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Abstract 

Long COVID is a multi-systemic disease characterized by the persistence or occurrence of many symptoms 
that in many cases affect the pulmonary system. These, in turn, may deteriorate the patient’s quality of life making 
it easier to develop severe complications. Being able to predict this syndrome is therefore important as this enables 
early treatment. In this work, we investigated three machine learning approaches that use clinical data collected 
at the time of hospitalization to this goal. The first works with all the descriptors feeding a traditional shallow learner, 
the second exploits the benefits of an ensemble of classifiers, and the third is driven by the intrinsic multimodality 
of the data so that different models learn complementary information. The experiments on a new cohort of data 
from 152 patients show that it is possible to predict pulmonary Long Covid sequelae with an accuracy of up to 94% . 
As a further contribution, this work also publicly discloses the related data repository to foster research in this field.
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Introduction
Since the first clinical evidence in 2019, the coronavirus 
disease (COVID-19) has globally affected more than 765 
million people and caused nearly 7 million deaths [1, 2]. 
After almost four years it is still spreading worldwide 
and, due to its novelty, much about the clinical course 
remains uncertain  [3]. This also applies to its long-term 
manifestation, which is called Long-COVID or Post-
COVID syndrome. Long COVID is a multi-systemic dis-
ease characterized by the persistence or occurrence of a 
wide range of symptoms of varying intensity, regardless 
of the severity of the original illness caused by SARS-
CoV-2 infection. Due to the lack of a common definition, 
the WHO advocated adopting the term Post-COVID-19 
listed in the ICD-10 classification based on the Delphi 
agreement  [4]. Variable manifestations are experienced 
by patients with this syndrome, including fatigue, mus-
cle soreness, palpitations, cognitive impairment, anxi-
ety, arthralgia, and pulmonary symptoms [5]. Pulmonary 
post-COVID syndrome is clinically characterized by 
shortness of breath, even with minimal physical exer-
tion, that can be accompanied by a decreased exercise 
tolerance, persistent dry or productive cough that lasts 
beyond the acute phase of the illness, bronchial hyper-
reactivity, with episodes of wheezing, chest tightness, and 
difficulty breathing [6]. Moreover, pulmonary fibrosis has 
been described as a possible complication of COVID-19 
infection, with a long-term impact on patients’ respira-
tory health, with reduced lung function and impaired 
oxygen exchange [7]. Post-COVID syndrome is not nec-
essarily related to the severity of COVID-19 [8], and it is 
estimated that more than 17 million people are suffer-
ing from it  [9]. In this context, being able to predict its 
development is a very ambitious challenge  [10] because 
early treatment of the disease might reduce its impact 
on affected patients  [11]. Nevertheless, the widespread 
uncertainty about the clinical utility and dosimetric 
appropriateness of radiological follow-up of the evolu-
tion of lung involvement by COVID-19, subject to the 
diffuse practice of performing chest X-rays or CT scans 
immediately preceding hospital discharge, has resulted in 
a scarce availability of extensive imaging case histories in 
patients recovered from COVID-19 disease or in patients 
with post-COVID syndrome  [12]. There is therefore a 
need for effective and reliable approaches to predict syn-
drome evolution in its early stages.

Artificial Intelligence (AI) applications in medicine 
are widely spread among all possible fields of applica-
tions, ranging from medical image analysis to inspection 
of patients’ clinical data for diagnosis purposes  [13]. In 
particular, a huge number of publications appeared on 
the COVID-19 outbreak  [14, 15], where the vast major-
ity of works focused on the diagnosis of the COVID-19 

outcome mostly starting from radiological images, such 
as chest X-ray images or chest CT scans, using deep-
learning methods  [16]. In several other papers, other 
machine-learning algorithms, such as Decision Trees, 
Random Forests and Logistic Regression showed their 
usefulness for prediction purposes on clinical and labo-
ratory data. However, only a few studies investigated AI 
applications predicting Long-COVID syndrome [17–22]. 
In [17] the authors focuse on developing machine learn-
ing models to predict the incidence of Long COVID 
using electronic health record (EHR) data collected 
from the National COVID Cohort Collaborative (N3C), 
addressing the challenge training two machine learn-
ing models, namely logistic regression (LR) and ran-
dom forest (RF), using several features from EHR data, 
including symptoms experienced during acute infection, 
medications administered, demographic information, 
and pre-existing health conditions. Labeling and analys-
ing a cohort of more than 2000000 individuals as having 
Long COVID based on the U09.9 ICD10-CM code, they 
found a promising result of LR and RF models achieving 
median AUC values of 0.76 and 0.75 respectively. Finally, 
they used SHapley Additive exPlanations methods to 
help underscore various important predictive features. 
Tang C.Y. et al., in their work [18] focused on the devel-
opment predictive models to assess multiple outcomes 
associated with COVID-19 as intensive care unit (ICU) 
admission, hospitalization, and the risk of Long COVID. 
They utilised a retrospective cross-sectional study, ana-
lysing data from 4,450 individuals who tested positive 
for SARS-CoV-2 collected over 2 years, and including 
disease courses, urban-rural classifications, demographic 
data, and clinical histories. The study aimed to cre-
ate personalized risk assessment models that can pre-
dict clinical outcomes and forecast hospitalization, ICU 
admission, and Long COVID. They demonstrated the 
capability to identify patients at higher risk for adverse 
outcomes associated with COVID-19. The authors in [19] 
also integrated physiological and neurological factors and 
utilised advanced machine learning methods to investi-
gate the health complications experienced by individu-
als after they recovered from COVID-19. The study was 
addressed by collecting survey data from COVID-19 
recovered patients in Bangladesh, focusing on determin-
ing which factors most significantly impact post-COVID 
health outcome by using several machine learning algo-
rithms. The study identified 17 key physiological and 
neurological health factors and the Decision Tree model 
was highlighted as particularly effective, also evaluating 
the statistical robustness validating the results using Chi-
square tests and Pearson’s coefficient methods. In [20] the 
authors presented a machine-learning approach based 
on XGBoost models, to highlight different risk factors 
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that appear to be most significant in predicting whether 
a COVID-positive person will go on to develop the long 
COVID syndrome. Risk factors such as chronic illnesses 
like diabetes, chronic kidney disease, and chronic pul-
monary disease, were included, as well as non-respira-
tory symptoms like sleep disturbances, chest pain, and 
malaise after the acute COVID infection has subsided. 
The approach was tested on a private dataset account-
ing for 946 patients, and the best-developed model 
obtained an AUROC value of 0.92. Kessler et  al.  [21] 
used a gradient-boosting classifier (LGBM) instead. The 
model was trained on 272588 patients from a private 
dataset, 5440 of whom had a long COVID diagnosis. 
Age, sex, and the complete history of diagnoses and pre-
scription data before COVID-19 infection were used as 
training features. On the test set the model scored 0.84 
as AUC. Other authors in [22] applied random forest and 
LASSO models on data from a private dataset including 
4182 patients, 558 of whom reported long COVID symp-
toms. Both models scored an AUC of 0.77. Furthermore, 
in  [23] the authors presented a large dataset assessing 
the risk factors for long-term physical and psychoso-
cial health consequences following COVID-19 diagno-
sis. Data were collected through direct observation and/
or reviewing and extracting electronic health records or 
patient registries, and follow-up data were gathered using 
self-administered questionnaires. In the same direction, 
the National Institute for Health and Care Excellence, 
the Scottish Intercollegiate Guidelines Network, and 
the Royal College of General Practitioners have recently 
developed a guideline with a living approach, i.e. subject 
to periodic updates, to provide recommendations on the 
treatment of post-COVID syndrome [24].

On these grounds, this study investigates three AI-
based approaches to predict the development of lung 
alteration on CT during long COVID syndrome, using 
clinical and laboratory data collected at the time of hos-
pitalization. This may help in selecting patient with long 
COVID syndrome that deserve a closer radiologic sur-
veillance. The first approach is based on shallow machine 
learning classifiers, the second works with an ensemble 
of classifiers, and the third makes use of classifier selec-
tion driven by a-priori medical knowledge of the type of 
features. The three methods presented in this study dem-
onstrate effective strategies for predicting Long COVID, 
even when the patient sample size is limited. Notably, 
the final approach yields promising results, achieving 
a predictive accuracy that surpasses leading models in 
the field. This finding highlights how clinical data col-
lected during the hospitalisation period can significantly 
inform the assessment of potential Long COVID devel-
opment. As a further contribution, this work introduces 
a novel dataset including clinical data from 152 patients 

with COVID-19 who were hospitalized in four hospitals 
in Italy. To each patient, we associated prognostic infor-
mation related to having or not of pulmonary sequelae at 
chest CT within 12 months after the hospital discharge. 
Our study therefore offers a first quantitative analysis of 
this new repository that can be used by other researchers 
and practitioners as a baseline reference.

The rest of the manuscript is organized as follows: 
the next section presents the materials and data prepa-
ration, “Methods”  section describes the methodology. 
“Results and discussion”  section presents and discusses 
the results, while “Conclusion” section offers concluding 
remarks.

Materials
Study design
This study includes the clinical data collected in three 
Italian hospitals (ASST Fatebenefratelli Sacco, Fondazi-
one IRCSS Policlinico San Matteo, Centro Diagnostico 
Italiano) at the time of hospitalization and follow-up 
of COVID-19 patients from March 2020 to September 
2021. These hospitals are located in the north of Italy and 
such data was generated during the clinical activity with 
the primary purpose of managing COVID-19 patients 
within the daily practice. During the period of this study, 
different SARS-CoV-2 variants were predominant in 
Italy: the original Wuhan strain and D614G in 2020, fol-
lowed by the Alpha variant (B.1.1.7) in early 2021, and the 
Delta variant (B.1.617.2), which became dominant from 
May 2021 onward. All data were retrospectively reviewed 
and collected, after patients’ anonymization. For the data 
analysis, we randomly assigned to each center a symbolic 
label, from A up to C.

The inclusion criteria for this study were: adult patients, 
confirmed SARS-CoV-2 infection via RT-PCR test, and 
signed informed consent to participate  [25]. Patients 
were excluded if they were younger than 18 years old, 
did not provide informed consent, or if their data were 
incomplete for the study’s clinical outcome analysis. 
Moreover, we reviewed RT-PCR test results and clinical 
records from the hospitals involved in the study to iden-
tify any episodes of COVID-19 reinfection. Patients with 
confirmed reinfection during the 12-months follow-up 
period were excluded from the final analysis to ensure 
that the observed pulmonary sequelae were attributable 
to the initial infection.

We selected these comorbidities, cardiovascular dis-
ease, neurological disease, oncological disease, diabetes, 
and obesity, as they are associated with an increased risk 
of death in Sars-Cov2 patients in a large epidemiological 
survey  [26] and according to the clinical outcome, each 
of the 152 patients included in this study was assigned 
to two groups according to the presence or absence of 
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pulmonary sequelae at chest CT within 12 months after 
the hospital dismission. In the following text, we named 
as positive the class including patients with pulmonary 
sequelae, and negative otherwise. The positive and nega-
tive class accounts for 97 and 55 samples, respectively. 
The presence of pulmonary sequelae were defined as the 
presence of abnormalities observed in chest CT scans, 
including ground-glass opacities, reticulations, consoli-
dations, or evidence of fibrosis, as described in the rel-
evant literature [27]. These findings were confirmed by 
an expert radiologist with over 5 years of experience, and 
any doubtful cases were resolved by consensus.

Data preparation
Data underwent three pre-processing steps. First, we 
verified the anomalous data and outliers with our clini-
cal partners. Outliers were defined as values falling out-
side the expected clinical range or identified using the 
interquartile range (IQR) method, which calculates the 
range between the first (25th percentile) and third quar-
tiles (75th percentile) to determine thresholds for outli-
ers. Necessary corrections were made on the basis of this 
revision, considering these outliers as missing values and 
imputing them.

Second, we removed all the features with more than 
50% missing entries, and Table  1 reports the available 
descriptors. The values of the missing data of the remain-
ing features were imputed instead, using the mean, for 
continuous variables, or the mode, in case of categorical 
variables. Furthermore, it is important to note that the 
computation of the mean or the mode values for each 
feature was performed considering only the training data 
stage of each algorithm tested. Straightforwardly, no bias 
was introduced since this procedure was applied respect-
ing the training-validation-test split described in “Models 
validation”  section. It is worth noting that the presence 
of missing entries in the clinical data mostly depends 
upon the procedures carried out in the individual hospi-
tals as well as upon the pressure due to the overwhelming 
number of patients hospitalized during the COVID-19 
emergency.

Third, the values of binary variables (e.g., sex) were all 
coded as 0 and 1, homogenized to a coherent coding, 
such as 0 and 1 values for comorbidities and sex, and cat-
egorical features encoded into a binary representation 
with One-Hot Encoding.

Methods
We investigated three AI-based approaches to predict 
if COVID-19-positive patients will develop pulmonary 
sequelae, using the clinical features presented in “Materi-
als”  section, also aiming to offer researchers and practi-
tioners a reference baseline to process the data available 

within this repository. Two of these approaches leverage 
well-known methodologies, i.e., namely shallow machine 
learning and ensemble of learners; the third one is based 
on a multimodal approach exploiting the intrinsic mul-
timodality of the clinical data we collected. The next 
three subsections present each approach, graphically 
summarized in Fig.  1. The fourth subsection puts these 
approaches in the context of multimodal learning, whilst 
the fifth one details the adopted validation procedures to 
foster further research allowing easy and fair compari-
son of the results, thus recommending others to measure 
models’ performance at least as reported here.

All analyses were carried out using Python version 
3.8.10, leveraging the following main libraries: NumPy 
(version 1.24.2), Pandas (version 1.5.3), and Scikit-Learn 
(version 1.2.1).

First approach: shallow machine learning
We set up this approach to build a baseline for the next 
experiments by implementing a paradigm that works 
with some classic machine learning models (top portion 
of  Fig.  1). We considered the following classifiers: the 
k-Nearest Neighbor (kNN) as an instance-based clas-
sifier, the Support Vector Machine (SVM) as a kernel 
machine, and CART, Classification And Regression Tree, 
as a decision tree (DT). Each of these algorithms has been 
widely applied to classification tasks across domains, 
including medical clinical data [28–30], due to their 
robustness and versatility to model complex and vari-
ous data distributions. We included them in our experi-
ments to establish a solid and well-understood baseline 
for comparison. Notably, all three algorithms can capture 
non-linear relationships, a crucial feature given the com-
plexity and potential interactions within our dataset.

Feature selection is the first step of this approach, 
performed using the method described in “Data prepa-
ration”  section, which returned the set of retained fea-
tures denoted as Fk ,tr ∈ R

n×d , where k stands for the 
k-th cross-validation fold, tr denotes the training set of 
the k-th fold, n the number of training samples and d 
the number of considered features. Fk ,tr , together with 
the ground truth Lk ,tr , is then used to train the three 
shallow classifiers, whose hyper-parameters are opti-
mized by a grid search on the validation set by maxi-
mizing the balanced accuracy, i.e., the average of recall 
per class since the dataset has a certain degree of imbal-
ance. In detail, for kNN we searched for the best k-value 
in the interval [1,  9], for the SVM, we searched for C 
parameter, gamma and kernel parameter, respectively 
within the intervals [10−1, 102] , [10−4, 1] and the linear, 
gaussian, sigmoidal and polynomial kernels, and for the 
DT we searched for the most performing choosing cri-
terion between gini and entropy, the minimum number 
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Table 1 List of features collected for each patient, with the corresponding description

Name Description Overall-population 
(N = 152)

NO sequele-group 
(N = 55)

Sequele-group 
(N = 97)

Missing data One hot 
encoding

Age Patient’s age (years) 63; 55-71 56; 51-65 66; 60-76 0% No

Sex Patient’s sex (%males) 59% 44% 36% 0% No

Cardiovascular disease Patient had cardiovascular 
diseases (% reported)

46% 39% 55% 1% No

Neurological disease Patient had neurological 
diseases (% reported)

5% 2% 6% 0% No

Oncology disease Patient had oncological 
diseases (% reported)

11% 15% 8% 1% No

Diabetes Patient had diabetes (% 
reported)

17% 17% 17% 2% No

Obesity Patient had obesity (% 
reported)

20% 15% 23% 1% No

Dyspnea Patient had intense 
tightening in the chest, air 
hunger, difficulty breathing, 
breathlessness or a feeling 
of suffocation (%yes)

46% 35% 52% 1% No

Smoker Smoker (yes/no) 13% 16% 11% 1% No

Days of fever Days of fever up to admis-
sion (days)

6; 2.75-8.25 4; 3-7 7; 2.25-9.75 34% No

LDH at the time hospi-
tal admission

Lactate Dehydrogenase 
(mU/ml)

335; 263.5-447.0 279; 221.5-343.5 367.5; 298.25-
490.75

11% No

CRP at the time of hos-
pital admission

C-Reactive Protein (mg/dL) 12.6; 5.3-25.6 8.59; 4.89-31.2 15.2; 6.53-24.80 4% No

D-dimer at the time 
of hospital admission

D-dimer is a protein 
fragment that’s made 
when a blood clot dissolves 
in the body (ng/mL)

640; 308.5-1105.5 426; 208.5-761 751; 360-1249.5 14% No

Creatinine at the time 
of hospital admission

Creatinine is a waste 
product that comes 
from the normal wear 
and tear on muscles 
of the body (mg/dL)

0.86; 0.69-1.09 0.85; 0.65-1.02 0.88; 0.71-1.13 9% No

CRP at the time of hos-
pital dismission

Value of CRP at the time 
of dismission (mg/dL)

0.82; 0.2-2.98 0.89; 0.24-2.91 0.82; 0.19-3.1 32% No

Creatinine at the time 
of hospital dismission

Value of Creatinine 
at the time of dismission 
(mg/dL)

0.74; 0.62-0.95 0.8; 0.69-0.93 0.74; 0.61-0.95 30% No

SpO2 at the time 
of admission

Value of the oxygen satura-
tion of the arterial blood 
at the time of admission (%)

0.93; 0.91-0.96 0.95; 0.93-0.98 0.93; 0.88-0.95 18% No

O2 at the time 
of admission

Value of the oxygen 
consumption at the time 
of admission (%)

0.76; 0.59-0.91 0.78; 0.67-0.93 0.70; 0.58-0.90 27% No

Days of hospitalization Number of days the patient 
was on ventilation

22; 14-35 14; 11-23 29; 20-40 6% No

Ventilation Presence of ventilations 46% 36% 64% 0% Yes

XR at the time of hos-
pital admission

Chest XR acquisition 
at the time of hospital 
admission (yes/no)

90% 92% 87% 0% No

CT at the time of hos-
pital admission

Chest CT acquisition 
at the time of hospital 
admission (yes/no)

53% 43% 69% 0% No

XR at the time of hos-
pital dismission

Chest XR acquisition 
at the time of hospital 
dismission (yes/no)

38% 39% 35% 0% No
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of sample leaves in [1, 2, 3, 10] and the minimum num-
ber of sample splits in [1, 2, 10, 100].

Second approach: an ensemble of learners
It is well known that an ensemble of multiple learners 
allows extracting complementary and more powerful 
data representation, to improve the performance con-
cerning those of each stand-alone classifier considered. 
Although no formal proof exists, this intuition has 
brought interesting results in many medical applica-
tions [31–34]. There are six main strategies to generate 
a diverse pool of classifiers [35]: the use of different ini-
tialization, different parameters, different architectures, 
different classifier models, different training sets, and 
different feature sets. In our application, as depicted in 
the central portion of Fig.  1, we investigated different 
approaches for combining single classifiers. They are: 
late fusion, stacking, boosting and random forest.

Late fusion approaches combine different trained 
models using an aggregation function that takes as 
input the individual predictions and selects the output 

label of the samples on the basis of the majority-voted 
classes. Despite its simpleness, this rule has provided 
good performance in several applications, especially 
when the base classifiers are diverse, i.e., when they 
provide different outputs on the same samples, thus 
offering complementary points of view to the ensemble 
since there is no reason to combine models that always 
return the same output [36].

The stacking approach determines the final output for 
a given sample by using a classifier trained on the predic-
tions provided by the base classifiers. Hence, it can be 
considered a late fusion technique where a data-driven 
aggregation rule is used: indeed, it is not heuristically set 
by the researcher, but it is learned by a model.

In the case of majority voting and stacking, we aggre-
gated in an ensemble the three classifiers mentioned in 
the previous subsection.

Boosting is a well-established ensemble meta-algo-
rithm that converts weak learners to strong ones dur-
ing the training process. Here we adopted the AdaBoost 
approach with two variations as a base estimator: the 
first uses the ExtraTree, whilst the second employs the 

Table 1 (continued)

Name Description Overall-population 
(N = 152)

NO sequele-group 
(N = 55)

Sequele-group 
(N = 97)

Missing data One hot 
encoding

CT at the time of hos-
pital dismission

Chest CT acquisition 
at the time of hospital 
dismission (yes/no)

29% 33% 22% 24% No

Fig. 1 Graphical representation of the methodology with the three different approaches. Symbols are defined in “Exploiting the multimodality: 
classifier selection” section
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logistic regression and L2 regularization. These mod-
els had shown good classification capabilities in both 
assessing the presence of the COVID-19 infection [37] 
and mortality risk [38]. When using the ExtraTree, 
we optimized, via a randomized search, the following 
hyperparameters during the training phase: the num-
ber of estimators (sampled from a log uniform distribu-
tion between 50 and 1000), the learning rate (sampled 
from a log uniform distribution between 0.0001 and 
10), the minimum samples per leaf (sampled from a log 
uniform distribution between 1 and 10), the minimum 
samples for splitting (sampled from a uniform distribu-
tion between 0.1 and 0.9), and class weights to compen-
sate for the class imbalance. For this last parameter we 
tried: a balanced approach that adjusts weights inversely 
proportional to class frequencies in the input data as 
nsamples/(nclasses ∗ nsamples_per_class(y)) , a pre-established 
multiplier for the minority class set to 2, 3 and 5. When 
using logistic regression and L2 regularization, we opti-
mized the number of estimators, the learning rate, the 
magnitude of the regularization term, and again the class 
weights assigned to the two classes by the base estimator. 
The searched range for parameters is the same as those 
specified for the ExtraTrees case, except for the strength 
of the regularization term, whose inverse was sampled 
from a log uniform distribution in the range 0.0001 and 
1000. Furthermore, to eliminate non-informative fea-
tures, improve performance and reduce the training time, 
we applied the boosting methods not only to the whole 
set of features, but also to a set of features restricted, 
excluding high-correlated and near-zero variance fea-
tures (manual feature selection), and further reduced by 
Recursive Feature Elimination [39], from a maximum of 
10 to a minimum of 4.

As a fourth ensemble paradigm, we used the Random 
Forest approach that constructs a multitude of deci-
sion trees at training time. It is a well-known ensemble 
method that combines the output of multiple decision 
trees to reach a single result  [40]. Furthermore, we did 
not run feature selection in this case thanks to the intrin-
sic ability of the decision trees to detect the most impor-
tant descriptors.

Exploiting the multimodality: classifier selection
The use of a feature space including all the available 
descriptors can hinder peculiarities that should be 
included in specific groups of features. This third learn-
ing approach stems from this observation, and it also 
exploits that the collected features can be divided into 
three different modalities from a medical point of view. 
Each modality groups the features as follows:

• Modality 1: Anamnestic data, which includes Age at 
hospitalization, Sex, Cardiovascular disorders, Neu-
rological disorders, Oncological disorders, Diabetes, 
Obesity, Dyspnea and Smoking attitude;

• Modality 2: Hospitalisation data, which includes 
X-Ray at hospitalization, unenhanced chest CT at 
hospitalization, Days of fever at hospitalization, 
Lactate Dehydrogenase (LDH) at hospitalization, C 
Reactive Protein (CRP) at hospitalization, D-dimer at 
hospitalization, Creatinine at hospitalization, X-Ray 
at discharge, unenhanced chest CT at discharge, CRP 
at discharge and Creatinine at discharge;

• Modality 3: Ventilation data, which includes Periph-
eral Oxygen Saturation (SpO2 ) at hospitalization, 
Oxygen Saturation (O2 ) at hospitalization, Days of 
ventilation, Continuous positive airway pressure 
(CPAP) ventilation and Non-invasive ventilation 
(NIV) ventilation.

Such three modalities fed three different classifiers, one 
per modality, constructing decision boundaries in a 
modality-specific feature space. It is worth noting that 
such an approach exploits one of the strategies to gener-
ate a diverse pool of classifiers mentioned in the previous 
subsection, i.e., the use of different feature sets that is the 
more successful in generating base experts that are more 
diverse and informative  [41]. However, different from 
the methods mentioned in “Second approach: an ensem-
ble of learners” section, here we define an approach that 
selects the most competent classifier, a step that can be 
conducted either in a static or dynamic fashion. In static 
selection methods, the expert is selected during the train-
ing phase, according to a selection criterion estimated on 
the validation set, and it will be used to predict the label 
of all samples in the test set. Oppositely, in the dynamic 
selection, the most competent classifier is selected specif-
ically to classify each unknown example, thus exploiting 
the fact that each base classifier is an expert in distinct 
regions of the feature space.

Our approach works with dynamic selection and, 
according to the taxonomy proposed [35], our selection 
criterion belongs to meta-learning. Indeed, we intro-
duce a meta-classifier that, for each input sample, spec-
ifies which is the classifier that has to be used to set the 
final label among the three available. This meta-learner 
receives as input the classification reliabilities provided 
by the three base classifiers. Let us recall that classifi-
cation reliability, commonly referred to as confidence 
or credibility, is a measure in [0,  1] computed using 
information directly derived from the output of the 
expert, by establishing a correspondence between the 
expert’s output and the sample situations in the feature 
space  [42]. This allows taking into account the issues 
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influencing the achievement of satisfactory results, 
such as the noise affecting the samples domain or the 
difference between objects to be recognized and those 
used to train the classifier [43].

Formally, our selection approach works in the train-
ing and testing phases as follows (bottom portion 
of Fig. 1):

• For each fold, Fk ,tr and Fk ,te (where te stands for 
testing) is further subdivided by grouping the fea-
tures according to the three modalities described 
before, denoted by mj , with j = 1, 2, 3 , obtaining 
F
j
k ,tr and Fj

k ,te;
• The training features Fj

k ,tr together with the ground 
truth Lk ,tr are then used to train the expert ej on the 
modality mj;

• After training, each expert ej provides L̂jk ,tr ∈ R
n×1 

and Rj
k ,tr ∈ R

n×1 , which are the predicted labels and 
the reliabilities for all the training samples;

• The meta-classifier is trained using R
j
k ,tr

3

j=1
 , i.e., a 

matrix of size n× 3 concatenating the reliabilities 
returned by each expert, and using as ground truth 
a vector specifying which classifier works correctly 
for each training sample. In the case of multiple 
correct classifiers for a training sample, we speci-
fied the one with the largest reliability.

• During the test phase, each expert ej receives Fj
k ,te 

and provides both L̂jk ,te and Rj
k ,te;

• Still in the test phase, the meta-learner receives 
R
j
k ,te and outputs the index of the expert to be used 

to set the final decision. Formally: 

 and j∗ the index of the selected modality.

For the sake of completeness, let us report that we 
used the Random Forest as a base expert per each 
modality, whereas we considered a pool of different 
models as a meta-classifier. This pool includes a Bayes-
ian classifier, a DT, an SVM, and the XGBoost, using 
their default hyperparameters.

The three approaches in the context of multimodal 
learning
Before delving into model validation, here we discuss 
how the three approaches mentioned so far fit the con-
text of multimodal learning. According to the definition 
offered in [44], multimodal learning combines data from 
different modalities of a common phenomenon, each 
providing separate views, to solve an inference problem. 
In our case, the availability of different information for a 

(1)L̂k ,te = L̂
j∗

k ,te, with j = {1, 2, 3}

patient provides us the opportunity to take advantage of 
such rich information. Techniques for multimodal data 
fusion have been investigated by the research biomedi-
cal community  [44–46]. Traditionally, there exist three 
main strategies to merge different modalities’ informa-
tion: early, late, and joint fusion. In the first technique, 
the features of each modality are merged according to a 
rule into a feature vector to be given to the learner, even-
tually removing correlations between modalities or rep-
resenting the fused data in a lower-dimensional common 
subspace. In the second, the predictions provided by dif-
ferent learners, even one per modality, are aggregated 
by an aggregation rule. The third approach is designed 
for (deep) neural networks since the different modali-
ties are fused at different levels of abstractions offered by 
the hidden layers. Although deep-learning-based mul-
timodal learning should offer several advantages over 
conventional machine-learning methods  [45], it needs a 
certain amount of training data that are not available in 
this application. Furthermore, machine learning methods 
still outperform deep learning approaches on real tabular 
datasets, as experimentally demonstrated in [47].

According to this taxonomy, shallow learning (“First 
approach: shallow machine learning”  section) is a form 
of early fusion, whereas the approach leveraging the 
ensemble of classifiers (“Second approach: an ensemble 
of learners”  section) is a hybrid between early and late 
fusion. Indeed, while each base classifier is trained on all 
the features, the overall approach benefits from the diver-
sity given by the use of several classifiers. The method 
that exploits the multimodality according to a medical-
based data split (“Exploiting the multimodality: classifier 
selection”  section) belongs to late fusion because each 
learner is trained with a different modality, and the deci-
sions are then combined in the selection stage.

Models validation
Model validation for the three approaches consists of 
5-fold stratified cross-validation approach, which pre-
serves the original imbalance between the classes among 
all the folds. For each cross-validation run, the training 
set is composed of four-folds, extracting the validation 
set for data normalization, parameters’ estimation and/
or features’ selection depending on the applied approach, 
as detailed before. Straightforwardly, the test set is com-
posed of one fold and it is used to assess the perfor-
mance. To improve the statistical robustness, the entire 
procedure was repeated 10 times.

With reference to the measured performance score, 
we considered the accuracy, sensitivity, specificity, Area 
Under the ROC Curve (AUC), and F1-score.
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Results and discussion
Table  2 presents the results of the three approaches 
described in the previous section, one per each horizon-
tal section of the table. By column, the table reports the 
model used and then the five performance scores already 
mentioned in terms of average and standard deviation 
across the cross-validation folds. Still by column, we 
highlight in bold the best performance attained, which 
reveals that classifier selection exploiting the multimo-
dality with the SVM as meta learner returns the high-
est scores. It is also interesting to note that, in general, 
the multimodal classifier selection provides values of 
accuracy, specificity, and AUC that are larger than those 
returned by shallow machine learning and by the ensem-
ble of learners.

To deepen the results summarized by the AUC values, 
and to discover possible specific regions where the high-
AUC classifier might perform worse than the other low-
AUC classifier, Fig.  2 plots the corresponding average 
ROC curves1. From left to right, it displays the plots of 
the shallow machine learning approach, of the ensemble 
of classifiers, and of the approach exploiting the modal-
ity selection. In the leftmost plot, we notice that the 
SVM curve lies over the others in a large portion of the 
ROC space, confirming its better performance observed 
in Table 2. The ROC plot in the case of ensemble learn-
ing shows that Random Forest and Majority Voting per-
forms better than the other three approaches, since their 
curves lying closer to the ideal point, thus confirming the 
values observed in Table 2. Furthermore, while there the 
AUC values of the Random Forest and Majority Voting 

are closer, in the plot we notice that the Random For-
est is more liberal than Majority Voting. The rightmost 
chart refers to the approach exploiting the multimodal-
ity when the model used for the selection varies: it is 
worth noting that the SVM lies closer to the ideal point 
in the ROC space, confirming its superiority to the other 
learners. We deem that this happens because the original 
feature space is in R3 and the kernel expansion, together 
with the binary decomposition of the three-class classi-
fication task tackled by the model, helps obtain a linear 
separable space where the SVM effectively learns the 
boundary [48].

Finally, we focus more on the third approach exploit-
ing the multimodality: we investigate to what extent hav-
ing divided the feature set according to a medical point of 
view impacts the results. To this end, we randomly shuf-
fle the features in three sets, therefore losing any medical 
interpretation while keeping the number of modalities 
for the sake of comparison. The results attained using the 
same selection methodology reported in “Exploiting the 
multimodality: classifier selection”  section are reported 
in Table 3, showing that the random organization of the 
descriptors reduces the performance in many scores 
and for different models. Furthermore, in the case of the 
best-performing models, i.e., the SVM in both Tables  2 
and 3 we found that their performance statistically differs 

Table 2 Results of the three proposed approaches when missing continuous and categorical values are imputed by the mean and 
the mode, respectively, as reported in “Data preparation” section

a ExtraTree as base estimator

 bLogistic regression and L2 regularization as base estimator

 cOnly meta learner, Random Forest as base classifier

Method Performance (%)

Accuracy Sensitivity Specificity AUC F1-score

Shallow Machine Learning kNN 72.7± 3.2 81.9± 3.3 56.5± 7.8 74.0± 5.2 79.3± 2.3

SVM 77.0± 4.8 81.6± 5.1 68.9± 5.3 80.6± 2.1 81.9± 4.0

DT 65.9± 5.4 73.2± 11.2 52.9± 9.1 63.1± 4.0 73.1± 5.8

Ensemble classification Majority Voting 74.2± 5.7 84.5± 7.1 56.0± 9.2 79.4± 5.3 80.7± 4.6

Stacking 74.1± 5.0 81.4± 6.4 61.1± 6.5 76.1± 2.4 80.0± 4.3

AdaBoosta
70.7± 1.5 73.1± 2.9 66.2± 3.8 73.6± 1.6 76.2± 1.5

AdaBoostb
72.1± 1.8 71.4± 2.9 73.6± 2.0 76.1± 1.9 76.6± 1.9

Random Forest 77.6± 2.4 89.2± 4.3 57.1± 6.0 81.4± 3.1 83.5± 2.0

Multimodal approachc Bayesian classifier 87.4± 1.5 72.9± 2.5 95.7± 1.6 93.1± 1.2 80.8± 2.3

Decision Tree 82.4± 1.3 67.5± 3.0 90.9± 1.6 89.6± 1.4 73.4± 2.5

SVM 94.6± 1.0 87.3± 2.3 98.8± 0.8 98.0± 0.4 92.1± 1.5

XGBoost 84.5± 1.3 68.2± 4.4 93.8± 2.0 91.8± 1.3 76.0± 2.4

1 We decided to do not show the horizontal and vertical standard deviation 
to make clearer the plots.
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( p < 0.05 ) according to the Wilcoxon-Mann-Whitney 
test.

Discussion
Long COVID, or post-acute sequelae of SARS-CoV-2 
infection, has hampered patient and societal recovery 
from the COVID-19 pandemic. Long COVID is charac-
terized by changing, varied symptoms, making an une-
quivocal definition difficult to construct, with a urgent 
need to understand this syndrome, define therapies and 
early identify patients who will develop it. The patho-
physiology of long COVID is complex and variable in 
terms of immunology, neurobiology, endocrinology, 
physiology  [49]. It is important to note that our study 
was conducted during a period (March 2020 - Septem-
ber 2021) when the original Wuhan strain, the Alpha 
variant (B.1.1.7), and the Delta variant (B.1.617.2) were 
predominant in Italy. These strains, particularly Delta, 
were associated with more severe disease outcomes 
and higher hospitalization rates compared to the Omi-
cron variant, which emerged after the study period. 
Omicron, while more transmissible, has generally been 
associated with milder clinical outcomes, particularly 
in vaccinated individuals. The relevance of our find-
ings, particularly regarding pulmonary sequelae, may 

be limited when applied to the Omicron variant and 
future strains, given the different clinical manifesta-
tions of the disease. Future studies are needed to evalu-
ate the impact of evolving variants on the development 
of Long COVID and its long-term outcomes. Despite 
these differences in variants, our study provides valu-
able insights into the long-term pulmonary sequelae of 
severe COVID-19 infections, particularly for patients 
hospitalized during the earlier phases of the pandemic. 
The pathophysiology of Long COVID remains complex 
and variable, and our findings underscore the impor-
tance of early identification and management of patients 
at risk of developing long-term complications, regard-
less of the strain involved.

A comparison of the results obtained through the pro-
posed method with those currently available in the lit-
erature reveals a general improvement in the accuracy 
of assessing the risk of developing Long COVID. This 
enhancement surpasses existing findings by utilizing clin-
ical information collected from hospitals during patients’ 
hospitalization periods. This approach offers signifi-
cant advantages in terms of data collection efficiency, as 
these are standard pieces of information routinely gath-
ered and monitored in clinical practice during hospitali-
zation. Furthermore, the proposed method effectively 

Fig. 2 ROC plots of the three approaches. From left to right, it displays the plots of the shallow machine learning approach, of the ensemble 
of classifiers and of the approach exploiting the modality selection

Table 3 Results of the multimodal approach when the features are randomly divided. As in Table 2, missing continuous and 
categorical values are imputed by the mean and the mode, respectively, as reported in “Data preparation” section

Meta-learner Performance (%)

Accuracy Sensitivity Specificity AUC F1-score

Bayesian classifier 86.4± 1.6 69.2± 3.5 95.8± 1.3 92.7± 1.8 78.3± 2.7

Decision Tree 76.4± 1.4 55.2± 2.9 88.8± 1.1 83.9± 2.1 63.1± 2.5

SVM 91.6± 0.7 79.2± 2.6 99.2± 07. 98.0± 0.5 86.5± 1.3

XGBoost 81.4± 0.9 59.3± 2.1 93.3± 01.2 88.0± 1.7 68.7± 1.6
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leverages various data types typically considered upon 
patient admission and monitored throughout their stay, 
including medical history, hospitalization data, and ven-
tilation information. From a technical perspective, it is 
clear that utilizing a meta-classifier designed to optimize 
predictions from multiple expert classifiers can effec-
tively resolve potential conflicts in decision-making. This 
capability enhances the accuracy of assessing a patient’s 
risk of developing Long COVID, leading to significant 
improvements over traditional methods that depend on 
individual classifiers. These classical approaches often 
demonstrate increased susceptibility to bias, particularly 
when working with limited datasets.

Early identification of post-COVID-19 sequelae is 
crucial for providing appropriate care and support to 
affected individuals. By identifying high-risk patients, 
healthcare providers can implement targeted interven-
tions, regular follow-ups, and personalized treatment 
plans to mitigate the long-term effects of COVID-
19 and improve patient outcomes. In this respect, by 
developing three AI-based approaches we have dem-
onstrated the possibility of predicting possible pulmo-
nary sequelae that can represent the cause of the long 
COVID syndrome. This can assist healthcare profes-
sionals in identifying patients who are more suscepti-
ble to developing long COVID and provide appropriate 
care and support to mitigate its long-term effects. 
More specifically, we believe that this method can lead 
to a twofold concrete benefit. From the physician’s 
perspective, it can improve informed decision-making 
by allowing physicians to identify patients at high risk 
of Long COVID early in treatment. Such identification 
facilitates the tailored follow-up care and monitoring 
strategies, thus improving overall patient management. 
Furthermore, by predicting which patients are more 
likely to develop Long COVID, healthcare providers 
can allocate resources more effectively, ensuring that 
those at higher risk receive appropriate attention and 
interventions. Moreover, the presented approach could 
assist clinicians in enhancing patient communication. 
In fact, by providing a clear risk assessment, it fosters 
discussions with patients regarding their individual 
risk factors, emphasizing the importance of follow-up 
care and potential lifestyle adjustments post-discharge. 
The integration of a user-friendly interface-where 
clinicians can input demographics, medical history, 
and laboratory values-can further streamline work-
flow efficiency, allowing for rapid assessments during 
patient consultations. Furthermore, from the patients 
side, the development of such a predictive model 
offers the benefit receiving a quantifiable risk score 
for developing Long COVID based on their specific 
clinical data, thereby empowering them with critical 

knowledge about their health status. This understand-
ing, in turn, can motivate patients to engage in proac-
tive health management behaviors, such as adhering 
to follow-up appointments and implementing recom-
mended lifestyle modifications and agree a shared 
decision-making with the healthcare providers, stimu-
lating collaborative discussions regarding preventive 
measures and treatment options.

Nevertheless, our study presents some limitations. 
First, we included only patients hospitalized for COVID-
19, without considering patients treated only at home. 
Second, the study requires further validation on diverse 
and larger populations to ensure its generalizability 
and effectiveness. The availability of more training data 
would give the chance to investigate deep learning-based 
approaches that immensely depend on the availability of 
large training data to reduce the risk of over-fitting. Third, 
due to the retrospective nature of the study, we included 
clinical data and laboratory tests which were most fre-
quently collected at the time of hospitalization, but other 
clinical parameters, such as other comorbidities or blood 
tests could not be analysed. Also the radiological pres-
entation of the disease could have been included in the 
investigation, even if, in the absence of updated univer-
sally recognized international guidelines on the imaging 
modality and timing, we preferred to avoid the inclu-
sion of examinations associated with radiation exposure, 
preferring clinical and laboratory parameters. Addition-
ally, past SARS-CoV-2 infections prior to hospitalisation 
were not systematically accounted for, and COVID-19 
vaccination status was not consistently available for all 
patients. Both previous infections and vaccination status 
could potentially influence the development of pulmo-
nary sequelae and Long COVID. These factors were not 
included in the present analysis and represent important 
limitations of the study. Future studies should aim to 
include these variables to provide a more comprehensive 
assessment of Long COVID outcomes.

Finally, we acknowledge that while our current sample 
size is sufficient to conduct a valid analysis, it may not 
ensure the statistical robustness necessary to prevent 
generalisation bias. Consequently, we are committed to 
expanding the cohort size, which will not only enhance 
the reliability of our findings but also enable us to inte-
grate state-of-the-art deep learning techniques into our 
methodology. Furthermore, the integration of an external 
dataset will be essential to ensure a more equitable com-
parison of the results. This step will enhance the validity 
of our findings and provide a broader context for inter-
pretation, while improving the overall rigour and applica-
bility of our research.
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Conclusion
With over 765 million documented infections and 7 mil-
lion deaths worldwide, the COVID-19 pandemic contin-
ues unabated still in fall 2023. An important aspect of the 
disease is the post-COVID syndrome, which is not neces-
sarily related to the severity of the main symptoms, but 
still affects a large portion of the pandemic’s victims. Pre-
dicting its development represents one of the most ambi-
tious challenges, particularly with regard to pulmonary 
sequelae and using only clinical data collected during the 
patient’s hospitalization.

In this context, we collected here demographic, clini-
cal, and laboratory test data and, then, we proposed three 
AI-based approaches that have proved to be a valuable ally 
against this syndrome. They span from shallow machine 
learning to classifier selection driven by a medical-inspired 
multimodal analysis that, as an indirect observation of the 
results attained, confirms that feature engineering is a cru-
cial part of tackling real-world challenges.

Future work is directed towards different issues. First, 
we plan to address the limitations mentioned at the end 
of the previous “Discussion” section, enlarging the data-
set not only in terms of cardinality but also considering 
other clinical parameters and possible correlation 
with pulmonary function at spirometry. A second 
direction of future investigation is to explore poten-
tial mechanisms underlying the development of long 
COVID, improving also our understanding of the evolu-
tion of post-COVID-19 sequelae.
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