizons, as 
shown in Additional File 1: Table S5. In Table 6, we pre-
sent the evaluation of the proposed model on the Ohio 
dataset (2018) and its direct comparison with three 
state-of-the-art studies, utilizing the RMSE as the com-
mon metric found in all the literature studies. Our obser-
vations reveal that the proposed model yields a higher 
RMSE of approximately 5  mg/dL, which could be clini-
cally significant in the hypoglycaemic region. Neverthe-
less, we are unable to contrast their performance in the 
hypoglycaemic region as the studies reported in Table 6 
do not provide the CG-EGA figures. To adapt the ensem-
ble model to the OhioT1DM dataset, we did not per-
formed specific adjustments to our model. We applied 

Fig. 6  Example of the CG-EGA plots regarding the ensemble model for a 30-min PH. a the best patient case and b the worst patient case



Page 14 of 17Katsarou et al. BMC Medical Informatics and Decision Making           (2025) 25:46 

our pipeline and trained the ensemble model on the 
OhioT1DM dataset without any modifications. While 
the ensemble model showed slightly higher RMSE at the 
60-minute prediction horizon, this metric does not fully 
reflect the clinical relevance of predictions. Our primary 
focus was on CG-EGA, which assesses the clinical accu-
racy and safety of glucose predictions. CG-EGA results 
indicate that the ensemble model performs reliably in 
clinically critical areas, such as hypoglycaemia predic-
tion, even if its RMSE values are slightly higher.

The clinical relevance of this study lies in its ability to 
enhance the prediction of hypoglycaemia, a critical con-
dition for individuals with T1D. By integrating SVR and 
XGBoost in an ensemble framework and leveraging the 
CG-EGA for both model selection and evaluation, the 
proposed model improves the prediction accuracy in the 
hypoglycaemic region. This improvement in predictive 
performance is paramount for ensuring patients’ safety 
and improving their quality of life.

The study presented herein focused exclusively on 
subcutaneous glucose data, without incorporating other 
pertinent physiological parameters in the model that 
may influence glucose levels. Additional variables, such 
as insulin administration, meal intake or physical activ-
ity, could improve the predictive accuracy and person-
alization of the models. Furthermore, the integration of 
genetic data and exploration of hypoglycaemia-related 
genetic polymorphisms could yield further insights into 
personalized diabetes management and enhance predic-
tion outcomes. Accurate prediction of hypoglycaemia, 
particularly during the nocturnal and postprandial peri-
ods, is of paramount importance for patient safety, as 
underscored by previous research [43–45]. As a result, 
our focus will be on predicting glucose levels during 
these specific times of the day. We also acknowledge that 
compression lows can introduce noise into CGM data, 
mimicking hypoglycaemia and potentially confound-
ing model predictions. However, addressing compres-
sion lows in preprocessing is challenging due to the lack 

of reliable markers to distinguish them from true hypo-
glycaemia [46]. In our study, we used CGM glucose data 
was without extensive preprocessing to address potential 
artifacts such as compression lows. This approach was 
chosen to preserve the temporal integrity of the data 
and evaluate model performance under realistic condi-
tions. Preprocessing to remove compression lows often 
relies on assumptions that may exclude true hypoglycae-
mic events or reduce generalizability. While addressing 
these artifacts might improve prediction accuracy, exist-
ing methods for identifying compression lows are often 
unreliable and may inadvertently exclude true hypogly-
caemic episodes. Therefore, we chose to use CGM data 
without extensive preprocessing, as supported by prior 
research [47]. Additionally, while individualized models 
frequently outperform population-based models in glu-
cose prediction, both approaches possess distinct advan-
tages contingent on the application [13, 48]. It has been 
proposed that using error weighting [49] or employing 
the glucose-specific mean squared error (gMSE) [50] as 
a cost function during the model training could improve 
clinical performance; however, this approach was not 
tested for predicting hypoglycaemia in the present study. 
The gMSE metric adapts the traditional MSE by incorpo-
rating a penalty function based on the Clark error grid, 
which is similar with the CG-EGA, as both aim to evalu-
ate the clinical accuracy of glucose predictions, particu-
larly in relation to hypoglycaemic and hyperglycaemic 
events We should emphasize that the proposed approach 
entails individualized prediction models, trained and 
tested separately for each patient using continuous glu-
cose data collected over several days. In time-series mod-
eling, the volume of temporal data points is crucial as 
models learn patterns from sequential glucose readings. 
To prevent overfitting, we used cross-validation for time-
series data and early stopping during training. While our 
model performs well on this dataset, further validation 
on larger, multi-center datasets would enhance its gen-
eralizability. Herein, we examined the generalizability 

Table 6  Comparison of the state-of-the-art model’s performance versus our ensemble model in the OhioT1DM dataset

The OhioT1DM dataset is described in [42].

Model No. of patients RMSE (mg/dL)

Prediction Horizon (min)

15 30 60

Fast adaptive and Confident Neural Network (FCNN) model [20] 12 - 18.64 ± 2.60 31.07 ±3.62

Ensemble Models (Stacking VLSTM, BiLSTM, and Linear models) [7] 12 - 19.63 -
Recurrent neural network (RNN) model [8] 6 - 18.87 ± 1.79 31.4 ± 2.08

Proposed ensemble model (SVR and XGBoost) 6 17.11 ± 2.48 23.37 ± 3.41 35.02 ± 3.69

Proposed ensemble model (SVR and XGBoost) 12 17.54 ± 3.12 24.07 ± 4.01 35.94 ± 5.19
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of the proposed model’s results using the OhioDataset, 
which is a widely accepted benchmark in glucose pre-
diction. Advanced modeling techniques such as transfer 
learning, imputation methods, and data augmentation 
will be also explored to enhance model performance in 
scenarios with constrained data availability. Additionally, 
integrating population-level trends with personalized 
modeling approached may further improve the accuracy 
and generalizability of the predictions. Future research 
will explore therapy-specific adjustments to optimize 
model performance. Also, to address the elevated hypo-
glycaemia risk in MDI users, future research will explore 
increasing sensitivity to hypoglycaemia by incorporating 
a cost-sensitive learning framework or optimizing hyper-
parameters to prioritize low glucose predictions. Our 
analysis of subgroups based on HbA1c levels and history 
of severe hypoglycaemic events suggests that these are 
important factors for glucose prediction. We will explore 
incorporating these factors into our glucose prediction 
models in future work. Consequently, we plan to under-
take a comparative analysis of the performance of pop-
ulation-based and individualized models in our future 
work.

Conclusions
This study demonstrated the effectiveness of combining 
SVR and XGBoost in an ensemble model for short-term 
glucose prediction in individuals with T1D, with a par-
ticular focus on the prediction of hypoglycaemic value. 
The high frequency of the CGM data and the tailored 
models for each patient contributed to improved pre-
diction accuracy, with the ensemble model outperform-
ing individual models, especially in clinically critical 
hypoglycaemic regions. While numerical metrics such 
as the RMSE and MAPE are useful for assessing model 
performance, the CG-EGA is more valuable for evalu-
ating the clinical impact of prediction errors [51]. This 
approach highlights the importance of balancing numeri-
cal accuracy with clinical relevance in real-world diabetes 
management. Although our models provide significant 
advancements in glucose prediction, future research 
should integrate broader physiological and genetic data 
to further enhance the personalization and accuracy of 
glucose forecasting models. We are currently incorporat-
ing physiological parameters from medical devices and 
data from the GlucoseML study, such as blood pressure, 
to investigate whether this improves the errors in the 
critical zones of hypoglycaemia and hyperglycaemia.
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