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Abstract 

Background  Agent negotiation is widely used in e-commerce negotiation, cloud service service-level agreements, 
and power transactions. However, few studies have adapted alternative negotiation models to negotiation processes 
between healthcare professionals and patients due to the fuzziness, ethics, and importance of medical decision 
making.

Method  We propose a Bayesian learning based bilateral fuzzy constraint agent negotiation model (BLFCAN). It 
support mutually beneficial agreement on treatment between doctors and patients. The proposed model expresses 
the imprecise preferences and behaviors of doctors and patients through fuzzy constrained agents. To improve 
negotiation efficiency and social welfare, the Bayesian learning method is adopted in the proposed model to predict 
the opponent’s preference.

Results  The proposed model achieves 55.4% to 64.2% satisfaction for doctors and 69-74.5% satisfaction for patients 
in terms of individual satisfaction. In addition, the proposed BLFCAN can increase overall satisfaction by 26.5-29% 
in fewer rounds, and it can alter the negotiation strategy in a flexible manner for various negotiation scenarios.

Conclusions  BLFCAN reduces communication time and cost, helps avoid potential conflicts, and reduces the impact 
of emotions and biases on decision-making. In addition, the BLFCAN model improves the agreement satisfaction 
of both parties and the total social welfare.
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Introduction
Shared decision-making (SDM) models actively support 
healthcare providers and patients regarding information 
sharing, negotiation, and decision-making activities [1, 

2]. In contrast to traditional paternalistic decision-mak-
ing and informed decision-making processes, SDM is 
an ideal decision-making model in the medical context 
because the patients’ right to personal health manage-
ment and autonomy is respected and realized. For exam-
ple, when a patient with type 2 diabetes consults a doctor 
about treatment options, the doctor explains the pros 
and cons of medication and lifestyle interventions and 
invites the patient to share their perspective. The patient 
expresses a preference to minimize medication reliance 
and favors lifestyle adjustments. In response, the doctor 
suggests starting with a low-dose medication alongside 
lifestyle modifications, with regular follow-ups to adjust 
the plan as needed. Through such communication and 
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collaboration, SDM enables doctors and patients to cre-
ate a personalized treatment plan that aligns with medi-
cal standards and the patient’s lifestyle, giving the patient 
greater involvement and autonomy in the decision-mak-
ing process.

Many previous studies have reported the benefits of 
SDM. For example, Kioko et al. [3] stated that SDM coin-
cides with Pellegrino and Thomasma’s proximate end of 
medicine, i.e., which is a technically correct and mor-
ally good healing decision made for and with a particular 
patient. In addition, Drake et al. [4] describe the potential 
benefits of implementing SDM, including ethics, qual-
ity, informed decisions, patient satisfaction, enhanced 
realization of patient self-management, improved adher-
ence, and meaningful outcomes. Overall, SDM pro-
cesses can improve the increasingly tense doctor-patient 
relationship.

Despite the diverse prospects for SDM implemen-
tation, many barriers remain, including the need for 
new educational structures, improved communication 
approaches, and decision-making models tailored to per-
sonalized medicine [4]. So far, professional education is 
well provided in medical school, but SDM requires edu-
cational structures that integrate both professional and 
humanistic competencies for healthcare practitioners. 
Professional skills include knowledge of diseases and 
treatments, while humanistic skills focus on communi-
cation, empathy, and patient-centered interaction. These 
competencies empower healthcare providers to build 
effective SDM-related skills. Improved communication 
approaches are also essential to ensure clear, two-way 
understanding between doctors and patients, reducing 
misunderstandings and facilitating informed choices. 
Finally, well-designed decision-making models provide 
structured frameworks that integrate medical evidence 
with the values and preferences of doctors and patients.

In addition to these needs, other obstacles to effective 
SDM include insufficient clinical time [5, 6], significant 
asymmetry in medical information and misinformation 
[7, 8], limited communication skills, and the influence of 
personal emotions and biases [9, 10]. These factors can 
complicate SDM by limiting the quality and clarity of 
interactions between doctors and patients.

To address these barriers, current SDM approaches 
involve shared decision-making programs (SDP) [11], 
patient decision aids (PtDA) [12, 13], SDM skills train-
ing [14], and internet-based health information resources 
[15]. For instance, SDPs are interactive video programs 
that use electronic devices to guide patients through 
treatment choices; however, the high production costs 
limit their use [16]. PtDAs inform patients about treat-
ment options and associated risks and benefits, though 
their effectiveness depends on information accuracy 

and adaptability to diverse literacy levels and cultural 
backgrounds.

Building on these traditional methods, our study pro-
poses a Bayesian Learning-Based Agent Negotiation 
Model, which offers several advantages for SDM. Con-
ventional SDM models primarily focus on information 
sharing and patient education, often relying on subjective 
judgments from physicians. This can make it challenging 
to efficiently reach personalized treatment plans in com-
plex cases. In contrast, our model facilitates dynamic, 
autonomous negotiation by adapting in real-time to each 
agent’s evolving preferences and behaviors. Bayesian 
learning enables flexible updates without requiring prior 
data, while the integration of fuzzy numbers enhances 
preference quantification, making decision-making more 
robust and broadly applicable.

To further address SDM challenges, we conceptualize 
the SDM problem as a bilateral treatment selection issue 
characterized by three key features: (1) only one doctor 
and one patient are involved in each negotiation, each 
with unique beliefs and preferences; (2) the problem is 
treated as a fuzzy constraint decision-making process 
due to the ambiguity of decision criteria; and (3) it is a 
dynamic process where both parties influence the final 
treatment plan through interaction. We adopt an agent 
system for these interactions, as agent negotiation pro-
vides a flexible framework for establishing computational 
models of autonomous entities to reach agreements [17]. 
Bayesian learning allows agents to better understand 
each other’s preferences, thereby enhancing negotiation 
outcomes through mutual learning.

The primary contributions of this study are summa-
rized as follows. 

(1)	 We propose a Bayesian learning-based agent nego-
tiation model to implement SDM. The proposed 
model creatively combines advanced SDM princi-
ples and agent negotiation technology.

(2)	 We construct autonomous agents according to the 
behaviors of doctors and patients behavior, includ-
ing how to evaluate a proposal, how to offer a pro-
posal, and how to achieve agreement. In addition, 
we introduce a gradient fuzzy number to represent 
the imprecise preferences of doctors and patients, 
which allows us to better model the uncertain and 
subjective preferences produced by both doctors 
and patients when expressing medical problems 
[18, 19].

(3)	 We employ Bayesian learning techniques to learn 
the fuzzy membership function of the opponent 
via a probabilistic approach, i.e., to learn an oppo-
nent’s preferences [20–22]. Note that this technique 
does not initially require any information about the 
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opponent or the negotiation history to simulate 
doctor and patient learning or evaluate an oppo-
nent‘s preferences.

The remainder of this paper is organized as follows. 
“Literature review”  section introduces the related work. 
“Negotiation model for SDM”  section details the SDM 
negotiation model and gives a case study to explain it. 
“Performance evaluation” section evaluates and discusses 
our proposed model from different perspectives. “Con-
clusion” section concludes the paper.

Literature review
Shared decision‑making
Shared decision-making conception was advocated from 
an ethical and clinical point of view to ensure that the 
medical condition or procedure itself presents no moral 
problem around 1970s. Since then, Early researches of 
Shared Decision-Making (SDM) focused primarily on 
theoretical foundations, e.g. the definitions of SDM, 
essential elements and SDM models. This theoretical 
work emphasized patient autonomy and the need for 
a collaborative approach in healthcare, where patients’ 
preferences and values are incorporated into treatment 
decisions alongside provider’s recommendations, foster-
ing a more patient-centered model of care [2, 23].

In recent years, SDM research has increasingly shifted 
towards practical applications, particularly in clinical 
fields where treatment decisions are complex and highly 
individualized, such as chronic disease management, 
mental health, and oncology [15]. These studies demon-
strate the value of SDM in enabling patients to actively 
participate in selecting long-term treatment options 
that align with their personal circumstances, leading to 
improved adherence and patient satisfaction.

To support SDM in practice, tools like Shared Deci-
sion-Making Programs (SDP) and Patient Decision Aids 
(PtDA) have been developed to help patients understand 
treatment options and the associated risks and benefits.

Additionally, assessment tools have been introduced 
to measure and improve the SDM process, facilitating 
meaningful provider-patient interactions and support-
ing the model’s practical implementation. For example, 
there are tools available to measure patient involvement 
in the decision-making process based on the perspec-
tives of both the patient (SDM-Q-9) and the doctor 
(SDM-Q-Doc), and these tools are used to assess and 
improve healthcare [24]. Other related tools include 
the dyadic OPTION instrument, the SDM Scale, DSAT, 
DSAT-10, and DAS-O [25]. However, SDM must extend 
beyond simply using tools to provide patients with rel-
evant information, i.e., SDM requires meaningful and 

mutual engagement and negotiation between doctors 
and patients [26].

Agent technology
Agents are software entities that simulate human behav-
ior, and they are employed in multiagent system (MAS) 
to study the informational and dynamic behaviors of 
complex systems. Agents possess three basic abilities, 
i.e., reactivity, premotivation, and social behavior [27]. 
In addition, agents possess human characteristics, e.g., 
knowledge, beliefs, debts, and plans. Given the capabili-
ties and characteristics of agents, the most widely used 
agent architecture is the belief-desire-intention (BDI) 
software model. Fig. 1 illustrates the generic BDI model, 
and concepts related to agent construction are defined 
in Table  1 [28]. An agent can simulate the behaviors 
of negotiation participants and perform negotiations 
according to relevant protocols and frameworks to auto-
mate the negotiation process.

Agent negotiation
In multi-agent system, negotiation between people 
evolves into a negotiation between agents. Accordingly, 
how to conduct reasonable and effective negotiations 
among multi-agents has become an important problem 
that needs to be solved. Therefore, agent negotiation 
is the key link for multi-agent cooperation. Along with 
the development of the internet and telecommunica-
tion technology, more terminal systems can be treated 
as autonomous agents, which cannot be dominated by 
any central node. For example, in an e-commerce system, 
buyers and sellers are autonomous agents [29]. Moreover, 
doctors and patients can also be treated as autonomous 
agents in the internet plus medicine. In such systems, 
negotiation is the predominant form of interaction. 
Under this background, autonomous agents are increas-
ingly required to operate in open and distributed systems 
comprising multiple problem solvers with competing 
objectives [30].

Studies in economics and artificial intelligence fields 
have constructed the theoretical basis of autonomous 
negotiation. In agent negotiation, how to find a better 
offer and a count-offer to meet users’ requirements or 
maximize users’ benefits is the most important behav-
ior. Common approaches to solving this problem include 
game theory, heuristics methods, and argumentation-
based negotiation. Computers make concrete the notion 
of strategy through behavior programming that plays the 
same central role in game theory. Therefore, Rosenschein 
first applied game theory to solve agent negotiation prob-
lems [31]. Kraus et al. [32] integrated game theory, eco-
nomic techniques, and heuristic methods into the agent 
negotiation process. Monteserin and Amandi integrated 
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argumentation-based negotiation planning into the gen-
eral planning process. In the argumentation-based nego-
tiation, agents are allowed to exchange some additional 
information as arguments without further cost, besides 
the information provided in the proposals [33].

In most situations, agent negotiation has been com-
monly modeled as a dynamic and distributed decision-
making problem. Therefore, agent negotiation technology 
has been developed with multi-attribute decision-making 
technologies. Jonker et  al. [34] proposed a component-
based generic agent architecture for multi-attribute (inte-
grated) negotiation. The framework uses a distributed 
design where each agent uses the available information 
about the opponent’s preferences to predict the oppo-
nent’s preferences by introducing a “guessing” heuristic 
to further improve the negotiation results. Hsu et al. [35] 
proposed an intelligent body-based fuzzy constrained 

directed negotiation mechanism for the distributed job 
shop scheduling problem. The concept of the fuzzy mem-
bership function is introduced to represent the impre-
cise preferences of task start times of job and resource 
agents. This increased information sharing accelerates 
convergence and enables global consistency by iterative 
exchanging offers and counteroffers. These models are 
essential in improving agent negotiation efficiency and 
effectiveness.

Agent negotiation has been widely used in service-
level agreements (SLAs) [36, 37] and e-commerce. 
Regarding research content, studies on agent negotia-
tion mainly focus on negotiation framework, negotiation 
or conflict resolution models, and negotiation strate-
gies to seek a satisfactory solution. For example, Rajavel 
et  al. [38] proposed an automated dynamic negotiation 
framework (ADSLANF) applied to SLA that introduces 

Fig. 1  BDI model based individual agent action design

Table 1  Definition of concepts related to the BDI model

Conceptions Definitions

Belief Information agents possess about their environment, other agents, and themselves.

Desire An agent’s motivations and goals.

Intention Achieving specific goals through executable plans.

Belief updating Current beliefs can be updated recursively based on the latest evidence.

Option generation Can map the agent’s goals to a set of feasible goals (desires) by the beliefs and intentions of the current environment (equivalent 
to adding constraints to a set of objective functions).

Feasibility filtering An agent’s intentions can be determined by a constrained objective function, i.e., by dynamically generating the actions 
sequences.

Action selection Based on possible action sequences (intentions), an agent can select an action to perform.
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a bulk negotiation behavioral learning approach based 
on reinforcement learning techniques to optimize the 
negotiation strategy. Cao et  al. [39] developed a theo-
retical model and algorithm for multi-strategy selection 
based on time-dependent and behavior-dependent strat-
egies applied to e-commerce. Therefore, it is critical for 
human-machine negotiation to achieve better online 
negotiation results. Li et  al. [40] proposed a genetic 
algorithm-based negotiation strategy that introduces 
a genetic algorithm to investigate the preferences and 
utility functions of the adversaries to achieve a win-win 
situation for the customer and supplier in incomplete 
information. Additionally, negotiation or conflict reso-
lution models have been extensively studied in decision 
analysis. For example, Xiao et al. [41] proposed an opti-
mization-based consensus model with bounded confi-
dence. Zhang et  al. [42] proposed a social trust-driven 
consensus-reaching model. These methods ensure their 
satisfaction and success rate through negotiation strate-
gies and conflict resolution through behavioral learn-
ing, modified assessments, or concessions. Furthermore, 
these methods increase the utility value and success rate 
of the negotiating parties and optimize the performance 
in terms of negotiation rounds, total negotiation time, 
and communication overhead. However, there is room 
for improvement in these methods in terms of finding 
optimal and prioritizing feasible solutions.

With the development of machine-learning technology, 
some researchers have tried to make the agent learn from 
the opponent to improve the negotiation efficiency and 
convergence speed [43, 44] . Currently, the main tech-
niques for learning opponent information include Bayes-
ian learning [20–22], nonlinear regression [45], kernel 
density estimation [46]and artificial neural networks [47]. 
Among them, Bayesian learning and nonlinear regression 
are usually applied as online learning techniques. They 
do not require a training phase to produce reasonable 
estimates, and their estimates can be improved incre-
mentally during negotiation. In contrast, kernel density 
estimation and artificial neural networks, which typically 
require a training phase, are usually applied where nego-
tiation history exists.

Thus, none of the above methods can be applied to 
SDM since SDM requires that the preferences of both 
parties are ambiguous and uncertain and that there are 
connections and constraints between the two agents and 
between the topics. Currently, agents are used in SDM to 
build cognitive agents to negotiate instead of patients for 
training human trainees (doctors). The aim is to enable 
doctors to learn to analyze the consequences of their own 
and each other’s actions to make decisions and improve 
their SDM skills [48]. However, there are no relevant lit-
erature studies providing solution recommendations for 

supporting SDM. Our research topic is based on this 
consideration to study a generic negotiation framework 
applicable to SDM and provide suggested solutions for 
reference when reaching an agreement. Given that SDM 
may not have a negotiation history, we chose to use 
Bayesian learning technology to learn the opponent pref-
erence model.

Negotiation model for SDM
Here, we introduce the SDM scenario and problem for-
mulation (“SDM scenario and problem formulation” sec-
tion). Then, in “Construction of opponent preference 
model” section, we describe how Bayesian learning tech-
niques are employed to model the opponent’s preferences 
and improve both agents’ knowledge of the opponent 
during the negotiation process. Opponent preferences 
model makes good use of limited information and 
improves the quality and efficiency of the acquired deci-
sions. Finally, the negotiation model for SDM is described 
in “Negotiation model” section.

SDM scenario and problem formulation
SDM scenario
In an actual clinical setting of SDM, doctor and patient 
both actively involved in the shared decision-making 
process, such as problem definition, options presenta-
tion, pros/cons discussion, preference/value expiation 
on proper level and choice making. Much information 
is shared during the process. But still more cannot be 
shared or can’t be expressed accurately between doctors 
and patients due to realistic limitations from both health-
care provider and patients, e.g., time, medical literacy, 
privacy consideration, and even benefit sometime. Thus, 
we assume that the SDM negotiation is in an incomplete 
and fuzzy information environment. In brief, both parties 
do not have complete information about their opponents 
and possess imprecise knowledge.

An appropriate SDM scenario exists when a doctor 
and a patient meet to select a special treatment following 
SDM processes. In this case, there are two independent 
participants, i.e., the doctor and the patient. The doctor 
and patient possess their own beliefs, desires, and inten-
tions [28] (as mentioned by agent BDI model) on multiple 
issues, and they have enough autonomy to communi-
cate with others and manage their own behaviors. These 
issues on clinical scenario may involve cost, side-effect, 
recovery period, treatment effectiveness, and so on [49]. 
Besides that, they are subject to the influence/constraints 
of other participants and environment. Based on above, 
both of them intended to achieve an agreement on the 
treatment plan with as higher satisfaction as they can.

Thus, an agent negotiation framework is built in 
Fig. 2. Participants in SDM are modeled as independent, 
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interrelated, and environmentally retrained agents. Here, 
the communication between the doctor and patient is 
considered a negotiation between agents. In addition, the 
varied beliefs and desire expressed as independent and 
unique preference functions on multiple issues, while 
aggregate satisfaction for treatment options is considered 
as individual utility. To support SDM activities, many 
agent activities will be built latterly in agents. As a result, 
the DA and PA can support the doctors’ and patients’ 
medical decision-making processes. uncertainty and 
imprecise information exist in the scenario. As shown 
in Fig. 3, we express this inaccurate information and the 
constraints using trapezoidal fuzzy number.

SDM problem definition
The negotiation model of SDM can be abstracted as a tri-
plet (D, P, Q), where D is the DA, P is the PA, and Q is 
the constraints for the two agents. For example, Optional 
treatment options and cost will be constrained by medi-
cal technology, which is a typical environment constraint. 
Due to the fuzziness of medical information, the SDM 
problem is further expressed as a fuzzy constraint satis-
faction problem (FCSP) for each agent.

In the FCSP in SDM, the constraint relations 
between agents determine whether there exists a solu-
tion that satisfies all constraints of the FCSP. Thus, the 
goal of each agent is to identify behavior that satis-
fies its fuzzy constraints. In addition, the FCSP can be 
solved by negotiation between the DA and PA, and it 
is represented by distributed fuzzy constraint networks 
(DFCN). A DFCN can be satisfied through the assign-
ment of the fuzzy relationship between agents [50]. In 
this study, the DFCN is defined as follows.

Definition 1. An agent-based multi-agent multi-issue 
shared decision-making problem can be modeled as 
a distributed fuzzy constraint network DFCN, which 
can be defined as a pair of fuzzy contraint network 
FCN Nl = (Ul ,Xl ,Cl) for Agent l, that the Agent l in 
{DA,PA} , where. 

1.	 Ul is the universe of discourse for the agent l.
2.	 Xl is the tuple of non-recurring objects for agent l.
3.	 Cl is a set of fuzzy constraints involving both a set of 

internal fuzzy constraints among the objects in Xl 
and a set of external fuzzy constraints between agent 
l and its opponent agents.

Fig. 2  Problem conversion

Fig. 3  Agent negotiation for SDM
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4.	 Nl is connected to other Nj by a set of external fuzzy 
constraints.

5.	 U is the universe of discourse for the whole DFCN.
6.	 X =

(

Un
i=1Xi

)

 is a tuple of all non- nonrecurring 
objects of an agent in DFCN.

7.	 C = Un
i=1Ci  is the set of all fuzzy constraints in 

DFCN.

Different DAs and PAs may have different negotiation 
objectives, resulting in different negotiation items, the 
frameworks can handle the situations where negotiation 
items are different.

An illustration of Definition 1, based on a scenario of 
childhood asthma treatment negotiation, is presented 
here. Basic information on childhood asthma treatments 
has been collected and calculated from experienced 
doctors and real data analysis, as shown in Table  2. It 
presents the characteristics of five different types of treat-
ment options, including their cost range, effectiveness 
range, side effects range, risk index range, and conveni-
ence index range. It’s important to note that this data is 
processed only for explanation and experimental pur-
poses and is not suitable for direct clinical use.

According to Definition 1, the following is an expla-
nation of the variables. The preferences and constraints 
of the DA and PA are represented by the non-recurring 
object sets XDA and XPA , where XDA and XPA include 
cost, effectiveness, side effects, risk, and convenience.

The fuzzy constraint sets CDA and CPA represent the 
expectations and limitations of the DA and PA regard-
ing treatment options. The sets of solutions proposed by 
the doctor and patient, �DA and �PA , include treatment 
plans that satisfy their respective fuzzy constraints. The 
problem set Q encompasses all factors to be considered, 
such as cost, effectiveness, side effects, risk, and con-
venience. A feasible solution S is a treatment plan that 
meets all fuzzy constraints, and the aggregated satisfac-
tion value �l(S) is calculated through a weighted sum 

formula, representing each agent’s overall satisfaction 
with the solution.

In practical application, the doctor and patient 
negotiate based on the treatment options provided 
in Table  2. For example, the doctor might prefer the 
" En−HighDoseICS/LABA+ LTRAa " option for its 
strong performance in treatment effectiveness and risk 
management, while the patient might lean towards the 
" En−HighDoseICS + Sustained − ReleaseTHPd " option, 
which has advantages in cost and convenience. By taking 
into account both parties’ preferences and constraints, 
they may agree on a compromise solution, such as the 
"  En−HighDoseICS/LABA+ Sustained − ReleaseTHP  " 
plan. This option balances treatment effectiveness and 
risk control with cost and convenience, maximizing satis-
faction for both parties.

The aggregated satisfaction value of solution S for the 
lth agent, i.e., �l(S) , is defined as follows.

Here, Ml,i(S) represents the membership degree of 
solution S for the i-th issue. This value is derived directly 
from the responses of doctors and patients, using cus-
tomized fuzzy membership functions for each issue. 
These functions are created through expert consultation 
or by interviewing doctors and patients to capture their 
preferences. For each issue - such as treatment effective-
ness, side effects, or cost - a trapezoidal fuzzy member-
ship function is defined based on acceptable value ranges 
provided by the participants. In addition, n is the number 
of issues to be negotiated by the DA and PA, and wl,i is 
the corresponding weight factor for the i-th issue for the 
l-th agent. This approach enables an accurate represen-
tation of satisfaction levels for each potential solution, 
ensuring that the aggregate satisfaction function �l(S) 
effectively models the preferences of both agents in the 
decision-making process.

(1)�l(S) =
n

∑

i=1

wl,i ·Ml,i(S).

Table 2  Range of treatment plans on issues

a a combination of inhaled corticosteroids and long-acting beta2-agonists
b inhaled corticosteroid
c leukotriene receptor antagonist
d theophylline

Treatment Issue

Cost Effectiveness Side-effects Risk Convenience

En-High Dose ICS/LABAa 2.9–4.5 8-8 1–2 10–20 10-10

En-High Dose ICSb + LTRA​c 3.7–5.3 7-7 3–5 15–25 9-9

En-High Dose ICS + Sustained-Release THPd 2.1–5.1 6–7 10–15 20–25 8-8

En-High Dose ICS/LABA + LTRA​ 5.8–7.4 9–10 8–10 5–10 7.5–8

En-High Dose ICS/LABA + Sustained-Release THP 4.2–7.2 9–10 10–12 5–10 7.5–8
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Construction of opponent preference model
To improve the quality and efficiency of healthcare deci-
sions and make good use of limited information (e.g., the 
opponent’s counteroffer), we employ Bayesian learning 
techniques to update the agent’s knowledge about the 
opponent’s preferences.

Bayesian learning was chosen for its adaptability and 
precision in managing the uncertainties inherent in 
SDM, which prior approaches have struggled to address. 
Traditional methods, like rule-based and deterministic 
models, often cannot dynamically adjust to the evolving, 
personalized preferences that emerge in patient-physi-
cian interactions. In contrast, Bayesian learning offers a 
probabilistic framework that continuously updates its 
understanding of both parties’ preferences in real time, 
adapting as new information is acquired. This capacity 
to handle uncertain, shifting preferences makes Bayes-
ian learning particularly effective in achieving personal-
ized and mutually satisfactory treatment plans within the 
complex and variable context of SDM.

In the following, we define the weight hypothesis 
and fuzzy membership function hypothesis for each 
issue of the opponent. Then, we apply Bayesian rules to 
update the probabilities of these hypotheses during the 
negotiation to understand the opponent’s preference 
information.

Hypothesis setting
In SDM, we use the aggregated satisfaction value �(bt) to 
measure the agent’s satisfaction with the content of the 
negotiation. Thus, we employ the aggregate satisfaction 
function to measure the opponent’s satisfaction of the 
offer. This is defined by a set of weights wi for each of the 
n issues and the corresponding fuzzy membership func-
tion fi(xi).

Here, xi represents the value of the i-th issue in bid bt at 
negotiation time t. To ensure that the aggregated satisfac-
tion function �(bt) is in the range [0,1]. Here, the fuzzy 
membership function fi is assumed to be set in the range 
[0,1]. Additionally, the weights wi are normalized so that 
their sum equals 1.

To learn the opponent’s aggregated satisfaction func-
tion �(bt) , we must learn the opponent’s issue weights 
wi and fuzzy membership function fi(xi) . Thus, we 
assume wi and fi(xi) in Eq. (2), respectively. The first 
assumption involves the issue weights wi , where we 
can first set a set of all possible weights matrix Hw , and 
then we calculate the real number and relate it to the 
weight assumption hwj ∈ Hw using the following linear 

(2)�(bt) =
n

∑

i=1

wi · fit(xi).

function. Specifically, Eq. (3) describes the relationship 
between the assumed weight values of the agent and 
the issue weights, as follows:

Here, rji is the ranking order of weights wi in hypoth-
esis hj , and n is the total number of negotiation issues. 
In a multi-issue negotiation model, the weights of 
issues are crucial to the agent’s satisfaction. The logic of 
Eq. (3) lies in gradually updating the hypothesis of the 
opponent’s weights based on this ranking assumption, 
and dynamically adjusting through Bayesian learning to 
adapt to the opponent’s negotiation changes. This helps 
construct a preference model of the opponent agent.

The second assumption involves the hypothesis about 
the opponent’s fuzzy membership function. Here, the 
preferences of the DA and PA can be considered as a 
membership function; thus, we can assign a mem-
bership degree to each hypothesis in the hypothesis 
space and model the fuzzy membership function as a 
probability distribution. As shown in Figs. 4 and 5, we 
approximate the shape of the true fuzzy membership 
function for negotiation issue i by associating the vari-
ous fuzzy membership function hypotheses with their 
corresponding probabilities ( ̄hfi ).

Typically, both agents must make more or fewer con-
cessions to reach an agreement during the negotiation 
process. Thus, we assume that the agents employ a con-
cession-based time-dependent strategy [51]. Accord-
ing to this strategy, the agents begin with a bid with the 
highest aggregated satisfaction value and move towards 
their reservation value as they approach the negotiation 
deadline. Here, we employ a monotonically decreasing 
linear function to static estimate the satisfaction value 
of the counteroffer O� ′(bt) = 1− 0.05 · t , and compute 
the conditional probability P

(

bt | hj
)

 as follows.

Here, �
(

bt | hj
)

 is the satisfaction value of the coun-
terparty also bidding bt given hypothesis hj , and � ′(bt) 
is the satisfaction value of the dynamic estimated oppo-
nent’s next bid. Note that function c(t) is the negoti-
ated concession strategy assumed to be used by the 
opponent.

The expected value of the shape of the fuzzy member-
ship function h̄fi  is calculated as follows.

(3)wi =
2 · rji

n(n+ 1)

(4)P
(

bt | hj
)

=
1

σ
√
2π

e
−

(

�

(

bt |hj
)

−�′(bt )
)2

2σ2

(5)� ′(bt) = � ′(bt−1)− c(t)
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(6)h̄
f
i (bt) =

m
∑

j=1

P
(

h
f
i,j

)

· hfi,j(bt)
Here, hfi,j is the fuzzy membership function for issue i 

under hypothesis j, where P
(

h
f
i,j

)

 represents the proba-
bility of hypothesis j. The term hfi,j(bt ) generates the 

Fig. 4  Hypothesis space of possible fuzzy membership functions

Fig. 5  Approximation of fuzzy membership function not in the hypothesis space by two fuzzy membership functions
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satisfaction values for the bids bt , and the summation 
considers all m possible hypotheses. Eq. (6) therefore 
calculates the expected value of the fuzzy membership 
function for issue i at bid bt.

We use hwi,j to denote the assumptions about the 
value of the weights of issue i according to hypoth-
esis j, and the value of the associated weights, i.e., 
hw1,1 = 0, hw1,2 = 0.1, hw1,3 = 0.2, . . . . The expected value of 
the weights is calculated as follows.

Finally, based on the bid bt of aggregated satisfaction 
of the opponent expectation is calculated as :

Note that for each problem, you need to normalize 
the weights and the probability distribution over the 
evaluation function:

Updating the hypothetical probabilities
The opponent’s initial bid is their maximum aggregated 
satisfaction; thus, this bid does not provide information 
about the weight of the problem. Therefore, the first 
bid only updates the probability distribution assumed 
by the shape of the fuzzy membership function of the 
adversary. Here, the probability distribution assumed 
for the weight is updated only after the agent receives 
more than one bid from the adversary.

With this in mind, we can update the assumptions 
for issue k using the expected values of the weight 
assumptions for the remaining problems defined by the 
opponent model and the expected values of the shape 
assumptions of the fuzzy membership function. Here, 
we must introduce bid bt the partially expected utility 
of ū<−k>(bt) , which is defined as follows.

(7)h̄wi =
m
∑

j=1

P
(

hwi,j

)

· hwi,j

(8)ū(bt) =
n

∑

i=1

h̄wi · h̄fi,j(bt)

(9)
m
∑

j=1

P
(

hwi,j

)

= 1, i = 1, . . . , n

(10)
m
∑

j=1

P
(

h
f
i,j

)

= 1, i = 1, . . . , n

(11)ū<−k>(bt) =
∑

i=1,2...k−1,k+1,...,n

h̄wi · h̄fi,j(bt)

We the update the probability of evaluating the hypoth-
eses on function shapes according to the Bayesian rule as 
follows.

Here, h̄wi  is the expected value of the weights of issue k 
and j=1,. . .,m.

The probabilities of the hypotheses associated with the 
weights of issue k can be updated as follows.

Here, j = 1, . . . ,m.

Negotiation model
The fuzzy constraint agent-based negotiation model 
includes the behavioral framework of the DA and PA and 
the negotiation protocol that must be followed by the 
negotiators. Thus, we initially developed the behavioral 
framework of DA and PA based on the BDI model, and 
then we determined the negotiation protocol. Internal 
components of the negotiation framework are integrated 
into the agent architecture. The internal components 
are negotiation strategy, opponent model, utility model 
and solution generators. Here, the negotiation protocol 
defines the negotiation process by exchanging offers and 
counteroffers until reaching an agreement or the negotia-
tion is terminated.

Building agent‑based SDM model
First, we generate the behavioral models of the DA 
and PA based on the BDI architecture (“Agent technol-
ogy”  section). Table  3  shows an example describing the 
agent’s behavior.

Then, according to the behavioral model of DA/PA, 
we construct an agent-based negotiation model to simu-
late the SDM process between the doctor and patient, as 
shown in Fig. 6. Here, each agent involves four processing 
modules.

(1) Evaluation module
The evaluation module evaluates the opponent’s offer, 

calculates the aggregate satisfaction value (ASV) with the 
opponent’s agent offer, and determines whether to con-
tinue the negotiations.

(2) Calculate the concession value module

(12)P
(

h
f
k ,j | bt

)

=
P
(

h
f
k ,j

)

P
(

ū<−k>(bt )+ h
f
k ,j h̄

w
k |h

f
k ,j

)

∑m
i=1

P
(

h
f
k ,j

)

P
(

ū<−k>(bt )+ h
f
k ,i h̄

w
k |h

f
k ,i

)

(13)

P
(

hwk ,j|bt
)

=
P
(

hwk ,j

)

P
(

ū<−k>(bt)+hwk ,j h̄
f
k|h

w
k ,j

)

∑m
i=1P

(

hwk ,j

)

P
(

ū<−k>(bt)+hwk ,ih̄
f
k|h

w
k ,i

)
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If the negotiation is to continue, the opponent prefer-
ence model and concession value calculation modules are 
combined to calculate the concession value.

(3) Feasible solutions generation module
A set of feasible solutions is generated by the feasible 

solutions generation module based on the concession 
values and the opponent’s preferences.

(4) New offer generation module 
In the new offer generation module, the best solution 

is selected from set of feasible solutions and sent to the 
opponent. The agents repeatedly exchange offers and 
counteroffers during the negotiation until the termina-
tion conditions are satisfied (e.g., consensus or failure).

Negotiation process
The fuzzy constraint-directed approach is an effec-
tive method to realize agent negotiation [52]. Here the 

DA and PA abide by the given negotiation protocol to 
exchange offers and counteroffers to solve their respec-
tive FCSP problems during the negotiation. The nego-
tiation steps include solution evaluation, concession 
calculation, feasible solution generation, offer generation, 
and negotiation termination.

Step 1: Evaluation of the solution
Here, the l-th agent uses the ASV to assess satisfaction 

with counteroffer B to determine whether to reach an 
agreement or make a concession. Based on Definition 1 
(“Negotiation model for SDM” section), the agent’s ASV 
is calculated as follows.

Here, Ml,i(B) denotes the fuzzy membership function 
of the ith issue for the lth agent regarding counteroffer B. 

(14)�l(B) =
n

∑

i=1

wl,i ·Ml,i(B)

Table 3  Beliefs, Desires, and Intentions (BDI) model-based DA/PA individual behavior for SDM

Input SDM

Belief Number of humans: two (doctor and patient)

Information: content of treatment plan, own and others’ preferences, communication history, etc.

Desire Select the most mutually satisfactory treatment that can support SDM.

Intention (1) Negotiate with the doctor/patient, obtain their ideas or proposals for treatment.

(2) Analyze each of their treatment preferences.

(3) Select and propose the appropriate treatment plan.

Actions (1) Propose treatment content.

(2) Reject opponent’s offer and propose counteroffer.

(3) Accept opponent’s offer and terminate negotiation.

(4) Reject opponent’s offer and terminate negotiation.

(5) Terminate negotiation.

Fig. 6  Framework of proposed SMD model
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This represents the preference of the DA or PA for the ith 
negotiation issue. n is the number of negotiation issues, 
and wi is the weight of the ith negotiation issue.

Step 2: Concession value calculation
When the agent receives a counteroffer B, it determines 

whether the agent will propose an alternative solution 
to the current satisfaction constraint level by determin-
ing the behavior state of agents. The behavior state of an 
agent is determined based on the currently negotiated 
concession value. Here, as described in “SDM scenario 
and problem formulation”  section, the agents can con-
struct an opponent preference model based on Bayesian 
learning to evaluate the opponent’s response, concession, 
internal, and environmental states to determine the con-
cession value. These four states represent the intention of 
the opponent, agent concession, viewpoint, and environ-
mental constraints.

a) Response status.
The opponent’s response status O indicates the degree 

of difference between the previous offer A and the most 
recently received counteroffer B, which is defined as 
follows.

Here, A0 is the initial offer, B0 is the opponent’s first 
counteroffer, and G(A, B) represents offer A and counter-
offer B on the issue Ii ∈ X distance metric on the issue. 
G(A, B) is calculated as follows.

Here, L is the Euclidean distance between the two fuzzy 
sets Ai and Bi are the offer A and counteroffer B for issue 
Ii ∈ I of the probability distribution.

b) Concession status.
The opponent’s concession status D is determined 

by the concession value γ . Here, counteroffer B and the 
aggregated satisfaction of the opponent’s first counter-
offer B0 determine size of the concession value γ . The 
aggregated satisfaction of the counteroffer is obtained 
from Eq. (8) in “SDM scenario and problem formula-
tion”  section, and the concession value γ is defined as 
follows.

c) Internal status.
The internal state of agent δ is related to the satisfaction 

δ of the most recent offer and the tightness δ of an alter-
native set of solutions. Satisfaction ρ and tightness δ are 
calculated as follows.

(15)σ = 1− (G(A0,B0)− G(A,B))/G(A0,B0)

(16)G(A,B) =

√

∑n
i=1 L(Ai,Bi)

2

Ni

(17)γ = ū(B)− ū(B0)

Here, S∗ ∈ π is the expected solution from the agent’s 
last round of negotiation, and ε is the satisfaction 
threshold.

The satisfaction threshold, denoted as ε , is a prede-
fined value that acts as a minimum satisfaction criterion 
for accepting an offer during negotiation. This threshold 
is not an estimated value; rather, it is set based on spe-
cific criteria relevant to the decision-making context and 
negotiation strategy.

For both the DA and PA, the initial ε is set to 1.0, 
representing a full satisfaction level. Throughout the 
negotiation, this value decreases incrementally based 
on the concession strategy applied by each agent. The 
threshold adjustment is achieved through Bayesian 
learning and fuzzy constraints, enabling each agent to 
gradually lower their ε as the negotiation progresses. 
The specific adjustments are detailed in Eq. (23) 
below. The selection of an initial ε of 1.0 aligns with 
the ideal satisfaction level in early negotiation rounds, 
ensuring that the negotiation only begins from posi-
tions of high preference. As negotiations proceed, the 
agents dynamically reduce ε in response to counterof-
fers, maintaining flexibility in reaching a balanced out-
come without prematurely settling for a less preferred 
agreement.

d) Environmental status.
In SDM, the main environmental constraint t for the 

DA and PA is the time constraint; thus, we use the fol-
lowing function [53] to describe the time constraint.

Here, rnow is the negotiation time for the current 
round, rmax is the negotiation deadline, parameter t 
denotes the negotiation time constraint, and α and β are 
constants, where β > 1, 0 ≤ α ≤ 1 . The condition β > 1 
ensures that the time constraint function decreases 
non-linearly, giving more flexibility at the beginning of 
the negotiation and applying stricter constraints as the 
deadline approaches. This design aligns with real-world 
scenarios where agents make larger β can theoretically 
take large values, in practice, it is bounded to maintain 
realistic negotiation dynamics and prevent excessive 
sensitivity to time.

Finally, using the opponent’s response status, conces-
sion state, internal state P, and time constraints t, we 
obtain the agent’s concession value at the time of nego-
tiation �ε as follows.

(18)ρ = �
(

S∗
)

(19)δ = 1− (ρ − ε)

(20)t = α + (1− α)

(

rnow

rmax

)1/β
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Here, parameter ω determines which negotiation 
strategy is applied to adjust the size of the concession 
value, and there are three main negotiation strategies: i) 
ω < 1 represents a collaborative strategy; ii) ω = 1 rep-
resents a win-win strategy; and iii) ω > 1 represents a 
competitive strategy.

Given the negotiated concession value �ε and behav-
ior state ε , the agent’s new behavior state ε∗ is updated 
as follows.

Step 3: Feasible solution generation
Given the FCN N, the intention � and new behavioral 

state ε∗ are used to obtain a feasible solution. The feasi-
ble solution is defined as follows.

When considering counteroffer B and feasible solu-
tions P, the expected solution in the case of S∗ is 
defined as follows.

Here, H(S, B) is a utility function that evaluates the fea-
sible solution S preferences and the counteroffer B and 
the feasible solution S of the similarity, which is defined 
as follows.

Here, W1 is the preference function of issue i, W2 is the 
similarity function measuring the difference between 
solution S and counteroffer B, and ω1 and ω2 are the 
weights associated with the preference and similarity, 
respectively. W2 is defined as follows.

Here, Fi(Si) is the fuzzy membership function of the 
agent for issue i in solution S, and h̄fi (Bi) is the opponent’s 
fuzzy membership function for issue i in counteroffer B, 
which his calculated using Eq. (6) of the Bayesian learn-
ing-based opponent model (“SDM scenario and problem 
formulation” section).

Step 4: Offer generation
Given a feasible solution P and the expected solu-

tion S∗ , the new offer A = A∗
1,A

∗
2, . . . , A

∗
i , . . . ,A

∗
N gener-

ated on a set of issues I ∈ X is defined as follows.

(21)�ε =
(

µσ (σ )�µγ (γ )�µρ(ρ)�µδ(δ)�µt(t)
)ω

(22)ε∗ = ε −�ε

(23)
P = Ŵ

(

�, ε∗
)

=
{

S | (S ∈ �)�
(

ε ≥ �(S) ≥ ε∗
)}

(24)S∗ = arg

(

max
S∈P

H(S,B)

)

(25)H(S,B) =
1

n

√

√

√

√

n
∑

i=1

(W1(Si)
ω1 ∧W2(Si,Bi)

ω2)2

(26)W2(Si,Bi) = 1− D
(

Fi(Si), h̄
f
i (Bi)

)

The element A∗
k in set A∗ , which represents the 

expected solution set S∗k of the offer for issue i in space X 
with a boundary specialization possibility distribution, is 
defined as follows.

Here, �̄Xk
= S∗k , and �̄Xk

 denotes cylindrical expansion 
over the space X. Xk is the object of issue i, and NX is the 
total number of negotiated objects.

Step 5: Termination
The DA and PA exchange offers and counteroffers con-

tinuously until the negotiation succeeds or fails. When 
given a feasible solution P and an opponent’s counteroffer 
B, if the agent’s ASV assessment of the opponent’s coun-
teroffer is greater than or equal to its satisfaction thresh-
old for the new round, the agent agrees to the opponent’s 
proposed offer and the negotiation succeeds. Each agent’s 
assessment of the ASV of their opponent’s counteroffer is 
calculated as follows.

If the agent’s new satisfaction threshold ε∗ is less than 0 
or the set of feasible solutions P is empty, the negotiation 
fails.

In addition, the negotiation is terminated if the current 
negotiation period exceeds the agreed negotiation time 
limit.

Negotiation protocol
The negotiation protocol defines the interaction between 
agents during the negotiation process. The negotia-
tion protocol represents rules that must be followed by 
all agents. It defines all interactions between agents and 
determines the order and structure of messages. During 

(27)A∗ = ∧
(

P, S∗
)

(28)
A
∗
k
=Projxq

(

S∗∩N�X1∩N�X2∩. . .∩N�Xk−1
∩N�Xk+1

∩. . .∩N�XNX

)

(29)�(B) ≥ ε∗

(30)ε∗ ≤ 0 or P = ∅

Table 4  Negotiation messages

Messages Sent by Meaning Outcome

DA PA

Ask(offer) Yes - DA makes offer to PA -

Accept() - Yes PA accepts offer from DA Success

Tell(counteroffer) - Yes PA sends counteroffer to DA -

Agree() Yes - DA accepts counteroffer 
from PA

Success

Reject() Yes Yes DA/PA rejects counteroffer/
offer from the opponent

Failure

Abort() Yes Yes DA/PA terminates consultation Failure
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Fig. 7  Sequence diagram of the negotiation process
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the negotiation, the DA and PA negotiate by sending and 
receiving various types of messages. Table 4 describes the 
different types of messages and their negotiation results.

Figure  7 shows a sequence graph that illustrates the 
negotiation process between the DA and PA. First, the 
DA generates an initial offer based on its maximum 
ASV and sends it to the PA via an Ask (offer) message. 
The PA receives the initial offer from the DA and evalu-
ates the ASV of the offer according to Eq. (14), and then 
calculates the concession value to determine the new sat-
isfaction threshold according to Eqs. (15) to (22). Here, 
assume that the new satisfaction threshold satisfies the 
negotiation termination condition. In this case, i.e., the 
condition of Eq. (28) is satisfied, the PA sends a Reject () 
message to the DA, and the negotiation fails. Otherwise, 
the PA generates a set of feasible solutions based on the 
new satisfaction threshold according to Eqs. (23) to (26) 
and determines whether the ASV of the opponent’s offer 
is greater than the new satisfaction threshold. If the ASV 
is greater than or equal to the new satisfaction thresh-
old, the PA accepts the counterpart’s offer and sends an 
Accept () message to the counterpart. Otherwise, when 
a feasible solution exists for the PA, the PA generates a 
counteroffer according to Eqs. (27) and (28) and informs 
the opponent via a Tell (counteroffer) message. Here, if 
the PA has no feasible solution, i.e., the feasible solution 
P in Eq. (30) is empty, the PA sends an Abort () message 
to terminate the negotiation, and the negotiation fails. 
During the negotiation period, the DA and PA continue 
to exchange offers and counteroffers via negotiation 
messages until the negotiation succeeds or fails. Other-
wise, the negotiation continues until the agreed nego-
tiation time is exceeded, which also results in a failed 
negotiation.

Performance evaluation
In this section, we discuss numerical experiments con-
ducted to evaluate the agent negotiation model proposed 
in “Negotiation model for SDM”  section. We evaluate 
the model’s effectiveness and efficiency in solving the 
SDM problem (SDMP) between a doctor and patient in 
a healthcare setting. Here, each doctor and patient is rep-
resented by an agent (i.e., the DA and PA, respectively), 
and the negotiation issues depend on treatments selected 
for children’s asthma. We verified the effectiveness of 
the proposed BLFCAN model by comparing the perfor-
mance of different negotiation strategies and different 
negotiation models.

Experimental settings
The Global Burden of Disease study identified asthma 
as the most prevalent chronic respiratory disease 
worldwide, affecting 1–18% of the population in various 

countries [54–56], and bronchial asthma is more com-
mon in children than adults [57]. Supposed to control 
asthma in childhood, the morbidity and mortality of 
asthma can be effectively reduced. Here, we consider 
the treatment of asthma in children as a simple example 
to explain how the proposed BLFCAN model applies to 
SDM.

In this case, the negotiation issues involved in select-
ing treatment include cost, effectiveness, side effects, 
risks, and convenience.

Tables 5 and 6 present the preference data of the DA 
and PA for various decision factors, such as cost, effec-
tiveness, side effects, risk, and convenience. The data 
sources and determination methods for these tables are 
as follows:

•	 Issue and Value Range Setting: First, a reasonable 
value range for each factor (i.e., “issue”) is set based 
on actual considerations in medical decision-making 
for doctors and patients. For example, the cost range 
is set from 0 to 8,000 RMB, reflecting the upper and 
lower limits of treatment expenses. The ranges for 
effectiveness, risk, and side effects are set as specific 
rankings or percentages to standardize these factors.

•	 Most Preferred Range Determination: Within each 
factor’s value range, the most preferred range is 
defined based on the goals and preferences of doc-
tors and patients. Doctors and patients have different 
needs for factors such as cost, effectiveness, and side 
effects. For instance, doctors tend to balance effec-
tiveness and side effects, while patients prioritize low 
costs and high effectiveness. This preferred range is 
derived from surveys and references from relevant 
literature.

•	 Minimum and Maximum Preference Values: The 
minimum and maximum preference values define 
the acceptable preference range for each factor from 
the perspectives of doctors and patients. The mini-
mum preference value represents the lowest accept-
able level, and the maximum preference value rep-
resents the highest acceptable level. These values are 
set through data analysis of historical choices made 
by doctors and patients, as well as feedback from 
expert consultations.

•	 Weight Preference Assignment: The weight for each 
factor represents its importance in the decision-mak-
ing process. The weights are derived based on expert 
interviews and surveys, combined with the actual 
preferences of doctors and patients in decision-
making. For example, doctors prioritize effectiveness 
and side effects, so these factors are assigned higher 
weights, while patients place greater importance on 
cost and effectiveness.
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The trapezoidal fuzzy membership functions for the 
DA and PA according to Tables  5 and 6  are shown in 
Fig.  8. Finally, the weight preference column shows the 
importance of each issue to the DA and PA.

As shown in Tables 5 and 6, the DA and PA have dif-
ferent preference settings, and they will possess different 
degrees of satisfaction for a given treatment, which is in 
line with real-world SDM situations. In this study, we 
obtained these preference settings by interviewing expe-
rienced doctors who have treated children’s asthma and 
the parents of children with asthma.

These experiments considered one DA and one PA. 
In addition, the number of negotiation issues was set to 
five, the initial satisfaction threshold ǫ for both the DA 
and PA was set to 1.0, and the satisfaction reservation 
value was set to 0. The maximum number of negotiation 
rounds was set to 20. Here, if the number of negotiation 
rounds exceeded 20, the negotiation failed. Note that all 
experimental results reported in this paper represent the 
average values obtained over 200 experiments conducted 
under equal conditions. The following indexes were used 
to evaluate the experimental results.

Table 5  Preference data of DA

Issue Preference

Issue value range Most preferred range Minimum preference 
value

Maximum preference 
value

Weight 
preference

Cost 0–8 k 4.5–7 3 7.5 0.15

Effectiveness 1–10 rank 7–8 4 10 0.3

Side-effects 1–100 % 10–15 1 20 0.25

Risk 1–100 % 10–20 5 25 0.2

Convenience 1–10 rank 7–8 7 10 0.1

Fig. 8  Fuzzy membership function of the DA and PA
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ASV: The aggregated satisfaction value of the DA or PA 
when an agreement was reached.

DASV: The disparate of aggregated satisfaction value 
between the DA and PA when an agreement was reached.

CASV: The sum of the aggregated satisfaction value of 
the DA and PA when an agreement was reached.

NR: The average number of negotiation rounds 
required to reach an agreement.

Example scenario of proposed negotiation model
In this example, assume that the DA starts the negotia-
tion. This negotiation will lead to the following result.

In round one, with no negotiation history, the DA and 
PA offer their expected offers [Cost: 4.5, Effectiveness: 
7.0, Side effects: 0.1, Risk: 0.1, Convenience: 7.0] to each 
other, as shown in Fig. 9.

In round two, the DA first evaluates the PA’s counterof-
fer according to Eq. (15). Here, the DA’s feasibility solu-
tion satisfaction threshold in round one was set to 1.

According to Eqs. (15) to (22), the new satisfac-
tion threshold in round two was 0.975. The DA and PA 
update their new feasible solution sets on all issues and 
the expected solutions according to Eqs. (23) to (26), 
as shown in Fig.  10. The DA’s new feasible solution set 
update process in terms of the Cost factor is shown in 
Fig. 11.

Next, the DA generates new offers on the feasible solu-
tion set and the expected solution according to Eqs. (27) 
and (28).

Finally, the DA compares according to Eq. (29). Here, 
the PA’s counteroffer does not meet their new satisfaction 
threshold value (0.975); thus, the DA continues the nego-
tiation and sends a new offer to the PA.

The subsequent negotiation rounds were calculated 
using the same methods described for round two. The 
results are summarized in Tables 7 and 8.

Table 6  Preference data of PA

Issue Preference

Issue value range Most preferred range Minimum preference 
value

Maximum preference 
value

Weight 
preference

Cost 0–8 k 1–4 1 5 0.3

Effectiveness 1–10 rank 9–10 8 10 0.25

Side-effects 1–100 % 0–1 0 15 0.2

Risk 1–100 % 0–4 0 15 0.15

Convenience 1–10 rank 9–10 10 10 0.1

Fig. 9  Negotiation process between DA and PA in round 1
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Up to round seven, the DA evaluated determined that 
their satisfaction value for the offer from the PA was 
0.561 greater than the new threshold of 0.373; thus, an 

agreement was reached, and the results of this negotia-
tion were [Cost: 4.3, Effectiveness: 9.0, Side effects: 0.05, 
Risk: 0.08, Convenience: 9.0].

Fig. 10  Negotiation process between DA and PA in round 2

Fig. 11  Offer generation of cost from DA in round 2
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Performance comparisons of different BLFCAN strategies
To evaluate the impact of the cooperative, win-win, and 
competitive negotiation strategies on the effectiveness 
of the proposed model, we first adjusted the parame-
ters settings, including ω1 and ω2 (Eq. (26)), to vary the 
negotiation strategies of the DA and PA. In these experi-
ments, the strategy parameters were set as follows: (1) 
ω1 = 0.2 and ω2 = 1.0 : the collaborative strategy; (2) 
ω1= ω2 = 1.0 : the win-win strategy; and (3) ω1 = 1.8 and 
ω2 = 1.0 : the competitive strategy.

Here, we conducted 200 experiment iterations on 
five negotiation topics with three different negotia-
tion strategies for the DA and PA (“Experimental set-
tings” section). The negotiation results are summarized 
in Table 9. As can be seen, the DA and PA adopted the 
collaborative, win-win, and competitive strategies, 
respectively. The experimental results demonstrate that 
a good average solution was obtained when the DA and 
PA adopted the collaborative or win-win strategies. In 
addition, the CASV and individual ASV were all greater 
than 55%.

When the DA selected the collaborative strategy in 
Case 1, the competitive strategy was an inferior solution 
for the PA. It not only reduced the CASV (1.315 vs. 1.322 
vs.1.295, the average ASV for the DA (0.625 vs. 0.596 vs. 
0.570), and the average ASV for PA (0.690 vs. 0.726 vs. 
0.725) but increased the average DASV (0.065 vs. 0.130 
vs. 0.155) and the average NR (7.31 vs. 7.51 vs.7.78). Note 
that similar results were obtained in both Cases 2 and 3.

We found that the collaborative strategy mini-
mized the satisfaction gap between the DA and PA, 
and reduced the negotiation time. We also found that 
the win-win strategy increased patient satisfaction; 
however, it reduced doctor satisfaction and increased 
the negotiation gap. In addition, the negotiation time 
increased. In our analysis of this phenomenon, the 
win-win strategy was more stringent than collaborative 
in terms of concessions, which caused them to spend 

more time to reach an agreement, and the satisfaction 
of the DA and PA decreased over time. As a result, 
the negotiation results obtained with the competitive 
strategy were worse than those of other two strategies.

We also found that when the DA or PA adopted the col-
laborative strategy, the average DASV between them was 
lower than the other strategies (reduced by 1–12.7%), and 
the average CASV was greater than the average CASV 
with the other strategies.

We also investigated the convergence rate of the nego-
tiation by varying the parameter ω for the concession 
value in Eq. (21). Figure  12 shows the number of nego-
tiation rounds and the size of the concession value for 
the collaborative ( ω = 0.6–0.8), win-win ( ω = 1.0), and 
competitive ( ω = 1.2–1.4) strategies. When ω = 0.6 or 
0.8, the concession value per round was greater than that 
of the other strategies, which resulted in fewer negotia-
tion rounds than the other strategies. As the value of ω 
increased gradually to 1.2 or 1.4, i.e., when the model 
adopted the competitive strategy, the concession value 
per round became significantly smaller, and the number 
of negotiation rounds increased.

Performance comparison of different negotiation models
Here, we compare the proposed BLFCAN model when 
the agents only used Bayesian techniques to verify the 
effectiveness of the model. The agents’ negotiation issues 
and preferences were set as defined in “Experimen-
tal settings”  section. Here, we performed 200 separate 
iterations of the experiment. The negotiation results are 
summarized in Table 10.

The results shown in Table 10 demonstrate that the 
proposed model acquired better negotiation results 
than the compared agent under different negotiation 
strategies. For example, our agents exhibited signifi-
cant increases in individual ASV than the compared 
agent, which resulted in improvements of at least 
26.4% in terms of average CASV. In addition, the aver-
age DASV between the DA and PA was significantly 

Table 7  Negotiation process of DA

Rounds Issues Evaluation value Threshold

Cost Effectiveness Side-effects Risk Convenience

1 4.5 7.0 0.1 0.1 7.0 Null 1

2 4.46 7.0 0.1 0.2 8.0 0.200 0.975

3 7.03 7.0 0.09 0.1 8.0 0.333 0.940

4 7.06 8.0 0.16 0.09 8.0 0.339 0.885

5 4.24 8.0 0.08 0.09 8.0 0.402 0.781

6 4.17 6.0 0.17 0.08 8.0 0.510 0.618

7 4.3 9.0 0.05 0.08 9.0 0.561 0.373
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smaller, showing a reduction of 4.5–16.9%. This was 
caused by the fact that the satisfaction of the DA and 
PA decreased as the number of negotiation rounds 
(i.e., the negotiation time) increased. Overall, we found 
that the proposed model achieved better negotiation 
results in less time (within approximately 7.31–8.19 
rounds).

These results suggest that the proposed BLFCAN 
model can search the possible solution space as much 
as possible and find a better solution for the SDMP. In 
addition, the negotiation proposed took less than 60 s to 
execute, which is suitable for some clinical SDM environ-
ments where the communication process between doc-
tors and patients is complex and trivial, which can save 
the time and cost required by doctors and patients in the 
communication. In addition, the proposed model consid-
ers different negotiation strategies, which can effectively 
simulate different negotiations between doctors and 

Table 8  Negotiation process of PA

Rounds Issues Evaluation value Threshold

Cost Effectiveness Side-effects Risk Convenience

1 1.0 9.0 0.0 0.0 9.0 Null 1

2 4.05 9.0 0.02 0.05 9.0 0.233 0.948

3 4.11 9.0 0.02 0.05 9.0 0.154 0.894

4 4.19 9.0 0.04 0.05 9.0 0.082 0.810

5 4.19 9.0 0.05 0.07 9.0 0.410 0.704

6 4.3 9.0 0.05 0.08 9.0 0.344 0.585

7 4.3 9.0 0.05 0.08 9.0 0.561 0.373

Table 9  Experimental results of various negotiation strategies 
for DA and PA

PA

Case DA Collaborative Win-win Competitive

Case 1 Collaborative Avg. DA’s ASV 0.625 0.596 0.57

Avg. PA’s ASV 0.69 0.726 0.725

Avg. DASV 0.065 0.13 0.155

Avg. CASV 1.315 1.322 1.295

Avg. NR 7.31 7.51 7.78

Case 2 Win-win Avg. DA’s ASV 0.642 0.574 0.554

Avg. PA’s ASV 0.7 0.752 0.739

Avg. DASV 0.058 0.178 0.185

Avg. CASV 1.342 1.326 1.293

Avg. NR 7.85 7.87 8.06

Case 3 Competitive Avg. DA’s ASV 0.626 0.567 0.558

Avg. PA’s ASV 0.7 0.745 0.743

Avg. DASV 0.074 0.178 0.185

Avg. CASV 1.326 1.312 1.301

Avg. NR 7.8 7.87 8.19

Fig. 12  Average concession values per negotiation round
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patients; thus, it can be used to obtain satisfactory results 
for both doctors and patients

Conclusion
In this paper, we have proposed agent-based multi-issue 
negotiation model that employs Bayesian learning and 
fuzzy constraints to solve the SDM problem between 
doctors and patients. Unlike traditional agent-based 
negotiation systems, the proposed BLFCAN model con-
siders the constraints between doctor and patient, as well 
as the negotiation problems. In addition, the proposed 
model attempts to understand each agent’s preferences, 
avoid potential conflicts, and reduce the satisfaction gap 
between the negotiating parties using iterative nego-
tiation processes and opponent modeling techniques 
to reach a satisfactory negotiation more effectively than 
existing techniques.

The proposed model was evaluated experimentally on 
a set of negotiation issues using different strategies for 
doctor and patient agents. In terms of individual satisfac-
tion, we found that the proposed model achieved 55.4–
64.2% satisfaction for doctors and 69–74.5% satisfaction 
for patients. In addition, the satisfaction gap between the 
doctor and patient agents was controlled at 5.8–18.5%. In 
terms of aggregate welfare, the proposed model achieved 
an aggregate satisfaction rate of 129.3–134.2%. The pro-
posed BLFCAN model also increase the overall satisfac-
tion by 26.5–29% in fewer rounds compared to other 
negotiation models. The experimental results demon-
strated that the proposed BLFCAN model can negotiate 
different strategies for various medical scenarios and out-
perform existing negotiation models. In addition, it can 
effectively reduce communication time between doctors 
and patients, reduce the influence of emotions and biases 
on decision making, and complement the clinical appli-
cation of SDM.

Although the proposed model can be applied to SDM, 
it is not fully applicable to all healthcare scenarios. Thus, 
in future, we will consider extending the model to more 
complex healthcare SDM scenarios, e.g., multiagent sys-
tems comprising multiple DAs and PAs. In addition, we 
could consider employing adaptive strategies, where flex-
ibility in terms of changing strategies during the negotia-
tion process is realistic. Finally, we could also investigate 
whether the proposed model can indirectly improve 
patient compliance, improve disease outcomes, and 
address SDMP in the context of other diseases.
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