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Abstract 

Background  Identifying thyroid nodules’ boundaries is crucial for making an accurate clinical assessment. However, 
manual segmentation is time-consuming. This paper utilized U-Net and its improved methods to automatically seg-
ment thyroid nodules and glands.

Methods  The 5822 ultrasound images used in the experiment came from two centers, 4658 images were used as the 
training dataset, and 1164 images were used as the independent mixed test dataset finally. Based on U-Net, deform-
able-pyramid split-attention residual U-Net (DSRU-Net) by introducing ResNeSt block, atrous spatial pyramid pooling, 
and deformable convolution v3 was proposed. This method combined context information and extracts features of 
interest better, and had advantages in segmenting nodules and glands of different shapes and sizes.

Results  DSRU-Net obtained 85.8% mean Intersection over Union, 92.5% mean dice coefficient and 94.1% nodule 
dice coefficient, which were increased by 1.8%, 1.3% and 1.9% compared with U-Net.

Conclusions  Our method is more capable of identifying and segmenting glands and nodules than the original 
method, as shown by the results of correlational studies.

Keywords  Convolutional neural network, Deep learning, Ultrasound images, Semantic segmentation, Thyroid 
nodule, U-Net

Background
In recent years, the incidence of thyroid cancer has been 
increasing [1, 2]. Researches have shown that early identi-
fication of thyroid nodules and prevention of calcification 
can significantly lower thyroid cancer mortality [3, 4]. 
MRI, CT, and Ultrasound (US) are some of the conven-
tional methods used to examine thyroid nodules [5–8]; 
among the various methods, US is the preferred method 
of thyroid examination due to its lack of radiation, con-
venience, real-time performance and high resolution [8].

The US examination imaging and diagnosis are con-
ducted independently by only one physician, in contrast 
to MRI and CT examinations. Otherwise, the physician’s 
level of experience, status, and sentiment would influence 
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the accuracy of the diagnosis, which would result in 
greater subjectivity in the US diagnosis [7].

Because nodules within the thyroid both size and loca-
tion vary significantly among groups, ultrasound images 
are susceptible to spots and echoes [9]. These noises 
affect the visual quality of the images, and how to accu-
rately find the fuzzy boundary between thyroid paren-
chyma and nodules is a challenge for young physicians [5, 
7, 10–12].

Segmentation detects the region of interest of an image 
so as to accurately divide the boundary between the thy-
roid parenchyma and nodules. The precise segmentation 
of thyroid nodules has become an indispensable step for 
research because it can effectively determine the size and 
location of nodules, which doctors may use to issue diag-
nostic reports and develop treatment plans [8]. Devel-
oping automated segmentation methods can effectively 
lessen the reliance on physicians’ diagnostic expertise 
because manual segmentation is tedious and time-con-
suming [13].

Traditional machine learning methods and deep learn-
ing methods have been widely used in thyroid segmen-
tation [14–17]. Selvathi and Sharnitha [7] used the 
Extreme Learning Machine to segment the thyroid, and it 
achieved results that were obviously superior to those of 
the support vector machine (SVM). However, as a tradi-
tional machine learning method, it is slightly less robust 
and difficult to adapt to more complex and noisy situa-
tions. Ma et al. [18] automatically segmented ultrasonic 
images based on a convolutional neural network (CNN), 
compared the CNN with conventional segmentation 
methods, such as SVM and radial basis function Neu-
ral Network, and found that the CNN provided better 
performance. However, CNN cannot correctly segment 
some thyroid nodules with very complex and similar 
backgrounds. Kumar et al. [6] applied a CNN to segment 
both thyroid glands, nodules and cystic components. 
However, due to the complexity of the task and the small 
number of samples caused by task constraints, their seg-
mentation effect was slightly worse than that of simple 
segmentation of glands and nodules.

In the domain of deep convolutional networks, U-Net 
and its improved method are widely applied to medical 
tasks [19], including wounds [20], colorectal cancer [21], 
and thyroid segmentation [22–24]. However, U-Net still 
has room for improvement in thyroid segmentation. One 
improvement opportunity is the imperfect segmenta-
tion of edges and tiny nodules caused by the insufficient 
extraction of features from high-resolution data [25], and 
another is the slightly flawed segmentation of large and 
irregular targets. These problems can be mitigated by 
the introduction of ResNeSt block, atrous spatial pyra-
mid pooling (ASPP) and deformable convolution (DC) 

v3. ResNeSt is a general CNN model that has a good seg-
mentation effect on both the ADE20K and Cityscapes 
datasets [26]. The stronger feature extraction ability of 
ResNeSt block can optimize the segmentation of small 
targets. ASPP presented in DeepLab v3 has the ability to 
extract context information, and its effect is also verified 
using VOC 2012 [27–29]. Its larger and more numer-
ous sights may alleviate the U-Net’s problem of extract-
ing large target information. DC v3 can freely select the 
processing area according to the offset, which makes it 
have a larger and more targeted field of view [30]. DC v3 
has good adaptability to special shape targets and defor-
mation caused by different angles, and is suitable for 
segmentation of irregular glands and nodules caused by 
physician’s manipulation or their own characteristics.

In this paper, we present a method called deformable-
pyramid split-attention residual U-Net (DSRU-Net) to 
improve U-Net with ResNeSt block, ASPP and DC v3 for 
thyroid segmentation tasks. To verify the effectiveness of 
our model, we obtained 5822 thyroid ultrasound images 
via collection and screening and labeled the glands and 
nodules in the images in combination with pathologi-
cal training and testing. We adopt the assessment crite-
ria including the dice coefficient to compare 6 semantic 
segmentation networks including U-Net and DSRU-Net. 
The experiment shows that DSRU-Net, which obtains a 
92.5% average dice coefficient and a 94.1% nodule dice 
coefficient, has the optimal segmentation effect on this 
dataset.

Materials and methods
Image acquisition and preprocessing
A total of 76,496 ultrasonic images of 5021 patients from 
the Affiliated Hospital of Xuzhou Medical University 
(AHXMU) and Nanjing First Hospital (NFH) from 2012 
to 2018 were retrospectively analyzed. The dataset con-
tained benign samples, inflammatory nodules, cystic 
nodules, and tumor nodules as well as malignant sam-
ples, including papillary carcinoma and follicular car-
cinoma. We handled the images with various machines 
and different diagnostic specialists, as well as the corre-
sponding pathological reports. 5822 Ultrasound images 
were collected following the screening of these pathologi-
cal reports by three associate chief physicians. Physicians 
screened the images in accordance with three main crite-
ria: the first was whether the image quality was qualified; 
the second was whether there were thyroid glands and 
lesions in the image; and the third was whether the lesion 
in the image was consistent with the pathological diag-
nosis result. Following the screening, images were manu-
ally delineated with LabelMe software, and pathological 
reports were used to accurately sketch and record thyroid 
nodules and glands. A mask matrix with a background of 



Page 3 of 14Zheng et al. BMC Medical Imaging           (2023) 23:56 	

0, glands of 1, and nodules of 2 was generated from the 
sketched images. Then, in order to support the learning 
and training of the network model, images and masks 
were incorporated into a semantic segmentation network 
model for feature extraction, amplification, and property 
recognition.

Software and hardware environment
Python 3.6.8 was used as the programming language, and 
PyTorch 1.5.1 was used as the deep learning toolkit [31]. 
Cuda 10.0 was used for the parallel computing frame-
work, and CUDNN 7.5.0 was used to accelerate the deep 
neural network computing. A computer with two Intel(R) 
Xeon(R) Gold 6230 CPUs, two NVIDIA Quadro GV100 
(32  GB of memory) GPUs and 384  GB of memory was 
used as the hardware environment of the experiment.

Model architecture
DSRU-Net is mainly composed of Split-Attention Resid-
ual U-Net (SRU-Net) based on U-Net and ResNeSt block, 
and DASPP based on ASPP and DC v3. The overall archi-
tecture of DSRU-Net is shown in Fig. 1. As an improved 
model based on U-Net, DSRU-Net firstly introduces 
ResNeSt block with better feature extraction tendency in 
encoder and decoder to enhance the feature extraction 

capability. Then ASPP is introduced between encoder 
and decoder which can extract multi-scale features to 
improve the segmentation ability of different size targets. 
Finally, DC v3 which can adapt to different shape features 
is introduced in ASPP to improve the adaptability of the 
model to special shape targets.

SRU‑Net
ResNeSt is an excellent general backbone that includes 
the split-transform-merge inherited from GoogleNet 
and ResNeXt [32, 33] and the attention mechanism 
inspired by SENet and SKNet [34, 35]. Therefore, we 
make an effort to introduce ResNeSt to improve model 
performance.

One of the optimization strategies is directly replac-
ing the original encoder with the adjusted ResNeSt-50. 
This method can increase the depth of the model and 
improve the feature extraction performance. However, 

(1)f1, f2, f3, f4, f5 = Encoder(x)

(2)ŷ = Decoder f1, f2, f3, f4, DASPP f5
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since the blocks’ number of ResNeSt-50 is more than of 
the decoder and the ResNeSt block is deeper than the 
conv block, the encoder is much deeper than the decoder. 
The difference of depths breaks the symmetric structure 
of U-Net and leads to an imbalance between the encoder 

and decoder, which may lead to an unstable training 
process.

To solve the problem, the conv blocks of encoder and 
decoder are equally replaced with ResNeSt blocks. The 
ResNeSt block is the core module of the ResNeSt series 
models, as shown in Fig. 2. It introduces the split-atten-
tion mechanism to the model, which improves the effect 
and interpretability of the model to a certain extent. In 
contrast to the original ResNeSt block, cardinal groups 
are not described in the structure diagram because there 
are no cardinal groups used for this task. When down-
sampling is performed, the pooling layer is added after 
the first 1 × 1 conv block and the first connection.

As shown in Fig.  3, both the encoder and decoder of 
U-Net use the ResNeSt block instead of the conv block to 
process the feature map. Meanwhile, as the yellow back-
ground shows, an additional layer is added at the top of 
the encoder to improve the extraction performance of the 
model for edges and small targets. This method improves 
the model’s effectiveness while preserving as much of the 
benefits of U-Net as possible, making it simpler to back-
propagate and update parameters, and enhancing the 
model’s stability.
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DASPP
Multi-scale feature integration is a common optimiza-
tion strategy for semantic segmentation, such as pyramid 
pooling module of the Pyramid Scene Parsing Network 
and the ASPP module of DeepLab v3 [36, 37]. ASPP is 
introduced into the U-Net structure to improve the abil-
ity of the model to combine global and local informa-
tion. However, simple dilated convolution of ASPP can 
easily lose important features while enlarging the recep-
tive field. To solve it, we introduce DC v3 into ASPP to 
design DASPP [30]. DC v3 has long-range dependencies, 
it allows for free selection of extraction regions, which 
can expand the receptive field while retaining important 
features [38, 39]. The structure of DASPP is shown in 
Fig. 4. Firstly, the dilated convolution of d = 1 in ASPP is 
replaced by DC v3 to suppress the loss of important fea-
tures. Then a 1024 × 512 DC v3 is paralleled outside the 
ASPP, which adapts to extract the features of irregular 
shapes. Finally, the features generated by ASPP and DC 
v3 are concatenated and convoluted to generate multi-
scale features.

Training strategy
The weighted cross entropy loss and dice loss are com-
bined as the loss function to evaluate the model output and 
guide the updating of the model parameters [40, 41]. The 
weighted cross entropy loss implemented by PyTorch is 
described as:

where N  is the batch size, and C is the number of classes. 
w indicates the class weight, and ŷ indicates the result 
predicted by the model. ntc represents the true class. 
NONC indicates classes, and 

∑NONC
nonc=1 wnonc represents 

the sum of class weights that nonredundantly appeared 
in the batch.

The dice loss and total loss are described as:

(3)Lwce = −

∑N
n=1 wntc ·

(
ŷntc−log

(∑C
c=1 exp (ŷnc )

))

N ·
∑NONC

nonc=1 wnonc

,
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1
N ·
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where ǫ is a small number, which is 1 in this task, to pre-
vent an exception.

To mitigate the impact of overfitting on the final result, 
part of the dataset is divided into the validation set to mon-
itor the training process. The validation set is input into the 
model for validation output after completing each training 
epoch. At the end of the entire training process, the trained 
model with the highest dice coefficient of the validation set 
is used to evaluate the test set.

Samples are augmented in real time at a preset rate dur-
ing the training. Data augmentation strategies include 
increasing and decreasing the brightness, increasing and 
decreasing the contract, horizontal mirroring, random 
angular rotation, random cropping, random stretching, etc. 
[42].

Results
Implementation details
In this experiment, 4658 samples were used as the training 
set and 1164 samples were used as the test set. The size of 
each image sent into the model was uniformly adjusted to 
512 × 512. The aspect ratio of each image remained con-
stant and the surrounding of each image was fill with 0. 
The training of each model was conducted over 200 epochs 
and with a batch size of 8. The learning rate was 0.0001, 
the optimizer was AdamW [43], and the model parameters 
were initialized with Kaiming initialization [44]. The drop-
out rate was uniformly 0.5 if it exists [45].

Assessment criteria
To evaluate model performance, the specificity (SP), sen-
sitivity (SE), precision (PR), accuracy (ACC), Intersec-
tion over Union (IoU) and dice coefficient were chosen as 
assessment criteria.

(5)Ltotal = Lwce + Ldice,

(6)SP = TN
TN+FP ,

(7)SE = TP
TP+FN ,

where TP is the number of true positives, TN is the num-
ber of true negatives, FP is the number of false positives 
and FN is the number of false negatives.

Experimental result
In this experiment, FCN, U-Net, U-Net (ResNeSt-50), 
SRU-Net, Atrous-Pyramid Split-Attention Residual 
U-Net (ASRU-Net) and DSRU-Net were applied to seg-
ment thyroid glands and nodules. As a classical seman-
tic segmentation framework, the FCN was chosen as the 
segmentation model for this experiment. ResNeSt, which 
is excellent at medical tasks, was used to improve U-Net, 
so the original U-Net, U-Net (ResNeSt-50) and the bal-
anced and robust SRU-Net were tested to verify the 
effectiveness of the improvement strategy. Finally, ASPP/
DASPP was added to U-Net to verify that capturing the 
contextual information on multiple scales is useful for 
this task.

All 6 models can perform well on this task with large 
data volumes and the same training strategy, and DSRU-
Net works the best overall, as shown in Table 1. Although 
ResNeSt is a strong backbone, adding ResNeSt directly to 
U-Net does not significantly improve or even decreases 
the average dice coefficient. However, the abovemen-
tioned strategy of introducing the ResNeSt block into 
U-Net can significantly improve the segmentation effect. 
In addition, although the increase is not as large as for the 
ResNeSt block, ASPP can also improve the performance 
of U-Net, especially for thyroid nodule segmentation. 
Finally, DSRU-Net with better long-range dependencies 
contributed by DASPP achieves the best segmentation 

(8)PR = TP
TP+FP ,

(9)ACC = TP+TN
TP+FP+TN+FN ,

(10)IoU = TP
TP+FP+FN ,

(11)Dice coefficient = 2TP
2TP+FP+FN ,

Table 1  Results of 6 semantic segmentation models in this dataset

SP (%) SE (%) PR (%) ACC (%) IoU (%) Dice (%) Nodule dice (%)

FCN 96.9 91.5 89.7 95.7 82.6 90.6 92.0

U-Net 96.8 91.6 90.8 95.5 84.0 91.2 92.2

U-Net (ResNeSt-50) 96.8 92.0 89.8 95.7 83.5 90.9 92.6

SRU-Net 97.4 93.3 90.1 96.6 84.7 91.7 93.5

ASRU-Net 97.6 93.4 90.3 96.8 85.1 91.8 93.5

DSRU-Net 97.9 93.8 90.8 97.2 85.8 92.5 94.1
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result, obtaining a 92.5% average dice coefficient and a 
94.1% nodule dice coefficient.

The visual segmentation effects of 6 models for a malig-
nant sample and a benign nodule sample are shown in 
Fig. 5 where blue is used to display the thyroid gland con-
tour, and red is used to display the nodule contour. The 
figures show that our four improvements are generally 

better than traditional approaches. The figures show that 
the models modified by ResNeSt are better able to out-
line the gland and the edge of the nodules than the oth-
ers. In addition, the models with ASPP/DASPP are more 
accurate in the segmentation of gross contours. For both 
sets of samples, the figures show that DSRU-Net is more 

Fig. 5  Segmentation results of 6 models for a malignant sample (a) and a benign sample (b), where the blue line outlines the gland and the red 
line outlines the nodule
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sensitive than other methods, and its segmentation effect 
is smoother and more stable.

In addition, we evaluate positive and negative samples 
from AHXMU and NFH respectively with DSRU-Net, 
and the results are shown in Table 2. Since the training 
set is only from AHXMU, and the data of the two centers 
are different caused by various conditions such as acqui-
sition equipment, the model performs weaker on test 
data from NFH than that from AHXMU. However, the 
difference of results between the two centers is generally 
acceptable, which indicates that the model has generali-
zation ability. Possibly due to irregular shapes and calci-
fication shadow of malignant nodules, the segmentation 
effect of malignant samples is lower than that of benign 
samples, especially the nodule dice.

Comparison with related research
For the purpose of demonstrating the superiority of our 
method, we list experimental results of thyroid segmen-
tation literature in recent years, as shown in Table  3. 
These methods can be divided into 6 classes, including 
semi-supervised, weakly-supervised, interactive, U-Net 
based, DeepLab based and other methods.

Kunapinun et  al. [46] combined supervised loss and 
unsupervised loss to design StableSeg GAN. StableSeg 
GAN inhibited the instability of unsupervised GAN, 
improved the stability, flexibility and accuracy of seg-
menting thyroid nodules. Liu et al. proposed U2F‑GAN 
which only using bounding box as training label. It 
achieved a good balance between performance improve-
ment and annotation cost by only using bounding box 
as training label [47]. Shahroudnejad et al. presented an 
interactive method named resDUnet that allows doctors 
to specify the region of interest. ResDUnet combined 
residual shortcut connections and dilated convolu-
tion on the basis of U-Net, and obtained a nodule dice 
coefficient of 82.0% on the authors’ private dataset [48]. 
Nie et  al. [49] designed N-Net by introducing multi-
scale input layer, attention guidance module and stack-
able dilated convolution block into U-Net. Their method 
obtained 92.0% nodule dice coefficient on TNUI-2021 
and 93.7% on DDTI. Webb et  al. [50] proposed Deep-
Labv3+ based convolutional LSTM to segment both 
nodules and glands. The method obtained 53.3% nodule 

IoU and 73.9% gland IoU on their private dataset. Kumar 
et al. designed MPCNN for the segmentation of nodules, 
glands and cystic components [51]. MPCNN achieved 
73.0% nodule dice coefficient of 64 transverse images, 
76.0% of 78 longitudinal images, 87.0% gland dice coef-
ficient of 68 transverse images, and 91.0% of 80 longitu-
dinal images.

In contrast to most methods that only segment thy-
roid nodules, ours segments both nodules and glandes 
simultaneously, which has wider clinical applications. 
Due to different datasets and implementation details, the 
advantages and drawbacks of methods can’t be directly 
compared. However, the experimental results of previ-
ous research also show that our method is not back-
ward in segmentation effect, and the Dice coefficient of 
our method is higher than that of most other methods. 
However, it can be seen from the experimental results of 
previous studies that the dice coefficient of our method 
is higher than most other methods, which indicates that 
our method is not backward in segmentation effect.

Discussion
In this paper, we propose DSRU-Net for the thyroid 
segmentation task. U-Net is a popular model with FCN 
architecture for medical images. U-Net’s skip-connection 
structure effectively alleviates the information loss when 
the decoder is upsampled and helps restore high-resolu-
tion spatial content [28]. However, for this task, U-Net 
falls slightly short in two respects. One is that the method 
is insufficient at extracting the high-resolution infor-
mation from the shallow layer, and the other is that the 
method lacks the ability to analyze the internal relation-
ship of low-resolution information from the deep layer.

U-Net’s poor extraction of high-resolution informa-
tion will lead to its weak extraction of small targets and 
edges, which can be mitigated by the introduced ResNeSt 
block. The segmentation of edges and small targets 
plays a critical role in this task. As shown in Fig. 6, due 
to the invasiveness of nodules, acoustic shadows, and 
poor quality images collected by old ultrasonic devices, 
the segmentation of some image edges is challenging. In 
addition, there are some small nodules in some images, 
and their segmentation effect will be limited by a shallow 

Table 2  Results of benign and malignant samples from AHXMU and NFH with DSRU-Net

SP (%) SE (%) PR (%) ACC (%) IoU (%) Dice (%) Nodule dice (%)

AHXMU_benign 99.3 95.2 92.5 98.9 88.5 93.8 95.6

AHXMU_malignant 98.9 94.8 92.5 98.4 88.1 93.6 94.1

NFH_benign 95.6 91.8 90.4 94.4 83.7 91.1 93.4

NFH_malignant 95.4 91.6 89.4 94.3 82.4 90.5 91.0
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high-resolution information extraction layer. However, 
the structure of the original U-Net makes it slightly insuf-
ficient at handling these issues. For example, the feature 
tensor with a height and width of 568 (512 in this task 
with padding) output from the original U-Net encoder 
is processed only by two convolution layers. However, 
a ResNeSt block performs two ordinary 1 × 1 convolu-
tions, one 3 × 3 group convolution on the feature ten-
sor, and two 1 × 1 convolutions on global information. 
In SRU-Net, for the first feature tensor output by the 
encoder, even if the four convolution layers of the atten-
tion tensor are ignored, there are seven convolution lay-
ers for processing. Compared to U-Net with only two 
convolution layers in the front, our method effectively 
increases the depth of the shallow layer and ensures 

that high-resolution features can also be fully extracted. 
Moreover, since ResNeSt inherits the residual structure 
of ResNet, it can alleviate the gradient disappearance of 
deep layers [64]. As shown in Fig. 6, SRU-Net performs 
better than U-Net in these situations.

To further illustrate the effectiveness and reliability of 
the introduction of ResNeSt blocks, heat maps are used 
to visualize U-Net and SRU-Net activation. We respec-
tively input the four ultrasonic images in Fig.  6 into 
U-Net and SRU-Net, average and normalize the fea-
tures output by the encoders, and enlarge the features 
to the size of the original images to generate heat maps. 
The visualization results are shown in Fig.  7, it can 
be seen that the two models mainly focus on thyroid 
glands and nodules. Among them, U-Net’s attention is 

Table 3  Results of models with various types used for thyroid segmentation in recent years

Type Authors Method Year Dataset Noudle IoU (%) Noudle dice 
(%)

Gland IoU (%) Gland dice (%)

Semi-supervised Kunapinun et al. 
[46]

StableSeg GAN 2022 Private 82.0

Weakly-super-
vised

Liu et al. [47] U2F-GAN 2021 Private 87.0

Yu et al. [52] New SSE-WSSN 2022 Private 51.2 65.8

Interactive Shahroudnejad 
et al. [48]

ResDUnet 2021 Private 82.0

Daulatabad 
et al. [53]

Modified U-Net 
(One-Click)

2021 Private 84.0

Chu et al. [24] MGU-Net 2021 Private 91.5 95.8

U-Net based Buda et al. [23] U-Net (with caliper) 2020 Private 93.4

Liao et al. [54] U2-Rnet 2021 Private 80.8 88.0 34.2 47.4

Ataide et al. [55] ResUNet 2021 Private 76.7 85.7

Ajilisa et al. [56] Hybrid Res-UNet3 2022 DDTI 58.8 74.1

Lin et al. [57] N-shape network 2022 UTNI-2021 87.0 91.9

Nie et al. [49] N-Net 2022 TNUI-2021 87.2 92.0

DDTI 88.5 93.7

Li et al. [58] BTNet 2022 Private 81.0 89.2

DDTI 65.4 75.7

BUI 73.5 81.2

Yadav et al. [59] Hybrid-UNet (DsF_
EPSF)

2022 DDTI + USC 86.6 93.2

DeepLab based Webb et al. [50] DeepLabv3+ based 
convolutional LSTM

2021 Private 53.3 73.9

Sun et al. [60] TNSNet 2021 Private 85.3

Other Ma et al. [18] Deep CNN 2017 Private 86.8 92.2

Kumar et al. [51] MPCNN 2020 Private 73.0 (64)
76.0 (78)

87.0 (68)
91.0 (80)

Hu et al. [61] CNN 2022 Private 83.0

Dai et al. [62] SEV-Net 2022 DDTI 95.7

Tao et al. [63] LCA-Net 2022 TN3K 71.2 82.1

TN-SCUI2020 82.7 90.3

U-Net based DSRU-Net (Ours) Private 89.4 94.1 83.2 90.9
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relatively scattered, especially for samples (a) and (d), 
U-Net is interested in irrelevant information around. 
In contrast, SRU-Net pays more attention to the fea-
tures of important regions, has stronger anti-interfer-
ence ability to irrelevant information, and shows higher 
reliability.

DASPP can improve the segmentation performance 
by making better use of deep features especially for large 
targets. For the original U-Net, the features extracted by 
the decoder lack global information. After convolutions 
and max pooling, each element of the encoder’s inner-
most feature tensor contains at most information about 
the 140 × 140 region of the input image. However, the 

Fig. 6  Results of samples segmented by models with and without the ResNeSt block, where the blue line outlines the gland and the red line 
outlines the nodule
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size of thyroid glands and some super-large nodules may 
be larger than 140 × 140, and the feature matrix lacking 
global information may be slightly inadequate to repre-
sent them. DASPP uses global average pooling to provide 
global information while using different dilation rates of 
dilated convolutions to extract context features at multi-
ple scales. It not only allows each element of the feature 
matrix to understand the complete information of glands 
and nodules, but also obtains local information at dif-
ferent scales. The DC v3 of DASPP inhibits the interfer-
ence of irrelevant information, makes it more suitable 
for target regions with different shapes, and has better 
detection ability for target edges and targets with special 
shapes. As shown in Fig. 8, DSRU-Net containing DASPP 
is more complete in segmenting large nodules than 
U-Net. Meanwhile, DSRU-Net has better segmentation 
effect on target edge than ASRU-Net containing ASPP.

There may be room for further optimization and lim-
itations in our method. For example, Zhou et  al. [41] 
proposed an improved U-Net model called U-Net++. 
U-Net++ provides useful suggestions for improving 
segmentation performance by redesigning skip con-
nections and making networks more lightweight with 
model pruning, and the model performs well on elec-
tron microscopy and cell datasets, among others. We 
intend to apply U-Net++ to our dataset in the early 
stage of the experiment, but its performance is infe-
rior compared with that of U-Net on our dataset. But 
to improve U-Net, redesigning skip connections is a 
great idea, and the proper strategies might have the 
best results. In addition, our method is not ideal for 
segmentation of certain glands, as shown in Fig. 9. One 
problem is that multiple glands may be segmented. 
However, since the thyroid gland is generally only a 

Fig. 7  Activation visualization of A U-Net and B SRU-Net

Fig. 8  Results of super large nodule sample segmented by SRU-Net, ASRU-Net which contains ASPP and DSRU-Net which contains DASPP, where 
the blue line outlines the gland and the red line outlines the nodule
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continuous piece, the area can be calculated by regional 
connectivity so as to filter out smaller noise areas to 
alleviate this problem. Another problem is that for 
some areas with low echo or no echo at the edge of the 
glands, our method may regard them as external areas 
of the glands. This may be mitigated by data augmenta-
tion such as increasing and decreasing contrast in ran-
dom regions.

Conclusion and outlook
We present an improved U-Net architecture called 
DSRU-Net with ResNeSt block, ASPP and DC v3 for 
thyroid gland and nodule segmentation. DSRU-Net is 
demonstrated to be effective by comparing segmentation 
findings from the original method and several improved 
versions using the dice coefficient and other assessment 
criteria. The comparison with related research shows 
that the method is advanced. The method can better 
concentrate on crucial information, according to activ-
ity visualization. As shown in visualization segmentation 
results, DSRU-Net cannot only reasonably analyze shal-
low features to better segment edges and small nodules, 
but also analyze deep information at multiple scales to 
improve the segmentation effect of glands and super-
large nodules.

Although our method can also cope with harsh situa-
tions like acoustic shadows, there are still numerous tech-
niques that can be used to further enhance our method’s 
robustness. One solution is to select challenging images and 
ordinary images and then use GAN to augment challeng-
ing images and randomly interfere with common images to 
make a separate dataset. The training strategy of using this 
dataset and the original dataset alternately may be an effec-
tive optimization strategy. However, the inference process of 
our model is slow. Subsequently, we can compare the effects 
of reducing the number of downsampling operations or the 
number of convolution kernels on model performance and 
design a more efficient model without losing accuracy.
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