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Abstract
This study proposes a deep learning-based motion assessment method that integrates the pose estimation 
algorithm (Keypoint RCNN) with signal processing techniques, demonstrating its reliability and effectiveness.
The reliability and validity of this method were also verified.Twenty college students were recruited to pedal a 
stationary bike. Inertial sensors and a smartphone simultaneously recorded the participants’ cycling movement. 
Keypoint RCNN(KR) algorithm was used to acquire 2D coordinates of the participants’ skeletal keypoints from 
the recorded movement video. Spearman’s rank correlation analysis, intraclass correlation coefficient (ICC), error 
analysis, and t-test were conducted to compare the consistency of data obtained from the two movement capture 
systems, including the peak frequency of acceleration, transition time point between movement statuses, and the 
complexity index average (CIA) of the movement status based on multiscale entropy analysis.The KR algorithm 
showed excellent consistency (ICC1,3=0.988) between the two methods when estimating the peak acceleration 
frequency. Both peak acceleration frequencies and CIA metrics estimated by the two methods displayed a strong 
correlation (r > 0.70) and good agreement (ICC2,1>0.750). Additionally, error values were relatively low (MAE = 0.001 
and 0.040, MRE = 0.00% and 7.67%). Results of t-tests showed significant differences (p = 0.003 and 0.030) for various 
acceleration CIAs, indicating our method could distinguish different movement statuses.The KR algorithm also 
demonstrated excellent intra-session reliability (ICC = 0.988). Acceleration frequency analysis metrics derived from 
the KR method can accurately identify transitions among movement statuses. Leveraging the KR algorithm and 
signal processing techniques, the proposed method is designed for individualized motor function evaluation in 
home or community-based settings.
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Introduction
Therapist/Physician use motor function assessment 
methods to determine a patient’s functional abilities and 
develop personalized training plans. Physical function 
assessment and training effect evaluation approaches 
consist of three main categories. The first is traditional 
scale-based methods, which are complex in quantitative 
analysis and rely on clinicians’ experience and knowl-
edge [1]. The second use high-end optical motion capture 
equipment, such as reflective marker-based 3D motion 
capture systems. Nonetheless, these systems are in 
research laboratories, and the makers are complex to be 
attached to a patient’s skin and restrict patients’ mobility. 
Therefore, they are unsuitable for clinical, community, or 
home-based scenarios [2]. Approaches belonging to the 
third category utilize skeletal point tracking technology 
based on video analysis, such as Microsoft’s Kinect [3], 
which is affected by environmental factors.

With the widespread use of deep learning technology, 
more and more research applies deep learning-based 
algorithms to analyze human movement characteristics 
with recorded human action images and videos. The deep 
learning-based human motion analysis algorithm has the 
advantages of simplicity, real-time performance, and high 
accuracy [4]. For example, OpenPose [5] has been applied 
in balance assessments, fall predictions, gait analyses, 
and rehabilitation training [6–9]. However, it requires 
tremendous calculations and exhibits limited precision 
when capturing dynamic motions. Keypoint RCNN (KR) 
is PyTorch model, adding a key point detection branch to 
Mask-RCNN [10] and trained. It can recognize a moving 
body and provide 17 skeletal key points. Compared with 
OpenPose, it’s editable and faster. However, the reliability 
and validity of using the KR algorithm to analyze human 
movement have not been determined yet.

Key point-based movement angle features are used 
in signal validity testing [11, 12], but need two synced 
smartphones for 3D data, complicating home monitor-
ing. Acceleration can describe the human movement 
status well and is easy to collect. However, previous 
studies have not discussed the feasibility of using the KR 
algorithm to assess human body movement acceleration 
characteristics. We converted KR’s displacement data 
to acceleration for analysis, different from angle-based 
methods, to explore a new motion assessment method. 
Thus reducing the computation process on the move-
ment analysis.

Kinematic data’s time-frequency features can use Fou-
rier Transform (FT) and Short-Time Fourier Transform 
(STFT) reflect human motion information. Nonlinear 
entropy like multiscale entropy (MSE) [13] measures data 
complexity, good at single/multiple scale changes. Within 
a certain range, higher entropy means more complex. 
MSE on surface electromyography can measure lower 

limb muscle fatigue [14], suggesting it can be a feasible 
method for extracting fatigue features.

Fatigue causes physical/mental changes and increases 
injury risk in rehab. Assessing it is key for prevention 
and helps design home rehab programs. Fatigue reduces 
movement speed, which can be determined by accel-
eration. Kinematic parameters such as acceleration are 
widely used to define fatigue in exercise [15]. KR-based 
video analysis algorithm has the advantages of conve-
nience, high efficiency, and non-disturbance. But its 
validity and reliability of KR algorithm need to be deter-
mined before it can be utilized as a fatigue detection tool.

Bini confirmed that posture estimation technology 
can assess cycling motion and calculate lower limb fea-
tures [16, 17]. By comparing with an inertial sensor unit 
(IMU) system to: (1) establish the feasibility of the KR for 
cycling movement analysis and (2) validate the recogni-
tion and analysis of different movement statuses based 
on the KR algorithm with information processing tech-
niques. In this way, a convenient deep learning move-
ment assessment method has been established, which 
is used to develop personalized assessment models and 
provides a straightforward method for rehabilitation 
assessment and training in home or community settings.

Methods
Participants
The appropriate sample size was determined using the 
GPower V.3.1 program. At least 17 participants were 
needed to achieve an 80% power and a 5% error rate in a 
two-tailed test. Twenty healthy college students (13 males 
and 7 females, age: 20.9 ± 2.0 years, height: 170.3 ± 9.8 cm, 
weight: 61.7 ± 11.8  kg, body mass index: 21.2 ± 3.3  kg/
m2) participated in this study. This study was approved 
by the Biomedical Research Ethics Review Committee of 
Fujian Medical University (Document No. (160) of 2022 
FCM Ethics Review). Participants’ informed consent was 
obtained.

The inclusion and exclusion criteria for this study are 
presented as follows:

Inclusion Criteria: 1. Participants must be in good 
physical health, with no history of significant chronic ill-
nesses. This includes: Cardiovascular conditions (e.g., 
coronary heart disease, hypertension, arrhythmia), 
Respiratory disorders (e.g., chronic obstructive pulmo-
nary disease, asthma), Neurological conditions (e.g., 
stroke), Endocrine diseases (e.g., diabetes), and Mus-
culoskeletal issues (e.g., severe arthritis, post-operative 
recovery from joint replacement). 2.Participants must be 
capable of engaging in physical activities, as determined 
by the Physical Activity Readiness Questionnaire (2014 
PAR-Q). 3.They must be able to: Understand and sign the 
informed consent form.Willingly participate in the study 
and adhere to the experimental protocol.Perform all 
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required tasks, including wearing a breathing mask, com-
pleting cycling exercise trials as instructed, and allowing 
for data collection.

Exclusion Criteria: Participants will be excluded if they 
meet any of the following conditions:

Underwent major surgery or experienced significant 
trauma within the past six months that could affect car-
diopulmonary function or exercise ability; Have mental 
health disorders or cognitive impairments that hinder 
communication, comprehension, or cooperation during 
the experiment. Have a history of drug or alcohol mis-
use that significantly impacts cardiopulmonary function 
during physical activity; Are pregnant or breastfeeding; 
Exhibit allergies to the breathing mask materials or can-
not tolerate its use; Have noticeable motor dysfunctions 
that prevent the safe performance of cycling exercises.

Experimental procedure
Participants should wear close-fitting and light-colored 
clothes for recognition of KR-based key body points. 
Figure 1 depicts the 17 key points recognized by the KR 
algorithm.

A stationary bike (BC22002, LeiKe magnetic exer-
cise bike, China) cycling exercise was selected. IMUs 

(myomotion, NORAXON, USA) were positioned on 
the pelvis, bilateral thighs, shanks and feet to capture 
three-dimensional acceleration data at a sampling rate of 
100 Hz. At the same time, an ordinary smartphone (K40, 
RedMi, China) was set up on a phone stand placed on 
the right side 2 m away from the right side of the subject 
and with a height of 1 m to record movement videos. The 
phone recorded two-dimensional coordinate displace-
ment information of 17 human body keypoints using the 
KR algorithm at a frequency of 30 Hz. Participants sit on 
a 45 cm-high chair and maintain stillness for 10 s to col-
lect baseline data. Then, participants performed a natu-
ral cycling exercise in a fixed position for 30 s, repeated 
thrice, with a 3 min rest between sets. The task was for 
participants to complete a 120s (the 0 to 2nd minutes) 
ride at Phase1-normal speed (pedaling frequency of 
approximately 50 rpm) and Phase 2-fast speed (pedaling 
frequency of approximately 80 rpm) for 120s (the 3rd to 
4th minutes) on the stationary exercise bike for a total of 
4 min, as shown in Fig. 2.

Fig. 1  The Keypoint RCNN calculates the 17 key points of the human body. The origin of the pixel coordinates is located in the top-left corner, denoted 
as (0,0). The row number of the vertical coordinate increases from top to bottom in an integer value, and the horizontal coordinate column number 
increases in an integer value from left to right
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Data processing
Multiscale entropy calculation
Sample entropy (SE) computes the presence of repeated 
data of any length in a time series to describe its com-
plexity [18]. Costa et al. [13] expanded sample entropy 
and defined multiscale entropy (MSE) as the result of the 
continuous smoothing of a time series to quantify the 
complexity hidden in the signal. Smoothing is achieved 
by averaging the data points in a given nonoverlapping 
window. The complexity of the vertical acceleration 
data of the right knee during the movement process was 
assessed using the multiscale entropy (MSE) analysis in 
this study. The calculation of the MSE includes three pro-
cesses: sequence coarse-graining, sample entropy calcu-
lation, and complexity index.

 	• Sequence coarsening: The time series is divided into 
multiple time scales to calculate the entropy values 
at different scales. Coarse-graining is calculated 
according to Eq. (1), where xi is the original time 
series data points; yj

(τ) is the new sequence, j is the 
data point in the new sequence; τ is the number of 
window data points, called the scale factor; and N 
is the size of the original data set. Coarse-graining 
means that the time series length decreases to N/τ as 
τ increases.

	
y

(τ)
j = 1

τ

jτ∑
i=(j−1)τ+1

xi , 1 ⩽ j ⩽ N
τ � (1)

 	• Sample entropy calculation: After coarse-graining 
the sequence, an SE value can be obtained for each 
scale [19]. The calculation procedure is described in 
detail below.

Step 1: Set the parameters of the data comparisons (m) 
and the tolerance (r).
It is generally recommended that m be set to 2 or 3 and r 
to 0.1 ~ 0.2 [20].
 
Step 2: Given a time series{x1……xm…….xi}, the number 
of comparisons is m, i.e., every m points form a group. 
Compare the first group(x1…xm)with every other group 
of m consecutive points. Calculate the maximum differ-
ence d[xi,xj]across all comparison groups with Eq. (2).

	
d [xi, xj ] = max [|xi + 1 − xj + 1|] ,

1 ≤ i ≤ N − m, 1 ≤ j ≤ N − m
� (2)

Step 3: Compare d[xi,xj] to r*SD, where SD represents the 
standard deviation of the original sequence. If d[xi,xj] is 
smaller than r*SD, the two comparison groups are simi-
lar. Calculate the total number of similar occurrences, 
ni(m), and use Eq. (3) to calculate the probability, Ci(m), of 
generating similar numbers.

	
Ci(m)=

ni(m)

N − m
, 1 ≤ i ≤ N − m� (3)

Step 4: Cm represents the average value of Ci(m), cor-
responding to the probability of groups comprising m 
points matching each other. Equation  (4) describes the 
calculation method.

	
Cm = 1

N − m

N−m∑
i=1

Ci(m)� (4)

Step 5: Increase the number of compared elements to 
m + 1 and repeat the above steps. Obtain the cumula-
tive number of similar occurrences, ni(m+1), and the cor-
responding probability, Ci(m+1), calculated using Eq.  (5). 
Denote the resulting average of Ci(m+1) as Cm+1, and 
determine it using Eq. (6).

	
Ci(m+1)=

ni(m+1)

N − m − 1
, 1 ⩽ i ⩽ N − m − 1� (5)

	
Cm+1 = 1

N − m − 1

N−m−1∑
i=1

Ci(m+1)� (6)

Step 6: By integrating the sequence coarse-graining pro-
cess and considering the scale factor τ, the calculation of 

Fig. 2  A participant performed the exercise on a stationary bike. The 
three-axe coordinates on the left-low are the direction of the IMU sensor, 
and the two-axe coordinates on the right-low are the direction of KR. A 
smartphone captures a two-dimensional coordinate of 17 keypoints at a 
1920 × 1080 resolution from a right-side view
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sample entropy involves taking the negative natural loga-
rithm of the ratio of Cm+1 to Cm. It is determined using 
Eq. (7).

	
SE(τ, m, r) = −ln(Cm+1

Cm
)� (7)

 	• Complexity Index (CI): The relationship between 
sample entropy and τ is described by the MSE curve, 
with the complexity metric represented by the area 
under the curve, as illustrated in Fig. 3. Equation (8) 
exhibits the calculation method. τmax is the optimal 
scale chosen based on the amount of data.

	
CI (τmax, m, r) =

τmax∑
τ=1

SE(τ, m, r)� (8)

The sampling rates of KR and IMU differ, resulting in 
varying data volumes. To ensure a fair comparison, this 
study employed the complexity index average (CIA) for 
analysis. However, the CIA does not include time infor-
mation, making it unable to assess the complexity before 
and after status changes during the movement process. 
Therefore, in this study, the Y-axis acceleration signal of 
the right knee joint underwent STFT to identify the tran-
sition time points between movement statuses. Using 
these time points, the Y-axis acceleration signals for both 
KR and IMU of the right knee joint were segmented into 

Phase 1 and Phase 2. Subsequently, MSE calculations 
were conducted separately to derive CIA.

Data processing and analysis
The exercise process on the stationary exercise bike is 
mainly the active pedaling and stretching of the lower 
limbs, especially the flexion and extension of the knee 
joint as the main source of power. The study focused on 
analyzing the vertical direction data of the right knee 
joint, primarily due to obstruction caused by the human 
body. IMU system acquired acceleration data, defined 
as sensor values and measured in cm/sec². The units of 
acceleration obtained from KR differ from those of the 
IMU, making direct comparison unfeasible. According 
to the literature, the peak frequency can reflect different 
activity statuses of the human body [21]. So the accelera-
tion data needs to be converted into frequency-domain 
features with FT and validated by a unified standard of 
time–frequency analysis. The mathematical operations 
of differentiation, filtering, FT, STFT, and MSE were con-
ducted with the Visual Signal version 1.6 STD.

The flow chart for processing and analyzing KR algo-
rithm data is illustrated in Fig. 4: (1) The data was nor-
malized before analysis. (2) Displacement data from KR 
undergoes a 2nd derivative to derive pixel acceleration 
(defined as the KR value) in units of pixel/Sec2. (3) A fil-
tering operation was performed to remove noise from 
the data. (4) After obtaining the peak frequency of accel-
eration through FT, the CIA value was then obtained 
through MSE analysis and further analyzed and com-
pared for correlation and differences. The results were 
presented in Tables  1 and 2. (5) Transition time points 
from Phase 1 to Phase 2 were identified using STFT and 
compared predetermined values, with outcomes pre-
sented in Table 3. (6) The data was partitioned into Phase 
1 and Phase 2 based on the transition time points, and 
the corresponding CIA values were obtained, followed by 
t-tests, the results displayed in Table 4. The data process-
ing workflow for IMU data was akin to KR data process-
ing, except for the absence of 2nd derivative.

Statistical analysis
IBM SPSS Statistics version 26 was used for the statisti-
cal analyses. In evaluating the reliability of the KR algo-
rithm, ICC1,3 was utilized to compare the mean values 
of 30-second data over three trials to ascertain the intra-
session consistency of the KR algorithm.

To assess the agreement and consistency of accelera-
tion data collected by the two movement capture sys-
tems, Spearman’s correlation, ICC2,1was used. An ICC 
value can be interpreted as follows: values below 0.5 
signify poor consistency, values between 0.5 and 0.75 
indicate moderate consistency, values between 0.75 and 
0.9 indicate good consistency and values exceeding 0.90 

Fig. 3  The area under the MSE curve is defined as the complexity index. 
The horizontal coordinate represents the scale factor τ, and the vertical 
coordinate represents the sample entropy value for each scale
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suggest excellent consistency [22]. Furthermore, a corre-
lation coefficient greater than 0.7 indicates a strong cor-
relation [23].

The differences in the data obtained using the two 
methods were compared using the mean absolute error 
(MAE) and the mean relative error (MRE), as detailed 
in Eqs.  (9) and (10). The variables X and Y both have a 
sample size of n points. Their MAE and MRE are defined 
as follows:

	
MAE=

n∑
i=1

|Xi − Y i|

n

� (9)

	
MRE=

1
n

∑ |Xi − Y i|
Y i

� (10)

The variables Xi and Yi represent the i-th samples of X 
and Y, respectively, where i is the element index from 1 
to n.

Table 1  The correlation and consistency between the data from 
the KR and IMU

Peak 
frequency

MSE

IMU(mean ± sd) 1.33 ± 0.33 0.51 ± 0.07
KR(mean ± sd) 1.33 ± 0.33 0.48 ± 0.07
Correlation coefficient(95% 
confidence interval)

1.000** 0.881**(0.749 ~ 1.000)

ICC2,1 (95% confidence interval) 1.000**(1 ~ 1) 0.865**(0.368 ~ 0.957)
**p < 0.01

Table 2  The data error metrics of the IMU and KR
Peak frequency(Hz) CIA
MAE MRE (%) MAE MRE (%)

Right-knee Y 0.001 0.00 0.040 7.67

Table 3  The STFT of all subjects was subjected to the KR 
algorithm with IMU measurement data for the transition time 
point of movement status change captured and analyzed with 
the results of error analysis with Tpre-d = 120 ± 0s

TIMU (s) TKR (s)
M ± SD 120.27 ± 0.32 120.28 ± 0.37
MAE 0.32 0.37
MRE 0.00% 0.23%

Table 4  CIA values and t-test results for the two movement 
statuses of phase 1 and phase 2

IMU KR
Phase1CIA 0.45 ± 0.13 0.40 ± 0.11
Phase2CIA 0.34 ± 0.19 0.34 ± 0.19
p-value 0.003 0.03

Fig. 4  The flow chart of the KR algorithm data analysis. Normalization was based on the average value of the data from the right knee key point remain-
ing still for 10 s, and it reseted the data for the KR algorithm. Data noise was attenuated using an FIR filter with a 3 Hz cutoff frequency. Selecting an 
appropriate window function and time-frequency resolution is essential for STFT to depict the data characteristics accurately. The Hanning function was 
selected as the window function for the calculation parameters, and the window length was 0.8. TIMU and TKR represent the transition time points derived 
from IMU and KR
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The experiment verified whether the movement status 
transition time points captured by the two methods cor-
respond to the preset occurrence at 120s and whether 
other change thresholds occurred during the exercise. 
The t-tests were performed to analyze the variances in 
acceleration CIA corresponding to different pedaling 
speed statuses between the KR algorithm and IMU mea-
surements. A value of p < 0.05 indicated that the differ-
ence was statistically significant.

Results
Captured the peak frequency of knee joint movement 
based on KR and IMU
The results demonstrated that during three repetitions 
of cycling (with the mean and standard deviation being 
0.75 ± 0.20, 0.78 ± 0.20, and 0.80 ± 0.20 respectively), the 
peak acceleration frequency had excellent intra-session 
reliability (ICC1,3 = 0.988, 95% CI = 0.976–0.995).

Figure 5 presents original acceleration signals in 
time series from a representative subject and their cor-
responding Fourier transform (FT) plots. The FT plot 
depicts the peak frequency of acceleration, and the peaks 
indicate a concentration. They also suggest consistent 
frequency changes of accelerations obtained by the IMU 
and KR.

Correlation and consistency analysis
Table 1 provides a detailed comparison of the peak fre-
quency and CIA consistency between the KR and IMU 
systems. Results indicated a strong correlation (r > 0.7) 
and good consistency (ICC2,1>0.8) of peak frequency and 
CIA estimated by the two systems.

The data of error analysis
As shown in Table  2, peak frequency and CIA values 
calculated by the KR demonstrate small MAE and MRE 
when compared with those of the IMUs (MAE = 0.001 
and 0.040, MRE = 0.00% and 7.67%, respectively), con-
firming that data collected by the KR and the IMU are 
consistent.

Feasibility of integrating SFTF and MSE
Figure 6 shows the STFT plot of IMU and KR data for a 
participant. It can be observed that the frequency band 
of 6(a) IMU or 6(b) KR transformed from a narrow and 
light-colored band for the normal speed Phase1 to a wide 
and dark-colored band for the fast speed Phase2 at time 
120  s. The color shades in Fig.  6 represent the intensity 
level. The higher the frequency of the movement, the 
higher the energy intensity. The colors of the frequency 
segments in Fig.  6(a) and (b) both become darker and 
denser after 120s, which shows that the STFT corre-
sponds to the data before 120s as Phase 1 and after 120s 
as Phase 2.

The transition time point from Phase 1 to Phase 2 of 
this experiment was pre-defined at 120s (Tpre−d = 120s). 
Table 3 shows the comparison results of estimated phase 
transition time points using IMU (TIMU) and KR (TKR) 
and the Tpre−d. Results demonstrate that both of the two 
systems showed minimal errors (TIMU =120.27 ± 0.32s, 
MAE = 0.32, MRE = 0.00%; and TKR=120.28 ± 0.37s, 
MAE = 0.37, MRE = 0.23%, respectively).

Table 4 shows the t-test results of the CIA values of the 
two movement phases (Phase1-normal speed, Phase1CIA, 
Phase2-fast speed and Phase2CIA) measured by IMU and 
KR algorithms. Phase1CIA and Phase2CIA estimated by 
both the IMU and KR systems showed significant differ-
ences (p = 0.003 and 0.03, respectively).

Discussion
Deep learning-based pose estimation algorithms signifi-
cantly lower the cost of implementing motion capture 
systems. Moreover, deep learning technology requires 
no professional equipment, making remote home-
based motion capture and analysis applicable [24]. We 
employed the KR algorithm to track the trajectories of 
cycling movements and, for the first time, applied sig-
nal processing techniques based on MSE to analyze fre-
quency metrics associated with the motion status. The 
KR algorithm demonstrated good reliability and validity 
compared to the referential IMU system. Specifically, the 
integration of the KR algorithm with CIA enables pre-
cise detection of various movement statuses, ensuring 
the effective application of deep learning technology in 
movement assessment.

The KR-based movement capture method demon-
strates excellent intra-session reliability, suggesting it can 
maintain stability and obtain accurate data among vari-
ous measurement sessions. A reliable measurement tool 
could also be applied for long-term functional ability pro-
gression. Moreover, the movement data derived from the 
KR algorithm demonstrated good consistency with the 
referential IMU system and minimal measurement error 
across various speeds of pedaling, further validating the 
effectiveness of the KR algorithm. The deep learning KR 
algorithm can potentially serve as an evaluation tool for 
movement screening in a home-based setting. The other 
commonly used pose estimation algorithms, for example, 
OpenPose, demonstrated comparative reliability (ICC1,3 
= 0.92–0.96) and validity (ICC2,1 = 0.80) [25]. The KR 
algorithm has improved both in terms of stability of its 
own acquisitions and data accuracy.

We employed MSE with time-frequency methods (FT 
and STFT) to analyze diverse acceleration peak frequen-
cies. Our research found that STFT can provide detailed 
temporal information on movement status transitions, 
and MSE can identify changes in complexity when the 
transition occurs. These findings establish a theoretical 
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foundation for detecting fatigue during exercise. By 
integrating the KR algorithm with the signal processing 
techniques, we have developed a novel deep learning 
movement assessment method. This innovation provides 
valuable insights for future research on personalized 
movement assessment models.

Figure 6 depicts the cycling acceleration frequency and 
amplitude changing accompanying movement status 

transitions. Higher acceleration amplitude suggests more 
remarkable changes during pedaling. The KR algorithm 
exhibited consistent frequency ranges and peak perfor-
mances in its respective FT images compared to the IMU 
system. We also observed that the amplitude obtained 
with the KR was greater than the amplitude of the IMU. 
This is likely related to the pixel displacement collected 
by the KR. Compared with the actual displacement 

Fig. 5  The acceleration raw signal over time in the right knee’s Y-direction and its FT plot of a participant. Plots (a) and (c) depicted the original IMU and 
KR algorithm-measured acceleration signals, while plots (b) and (d) displayed their respective FT plots. These plots illustrate that the subject demon-
strated two distinct segments of pedaling acceleration frequency during the exercise, occurring at approximate frequency ranges of 0.65–0.90 Hz and 
0.95–1.10 Hz
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measured by the IMU, the pixel displacement had a lon-
ger moving distance on the image. Peak frequency anal-
ysis can directly analyze whether the spectrum of two 
signals is equivalent. It does not need to be converted 
into the same unit and does not impact the experiment.

The crucial information of ‘time’ is added to the STFT 
image, which can assist therapist to understand the time 
point of a frequency change, and the darkness of the 
spectrum’s color represents the energy intensity level. It 
is worth noting that the color of the STFT image of the 
KR was lighter than the IMU, which is related to the sam-
pling frequency. In the same period, if the sampling fre-
quency is high, the amount of data will be extensive, and 
the color of the image will be darker. STFT can accurately 

capture the time when the speed changes from normal to 
fast, which means that STFT can capture the status tran-
sition thresholds related to speed change during actual 
movement. For instance, if a participant shows physical 
fatigue and movement change (speed or acceleration) 
during exercise, the fatigue point can be determined 
through an STFT image. This can become an essential 
basis for individualized rehabilitation training programs. 
In addition, the MSE complexity was calculated sepa-
rately for the acceleration signals in the two movement 
statuses, and the t-test results were all significant. MSE 
and STFT technology can distinguish different move-
ment statutes and capture change thresholds, respec-
tively. As a result, we are integrating the KR algorithm 

Fig. 6  The STFT images of IMU and KR right-knee Y-direction acceleration data of a subject. The horizontal coordinate is time, the left vertical axis is 
frequency value, and the right vertical axis is energy intensity value. It indicates the energy magnitude of the signal at a specific time and frequency. The 
colors in the image represent energy intensity. The darker the color, the higher the frequency of exercise and the greater the energy intensity. From (a) 
and (b), both Phase 2 color are darker than those in Phase 1
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and signal processing technology to propose a practical 
method to analyze movement status conveniently.

Furthermore, the complexity of Phase 1 was higher 
than that of Phase 2, indicating that the complexity is 
higher during the normal speed movement process. This 
is related to the fact that the human body quickly enters 
an anaerobic exercise status when performing fast or 
intense exercise. Physiological complexity decreases if 
the body’s muscles or cardiorespiratory system fatigue. 
Therefore, using normal training speed as the daily train-
ing condition is more suitable for delaying the onset of 
exercise-induced fatigue.

In this study, the KR algorithm was utilized for move-
ment capture and analysis in a typical cycling exercise 
for rehabilitation. Theoretically, the KR algorithm has 
the potential to be applied in the advanced field of reha-
bilitation medicine. Future applications include ergo-
nomic posture analysis, sports injury risk screening, gait 
analysis, and fall detection. It can be leveraged to develop 
semi-automated diagnosis and treatment systems or 
integrated with virtual reality to create interactive reha-
bilitation robots. The proposed method is applicable to 
sports training, dance instruction, and similar activities, 
enabling the evaluation of movement quality and the 
facilitation of dynamic health management.

This study presents several significant advantages over 
existing research. First, it employs a stationary exer-
cise bicycle, which is not only cost-effective and widely 
accessible but also highly user-friendly. Second, the KR 
algorithm eliminates the need for wearable accessories, 
allowing data to be conveniently collected using only a 
mobile phone. This feature makes it particularly suitable 
for both domestic and community settings, enhancing 
convenience. Third, the integration of the KR algorithm 
with signal processing techniques introduces a novel 
motion assessment method characterized by objectiv-
ity, relatively straightforward requirements, and strong 
practical applicability. Lastly, this methodology can be 
extrapolated to other sports activities, presenting a novel 
avenue for motion evaluation and analysis.

This study has three limitations: (1) The KR algorithm 
is a two-dimensional analysis method. Its accuracy would 
be reduced when evaluating three-dimensional move-
ment tasks. Measurement error correction algorithms 
need to be developed in future studies. (2) Only young, 
healthy adults were involved in this study. Considering 
the clinical utility of the KR algorithm, it is necessary 
to recruit more clinical populations to further verify its 
reliability and validity [25]. (3)This method is currently 
limited to analyzing the motion trajectories of station-
ary bicycles. Its potential application to more complex 
sports, such as ball games, remains uncertain and war-
rants further investigation.

Conclusion
The main finding of this study is that the results esti-
mated by the KR and IMU are consistent, which can also 
be found in other deep learning algorithm-validating 
studies [26]. The findings suggest that the deep learning-
based Keypoint RCNN (KR) algorithm provides suffi-
cient accuracy for movement analysis. Additionally, we 
have introduced a novel movement assessment method 
by integrating the KR algorithm with signal processing 
techniques. This deep learning-based movement status 
assessment technology has been successfully applied to 
exercise movement analysis and holds potential for large-
scale community rehabilitation screening and other pub-
lic health-related applications.
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