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Abstract
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and data utilization.

Background: Reinforcement learning (RL) provides a promising technique to solve complex sequential decision
making problems in healthcare domains. Recent years have seen a great progress of applying RL in addressing
decision-making problems in Intensive Care Units (ICUs). However, since the goal of traditional RL algorithms is to
maximize a long-term reward function, exploration in the learning process may have a fatal impact on the patient. As
such, a short-term goal should also be considered to keep the patient stable during the treating process.

Methods: We use a Supervised-Actor-Critic (SAC) RL algorithm to address this problem by combining the long-term
goal-oriented characteristics of RL with the short-term goal of supervised learning. We evaluate the differences
between SAC and traditional Actor-Critic (AC) algorithms in addressing the decision making problems of ventilation

Results: Results show that SAC is much more efficient than the traditional AC algorithm in terms of convergence rate

Conclusions: The SAC algorithm not only aims to cure patients in the long term, but also reduces the degree of
deviation from the strategy applied by clinical doctors and thus improves the therapeutic effect.
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Background

In the healthcare field, a clinical treatment plan consists
of a series of decisions that determine the type of treat-
ment and the dose of drug based on the current health
condition and past treatment history of a patient. There-
fore, the clinical treatment is usually characterized by a
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sequential decision-making process that lasts for a long
period. RL aims to solve this kind of sequential decision-
making problems when an agent chooses an action at
each time step based on its current state, and receives an
evaluative feedback and the new state from the environ-
ment [1]. In the past decades, applying RL for more effi-
cient decision-making has become a hot research topic in
healthcare domains [2], generating a great breakthrough
in treatment of diabetics [3], cancer [4], sepsis [5], and
many other diseases [6-8].
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In the clinical treatment, clinicians should achieve the
long-term goal of curing the patients, but at the same time,
the dosage of the medicine should be controlled in daily
range so as to maintain the stable condition of patients.
The short-term object is also critical as it can avoid addi-
tional risk to patients due to improper dosage. Traditional
RL, however, mainly considers inherent time delay that
is assessed by long-term goals, but lacks of consideration
of short-term effect. This may lead to a large cumula-
tive reward for the learned strategy, but this strategy can
deviate from the clinical treatment strategy significantly.
In this paper, a Supervised-Actor-Critic (SAC) [9] algo-
rithm is applied to solve the above problem. The agent of
SAC takes curing a patient as the long-term goal, and the
deviation degree of the treatment between the SAC agent
and the clinician as the short-term goal. An expert strat-
egy is defined as a Supervisor, which is used to guide the
learning process to reduce the additional treatment risk to
patients.

In the following sections, we first introduce some recent
research progress of applying RL methods in ICUs. Then,
we present the data preprocessing details and formalize
the decision making process of mechanical ventilation
and sedative dosing in ICUs. We then introduce the SAC
algorithm in detail and discuss the results and analysis
between SAC and AC. Finally, we conclude this paper with
future works.

Related work

The development of artificial intelligence (AI) tech-
niques and data processing methods enable optimal
diagnose, treat and mortality prediction of patients
in ICUs [10]. As one of the core AI technologies,
RL has been widely applied in realizing intelli-
gent decision-making in ICUs [2]. The authors
[11-13] applied RL algorithms in addressing the
administration of intravenous (IV) and maximum
vasopressor (VP) in sepsis treatment. Padmanabhan
et al. [14, 15] proposed an RL-based control strategy for
ICU sedation regulation. Prasad et al. [16] applied fitted
Q iteration with extremely randomized trees to determine
the best weaning time of invasive mechanical ventilation.
Utomo et al. [17] proposed a graphical model that was
able to show transitions of patient health conditions and
treatments for better explanability, and applied RL to
generate a real-time treatment recommendation in ICUs.
Nemati et al. [18] used deep RL methods to calculate
optimal unfractionated Heparin from sub-optimal clinical
ICU data. Yu et al. [19] used inverse RL to infer the reward
functions when dealing with mechanical ventilation and
sedative dosing in ICUs. Chang et al. [20] proposed a
Q-learning method that jointly minimized the measure-
ment cost and maximized predictive gain, by scheduling
strategically-timed measurements in ICUs. Unlike all the

Page 2 of 8

existing studies that only consider the long term effects
of treatment using RL methods, we also consider the
short-term effects of treatment in terms of deviation from
the doctor’s clinical treatment expectations, in order to
ensure safety during the learning process.

Preprocessing

Ventilation and sedation dosing in ICUs

Effective ventilation is one of the most commonly
used methods in the treatment of patients in ICUs.
These patients are usually featured with acute respira-
tory failure or impaired lung function caused by some
underlying factors, such as pneumonia, sepsis or heart
disease. In addition, respiratory support is required after
major surgery for consciousness disorders or weakness.
Whether a patient is ready for extubation is determined
by some major diagnostic tests, involving screening for
potential disease resolution, hemodynamic stability, cur-
rent ventilator assessment settings and awareness levels,
and the final series of spontaneous breathing tests (SBTs).
Serious discomfort and longer time stay in ICUs will occur
if a patient must be reintubated due to the failure of
breath test and other reasons within her first stay of 48 to
72 h.

In ICUs, another major treatment means is the use
of sedative doses, which is essential for maintaining the
patient’s physiological stability. According to a relevant
research, there is a certain correlation between the tim-
ing of ventilation and the application of sedatives in ICUs.
Therefore, it is necessary to propose more effective venti-
lation and dosing methods so as to improve the patient’s
treatment effect, and reduce the patient’s residence time
and associated cost in ICUs.

Data processing

Firstly, we extract 8860 admissions from adult patients
in MIMIC-III database [21], and exclude those admis-
sions who were kept under ventilation for less than 24
hours, or failed being discharged from ICUs at the end
of admission. The MIMIC is a free resource-rich ICU
research database, which was first published in 2006 by
the Computational Physiology Laboratory of the Mas-
sachusetts Institute of Technology (MIT), the Beth Israel
Dikang Medical Center (BIDMC) and Philips Medical
Center. It contains medical data of nearly 40,000 adults
and 8,000 newborns in ICUs. The median age of adult
patients was 65.8 years, of which 55.9% were males
and 11.5% were hospitalized. The database is mainly
used for academic and industrial research, offering a
variety forms of data in ICU including demographic
characteristics, vital signs, experimental testing, diag-
nosis, dosage of drugs, length of stay and other crit-
ical care unit data. We use support vector machines
(SVM) [22] to fit the physiological measured values
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at different measurement times. After preprocessing,
we take 10 minutes as the frequency of time series from
admission time to discharge time. Please refer to [19] for
more details in data processing.

Formulation of the MDP

Following previous studies, the decision-making problem
is modeled as an MDP by a tuple of < S, A, P,R >, where
s; € Sisapatient’s state at time ¢, a; € A is the action made
by clinicians at time ¢, P (s¢+1|ss, a¢) is the probability of
the next state after given the current state and action, and
r (st ar) € R is the observed reward following a transition
at time step . The goal of an RL agent is to learn a policy
to maximize the expected accumulated reward over time
horizon T by:

T
RT(s0) = lim Eoigms D ¥'r (sear)
t+1

where the discount factor y determines the relative weight
of immediate and long-term rewards.

The MDP of ventilation and sedation dosing in ICUs can
be express as follow.

State: A patient’s state is composed of 13-dimensional
features, including respiration rate, heart rate, arterial pH,
positive end-expiratory pressure (PEEP) set, oxygen sat-
uration pulse oxymetry (SpO2), inspired oxygen fraction
(FiO2), arterial oxygen partial pressure, plateau pressure,
average airway pressure, mean non-invasive blood pres-
sure, body weight (kg) and age.

Action: The two discrete actions regarding ventilation
are defined as whether weaning off a patient from the ven-
tilator. As for the sedative, the propofol was discretized
into four different actions. Ultimately, there are eight
action combinations.

Reward: The reward function r¢y is defined as ry41 =

i vent o, . . i
ry jf‘l’ls +r 7y it o [16,19], in which r}’_’ﬁ‘fls evaluates

the effect of these actions on the physiological stability of

the patient within a reasonable range, rtvinlt o estimates

the performance of ventilation being stopped at time £+ 1,
and r}’i"f °" simply represents the cost per hour on the
ventilator.

Methods

Machine learning can be divided into three -cate-
gories: supervised learning, unsupervised learning and
RL. Supervised learning continuously reduces the error
between the predicted value and the original value by the
tagged data. The common problems of supervised learn-
ing application are classification and regression. Unsu-
pervised learning, however, aims at finding correlation of
data without labels in clustering and dimension reduction.
Unlike traditional supervised learning methods that usu-
ally rely on one-shot, exhaustive and supervised reward
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signals, RL tackles with sequential decision making prob-
lems with sampled, evaluative and delayed feedback
simultaneously [2]. The sequential decision making pro-
cess of medical problems usually includes multiple steps in
sequence, and RL is good at dealing with such problems.
We can build an MDP model and use an RL algorithm to
learn an optimal treatment strategy. The long-term goal
of RL is to maximize the cumulative reward value, which
means that patients must recover, but there is also a risk
of drug use that deviates from clinician guidance. There-
fore, we incorporate clinician guidance in the framework
of RL such that the action of drug selection is in line with
the guidance of clinicians.

Algorithm principle

The framework of SAC algorithm is shown in Fig. 1.
Based on AC, a supervised learning mode (Supervisor) is
added to the Actor network, which changes the gradient
direction and updates the hyperparameters of the Actor
network [23]. During the Actor network optimization, the
Supervisor is optimized at the same time. The Critic com-
putes the value functions based on the Reward and State
in current Environment, then passes the TD error to the
Actor. The Actor updates the strategy based on the Critic’s
TD error and the supervision error from the Supervisor.

Actor network update

The Actor network obtains the best strategy by updating
hyper-parameters 6. The input of this network is state and
the output is action. We use the TD error and supervised
learning error to optimize hyper-parameter 6. To this end,
we propose the following formula:

J(0) = A = e)Jre(0) + € (—JsL(0))

where Jrr () represents the optimization goal of an RL
algorithm, which represents the reward value expectation
of the trajectory under the current strategy, and Js; (0) is
the optimization goal of supervised learning, which rep-
resents the degree of difference between the predicted
action and the labeled action. Jgz () is usually expressed
in the form of variance or conditional entropy between
the predicted value and the original value. € is a weight-
ing parameter to balance the contribution between RL and
supervised learning.

Our goal is to maximize the reward value and make less
difference in the actions between the RL agent’s actions
and the clinician’s actions in the process of optimizing the
strategy. We use the method of stochastic gradient descent
[24] to optimize the parameter 6 as follows:

s=ora(a- o2, (L210))

where « represents the learning rate.
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Fig. 1 The framework of SAC algorithm

Critic network update

The Critic network guides the learning of the Actor net-
work, while the Actor network outputs the final treatment
strategy. The Critic network estimates the action-state
reward value Q,, (s, ). During learning, the Critic network
outputs a predicted Q value Q(ss, a;) through Qu(s, a).
The update of the Critic network parameter 6 is as follows:

J ) = B, [ (Qutstrar) = )]

ye =r (e ar) + y QL (se1, o (Se41))

where J(w) is the loss function of the Critic network, and
Q" is the target network parameter of the Critic network.

Results

Experimental setup

Since the feature is not always continuous and it may be a
classification value, it is meaningless to compare such val-
ues. For example, [Red, Yellow, Blue] can be mapped to [0,
1, 2] to reflect their relationships but this mapping does
not capture the relationship within the original feature
attributes. This problem can be solved by using a one-hot
encoding by using an N-bit status register to encode the N
states, each state having its own separate register bit, and
only one bit is active at any time [25]. Taking the above
problem as an example, after using the one-hot encoding,
[red, yellow, blue] can be encoded as [[0,0,1],[0,1,0],{1,0,0]]
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Fig. 2 Learning dynamics in terms of Q values regarding ventilation using SAC and AC algorithms
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Fig. 3 The process of SAC and AC algorithms evaluating the accuracy of the test set on ventilation

so that the original relationship of features can be main-
tained. In our formulation, the actions for the ventilation
and sedative doses are encoded using the one-hot encod-
ing, separately.

In the MDP of ventilation, the state is the 13-
dimensional patient’s physiological characteristics, venti-
lator parameters, and current ventilation status. In AC
and SAC, the Actor network, the Critic network and the
Supervisor network all adopt a three-layer neural net-
work. The Actor network has 20 neurons in the hidden
layer with the ReLU activation function, and two neurons
in the output layer with Softmax as the activation func-
tion. The Critic network has 20 neurons in the hidden
layer, using the ReLU activation function, and a neuron in
the output layer without using an activation function. The
Supervisor network has 9 neurons in the hidden layer and
two neurons in the output layer, and the Softmax is also
used as the activation function for the output layer.

In the MDP model of sedative dose, the state is a 14-
dimensional feature of the previous 13-dimensional fea-
ture combined with the ventilation action. The action is a
sedative dose, which is encoded by the One-Hot encoding
to form a four-category option. The network structure of
it is the same as the MDP model of ventilation.

Experimental results and analysis

Figure 2 shows the results in the ventilation experiment,
where the vertical axis is the Q value of the sample data,
and the horizontal axis represents the training process.
As the training proceeds, the Q value decreases gradu-
ally. Finally, both SAC and AC converge and reach a stable
level. The trend of decline is basically the same, illustrating

that both SAC and AC have a similar network structure for
Q value prediction. However, SAC converges a bit faster
than AC from a slightly higher initial values. Figure 3
shows that the Accuracy rate (AR) of the two algorithms
has increased significantly with the increasing of episodes,
and the stability level is above 95%. However, it can be
seen that the convergence speed of the SAC algorithm is
much faster than the AC algorithm. It takes 20 episodes
for SAC to converge to 99% AR, and 60 episodes for AC.
This is due to the Supervisor network in SAC, which can
update the Actor network with simultaneous guidance of
both the Supervisor part and the Critic part.

To further validate the effectiveness of SAC, we test the
learned policy on the testing sets of expert and non-expert
data sets. As shown in Table 1, both SAC and AC algo-
rithms have an AR of over 99% on the testing set. The
AR of SAC is slightly higher than that of AC, which indi-
cates that the strategy learned by SAC is closer to the real
medical strategy than that by AC. Meanwhile, it is worth
noting that SAC is more accurate on expert data sets than
on other data sets, while the AR of AC algorithm is com-
paratively balanced on each data set. It shows that the
strategy learned by SAC is closer to the strategic plan of
the experts.

Table 1 The AR of learned strategies using SAC and AC
algorithms on the test data set

Strategy Validation  Expert Common single Multiple
set data intubation intubation

SAC 99.55% 99.57% 99.51% 99.55%

AC 99.48% 99.47% 99.46% 99.49%
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Fig. 4 Learning dynamics in terms of Q values regarding sedative using SAC and AC algorithms

Figure 4 gives the experiment results for the sedative
dosing. Since the learning data and the network structure
are consistent during the process of ventilation experi-
ment, the convergence trend of the Q value of SAC and
AC algorithms is roughly the same. Figure 5 shows the
mean square error (MSE) between the predicted and orig-
inal values of the sedative dose on the train set. It can be
seen that both SAC and AC can converge to a stable MSE
after 10000 episodes. However, after that, the convergence
value of SAC is lower than that of AC, which indicates
that the strategy learned by SAC is closer to the clini-
cian’s treatment strategy than that by AC. Besides, SAC is

relatively more stable than AC in the final episode. This
is because SAC introduces a supervised learning process
such that a higher deviation from the clinician’s strat-
egy can be reduced to a smaller value. The AC algorithm
without supervision network only aims at maximizing the
cumulative reward value, causing great fluctuations in the
learning process.

Discussions

We further analyze the differences between MSE and AR
of two algorithms on the test set as shown in Table 2.
In terms of AR, the SAC algorithm is slightly better than

2:500 - —
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s
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u
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a
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2.350 -
0 10000 20000 30000 40000
input data
Fig. 5 MSE reduction process of SAC and AC algorithms on the train set for sedative dosing
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Table 2 The AR and MSE of learned polices using SAC and AC
algorithms on the test data set

Strategy MSE AR
SAC 249 41.5%
AC 3.10 41.5%

the AC algorithm, indicating that the strategy learned
by SAC is closer to the real medical strategy than that
of the AC algorithm. Although SAC and AC have the
same AR on test set, SAC has a smaller MSE than AC.
Thus, the SAC algorithm is closer to the real treat-
ment strategy than the AC algorithm under the same
AR. Table 3 shows the performance of two algorithms
in expert data, single intubation and multiple intubation
data. The performance of SAC is better than AC in MSE
and AR on expert data set and non-expert data set. Espe-
cially, in multiple intubation data set, the AR of SAC
is 6% higher than AC, and the MSE is reduced by 0.8.
This illustrates that the goal of the clinician is indeed
to cure the patient, but it is necessary to maintain a
stable state of the patient under complex medical envi-
ronments. Therefore, the introduction of supervised RL
is more in line with the medical settings than the simple
RL alone.

Conclusions

In this paper, we first introduce the principle and advan-
tages of incorporating supervised learning into RL, and
then establish the MDP for mechanical ventilation and the
dose of sedatives for patients in ICUs. During the pro-
cess of learning the strategies, SAC not only achieve the
long-term goal of curing patients, but also meet the short-
term goal of approaching the clinician’s strategy gradually.
Compared with the AC algorithm, SAC is more suitable to
solve the problem of ventilation and the dose of sedatives
in ICUs. Finally, we validate that SAC algorithm is slightly
better than the AC algorithm in matching the clinician
strategy, and its convergence speed and data utilization
efficiency are much higher than AC. In the future, we will
apply the SAC algorithm to other healthcare domains such
as HIV and Sepsis to achieve more efficient and stable
dynamic treatment regimes.

Table 3 The AR and MSE of learned polices using SAC and AC
algorithms on expert data, single intubation and multiple
intubation

Expert data Single intubation Multiple intubation

Strategy

MSE AR MSE AR MSE AR
SAC 2.52 37% 2.71 38% 2.28 47%
AC 3.01 34% 3.15 35% 3.08 41%
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