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Abstract 

Applying machine learning to healthcare sheds light on evidence-based decision making and has shown promises 
to improve healthcare by combining clinical knowledge and biomedical data. However, medicine and data science 
are not synchronized. Oftentimes, researchers with a strong data science background do not understand the clinical 
challenges, while on the other hand, physicians do not know the capacity and limitation of state-of-the-art machine 
learning methods. The difficulty boils down to the lack of a common interface between two highly intelligent 
communities due to the privacy concerns and the disciplinary gap. The School of Biomedical Informatics (SBMI) at 
UTHealth is a pilot in connecting both worlds to promote interdisciplinary research. Recently, the Center for Secure 
Artificial Intelligence For hEalthcare (SAFE) at SBMI is organizing a series of machine learning healthcare hackathons 
for real-world clinical challenges. We hosted our first Hackathon themed centered around Sudden Unexpected Death 
in Epilepsy and finding ways to recognize the warning signs. This community effort demonstrated that interdisci‑
plinary discussion and productive competition has significantly increased the accuracy of warning sign detection 
compared to the previous work, and ultimately showing a potential of this hackathon as a platform to connect the 
two communities of data science and medicine.
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Introduction
Applying machine learning to healthcare sheds light on 
evidence-based decision making and has shown prom-
ises to improve healthcare by combining clinical knowl-
edge and biomedical data. However, medicine and data 
science are not synchronized. Oftentimes, researchers 
with a strong data science background do not understand 

the clinical challenges, while on the other hand, physi-
cians do not know the capacity and limitations of state-
of-the-art machine learning methods. The difficulty 
boils down to the lack of a common interface between 
two highly intelligent communities due to the privacy 
concerns and the disciplinary gap. Data scientists have 
limited opportunities to access real healthcare data and 
many advanced machine learning models do not account 
for unique characteristics in clinical challenges. The lack 
of interpretability of black-box machine models can also 
reduce the enthusiasm for clinicians to apply them in 
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practice. To address these challenges, we need to provide 
access to data and “formulate” clinical problems (often 
messy and complicated) in an informatics friendly way 
for algorithmic development. This is a critical mission 
for training the next generation of biomedical informati-
cians and accelerating healthcare research with machine 
learning. The School of Biomedical Informatics (SBMI) 
at UTHealth is a pilot in connecting both worlds to pro-
mote interdisciplinary research. Recently, the Center for 
Secure Artificial Intelligence For hEalthcare (SAFE) at 
SBMI is organizing a series of machine learning health-
care hackathons for real-world clinical challenges, which 
are carefully prepared for data science students/train-
ees to investigate and compete for best solutions with a 
dual mission for education and research. We developed 
a software platform “Interactive Data Analysis Research 
Ecosystem (IDARE)” to provide a secure platform with 
provisioned data and necessary computation resources 
to offer a unique opportunity for students/trainees to 
tackle emerging clinical challenges raised by physicians. 
Partnering with Texas Institute for Restorative Neuro-
technologies (TIRN), we hosted our first Hackathon on 
September 24–25, 2019 themed centered around Sudden 
Unexpected Death in Epilepsy (SUDEP) and finding ways 
to recognize the warning signs. We incentivized smart 
young minds to join a 24-h Hackathon competition with 
the general sponsorship by Elimu Inc.

Competition design
Problem description
Epilepsy is a neurological disorder marked by sudden 
recurrent episodes of sensory disturbance, loss of con-
sciousness, or convulsions, associated with abnormal 
electrical activity in the brain [1, 2]. Patients with epi-
lepsy have sudden and unforeseen seizures regardless 
of the circumstance. Although it is rare, approximately 
3000 people in the United States die every year from Sud-
den Unexpected Death in Epilepsy (SUDEP) because of 
a shutdown of brain, cardiac, and breathing functions. 
Prolonged postictal generalized electroencephalographic 
(EEG) suppression (PGES) appears to identify refractory 
epilepsy patients who are at risk of SUDEP. It has been 

reported that the relative risk of SUDEP is elevated with 
PGES duration of > 50 s; the relative risk increases by 
1.7% for each 1-s increase in the duration of PGES [3]. 
Since generalized tonic-clonic seizures (GTCS) are the 
most significant risk factor for SUDEP and PGES most 
often occurs after GTCS, PGES has been considered as a 
potential biomarker of SUDEP risk [3–5].

Determining the duration of PGES clinically has heav-
ily relied on visual analysis of EEG signals, which requires 
extensive clinical experts’ manual review to annotate the 
end of PGES or the onset of the first intermittent slow-
wave (ISW) activity, and sometimes shows inconsistent 
agreement between experts [6]. Therefore, it is highly 
desirable to develop automatic PGES detection tools to 
alleviate clinical experts’ manual efforts.

Signal processing and machine learning have been 
extensively used for epileptic seizure detection [7]. They 
are based on extracting features from time domain, fre-
quency domain, or wavelet (time and frequency) domain 
together with classification algorithms. The time domain 
features include variance, skewness, and kurtosis [8]; 
the frequency domain features include energy or ampli-
tude (peak frequency, median frequency) [9]; the wavelet 
domain features include spectrogram. These extracted 
features are then fed into various classification algorithms 
such as a k-nearest neighbor, support vector machines, or 
random forest. Recently convolutional neural networks 
have been used with raw EEG signals [10]. While epilep-
tic seizure detection using EEG has been widely studied, 
there has been little attempt to develop automatic PGES 
detection models [6, 11]. A critical challenge of applying 
machine learning approaches to detect the end of PGES 
is that EEG signals may be noisy due to multiple poten-
tial sources of artifacts, such as eye movement, breathing, 
and muscle artifacts. To tackle this challenge, we organ-
ized a 24-h-long Hackathon as a community effort to 
develop innovative algorithms to detect the end of PGES. 
The objective of this Hackathon was to build machine 
learning models to detect the transiting point from the 
offset of PGES to the onset of the first ISW within a pre-
defined latency period (no later than 10 s after actual 
onset) (Fig. 1).

Fig. 1  End of PGES and onset of first intermittent slow activity. Our objective is to detect the transition of PGES to the slow activity during the 
latency period. GTC​ generalized tonic-clonic, PGES postictal generalized electroencephalographic suppression
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Patient cohort
We analyzed 5-min-long 168 EEG signals after GTCS, 
collected from TIRN. The clinical annotation of the 
end of suppression was obtained by clinical experts. 

The patient’s demographic information is described in 
Table  1. We split the PGES patients into 80% training 
(n = 134) and 20% test (n = 34).

EEG signal preparation
The EEGs were sampled from 13 electrodes that capture 
temporal and spatial patterns of the brain. We used 10 
standard bipolar EEG montages (pairwise offsets of two 
adjacent electrodes): Fp1-F7; F7-T7; T7-P7; P7-O1; Fp2-
F8; F8-T8; T8-P8; P8-O2; Fz-Cz; and Cz-Pz from the 13 
electrodes (Fp1, Fp2, O1, O2, F7, F8, T7, T8, P7, P8, Fz, 
Cz, Pz). We aligned the various sampling rates (ranging 
from 150 to 256 Hz) to 200 Hz.

Submission
Submissions were judged on the accuracy of detec-
tion—area under the receiver operating curve (AUC). 
Participants were asked to identify whether given short 
segments of EEG signals (i.e., clips) contain the onset of 
slow activity or not. The slow activity clip did not include 
slow activity signals beyond 10 s after onset.

Baseline model
The organizers developed a baseline model to assess the 
difficulty of the hackathon problem and guide partici-
pants to avoid pitfall using the organizer’s trial-and-error. 
The organizer’s baseline model was based on augmenting 
the sequence via cropping and applying a deep learning 
method. The baseline model cropped one EEG record-
ing during PGES into multiple crops to boost the training 
sample size from the limited number of subjects (Fig. 2). 
We adopted the cropping strategy from object recogni-
tion in images and movement-related EEG signals [12, 
13]. We set a sliding time window of fixed length with 
a cropping stride. We assume that real-time detection 
should be made no later than a certain latency period 
after PGES ends. Per-crop labels were positive if the 
crops reach or pass the end of PGES; negative if the crops 
lie in PGES. After cropping, we have a total of 296,188 
crops—240,511 for training (80%) and 55,677 for test 
(20%). After performing threshold analysis for the length 
of time window, stride, and detection latency period, we 
set them 10 s, 100 ms, and 10 s, respectively. That is, all 
detection was based on the 10 s time window without 
seeing the future (no retrospective review).

Table 1  Patient’s demographic information

Mean age at onset of epilepsy, year 20.043

Sex

Female 71

Male 57

Etiology

Idiopathic 87

Cryptogenic 3

Hippocampal sclerosis 10

Cortical dysplasia 6

Post encephalitis 3

Post traumatic 3

Tumor 9

Vascular malformations 3

Cerebral infarction 2

Structural 2

Seizure type

Complex partial 2

Complex partial—generalized tonic–clonic 98

Complex partial—generalized clonic 2

Primary generalized tonic–clonic 22

Myoclonic seizure 2

Epilepsy syndrome

Left temporal lobe 34

Right temporal lobe 17

Bitemporal lobe 10

Left frontal lobe 8

Right frontal lobe 5

Frontal lobe (non-lateralizable) 5

Left occipital epilepsy 1

Right occipital epilepsy 0

Left hemisphere 14

Right hemisphere 11

Idiopathic generalized 24

MRI

Lesion positive 62

Lesion negative 51

Fig. 2  Data augmentation. If the crop reaches the end of PGES, then the crop was set as positive (i.e., label = 1), otherwise negative (i.e., label = 0)
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Once we extracted the crops, we formulated the detec-
tion of the end of suppression as a binary classification 
task in which the model classifies whether the current 
time window crop reaches the end of suppression. As 
one of non-linear classifiers, we designed a customized 
convolutional neural network (CNN) for EEG signals, 
inspired by EEGnet [14]. The proposed model integrated 
feature extraction and classification in an end-to-end 
manner, which allows us to avoid time-intensive feature 
engineering of EEG signals. It encoded the temporal 
trends and spatial trends at a time (Fig. 3). The first layer 
was 1-dimensional convolution (with a filter size of 18) to 
convolute and aggregate temporality of raw EEG signals. 
These multiple temporal filters can implicitly learn the 
intensity of different frequency bands. The second layer 
was a 1-dimensional convolutional layer (with a filter 
size of 101) for spatial aggregation across different mon-
tages in the scalp. This convolution can capture distinct 

activation in different scalp areas with different frequency 
bands. Then we applied depthwise temporal convolution 
and pointwise convolution to aggregate spatio-temporal 
features and in turn reduce the feature size. The final 
layer was a fully-connected one with flattened features. 
We applied batch normalization (BN), Relu non-linear 
activation, and dropout between these convolutional 
layers. Training inputs were the fixed-length crops and 
label per crop was a binary indicator whether the crops 
reach the end of PGES. The loss function was binary 
cross-entropy and the optimizer was Adam implemented 
in Pytorch. Our proposed model continuously detected 
the end of PGES at every 100 ms. The proposed model 
achieved AUC of 0.77 within detection latency of 10 s. 
We visualized the estimated probability computed from 
the proposed model and compared it with the actual 
onset time of intermittent slow (Fig 4). We observed that 
for some cases the estimated probability is aligned with 

Fig. 3  CNN-based classifier for real-time suppression detection. Input were raw EEG segments cropped from sliding windows during PGES and 
latency periods. Output was the probability that PGES ends
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the raw EEG signals (Fig. 4a); whereas in other cases, the 
estimated probability does not hit the right onset time 
(Fig. 4b).

Competition results
We received 42 registrations from five universities in 
the greater Houston area (Rice University, Texas A&M 
University, University of Houston, Prairie View A&M 
University, and University of Texas Health Science 
Center at Houston). Among them, 12 contestants sub-
mitted their final results during the 24 h. In total there 
were 88 submissions from the 12 contestants. Finally, 
Lamichhane from Rice University won the competition. 
In addition, three contestants extended their work and 

published them in this BMC Medical Informatics and 
Decision Making special issue. The details of the per-
formance are summarized in Table 2. Lamichhane et al. 
derived 127 features from time or frequency features 
(correlation, the temporal signal ratio in sliding win-
dows) used a random-forest based classification frame-
work to detect the end of PGES. The features used 
captured both the inter-channel dynamics, e.g. with 
correlation features and intra-channel dynamics, e.g. 
by comparing the temporal ratio of signal properties. 
The authors obtained an AUC of 0.84 in the final clas-
sification evaluation using the test set. This accuracy 
was significantly higher than the previous work [6, 11] 
and organizer’s baseline model. Vance et  al. combined 

Fig. 4  Comparing raw EEG signals and the estimated probability of slow activity. The green area refers to slow activity. a True positive detection. b 
False positive or false negative detection
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a pre-activation style residual neural network with 
regularization and sampling strategies to train a model 
that can effectively generalize with a limited amount of 
training data. The experimental results show that the 
described method is significantly more accurate than 
the naive baseline when applying deep residual net-
works to the problem. Zhu et  al. proposed a convolu-
tional neural network with light architecture for slow 
activity prediction. The model also explored the impact 
of random noise of EEG signal in the model’s perfor-
mance by applying denoising filters. It took about 20 s 
to train the model using a batch size of 64 samples with 
10 s signals and 10 montages.

Mier et  al. proposed an architecture that includes 
augmenting the data set using an EEG specific feature 
extraction process (pyEEG) and implementing a clas-
sification approach using Gradient Boosted Decision 
Trees. Feature calculations include SVD Entropy, Pet-
rosian Fractal Dimension, and Power Spectral Intensity, 
which were the highest performers.

The algorithms developed in this Hackathon demon-
strated the potential of the automatic detection of PGES. 
Various features from time and domain and a mixture of 
them won the competition. Convolutional neural net-
work approaches showed comparable accuracy without 
extensive feature engineering. The lightweight CNN also 
showed potentials in efficiency for real-world deploy-
ment in clinical settings. In this collaborative commu-
nity effort, we have demonstrated that interdisciplinary 
discussion and productive competition has significantly 
increased the PGES detection accuracy compared to the 
previous work and organizer’s baseline. In addition, vari-
ous contestants provided various perspectives on sup-
porting clinician’s manual monitoring activity using such 
denoising and visualization. Ultimately we have found 
the potential of this hackathon as a platform to connect 
the two communities of data science and medicine.
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