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Abstract 

Background  Vitamin A is essential for physiological processes like vision and immunity. Vitamin A’s effect on gut 
microbiome composition, which affects absorption and metabolism of other vitamins, is still unknown. Here we 
examined the relationship between gut metagenome composition and six vitamin A-related metabolites (two 
retinoid: -retinol, 4 oxoretinoic acid (oxoRA) and four carotenoid metabolites, including beta-cryptoxanthin and three 
carotene diols).

Methods  We included 1053 individuals from the TwinsUK cohort with vitamin A-related metabolites measured 
in serum and faeces, diet history, and gut microbiome composition assessed by shotgun metagenome sequencing. 
Results were replicated in 327 women from the ZOE PREDICT-1 study.

Results  Five vitamin A-related serum metabolites were positively correlated with microbiome alpha diversity (r = 0.15 
to r = 0.20, p < 4 × 10−6). Carotenoid compounds were positively correlated with the short-chain fatty-acid-producing 
bacteria Faecalibacterium prausnitzii and Coprococcus eutactus. Retinol was not associated with any microbial spe-
cies. We found that gut microbiome composition could predict circulating levels of carotenoids and oxoretinoic acid 
with AUCs ranging from 0.66 to 0.74 using random forest models, but not retinol (AUC = 0.52).

The healthy eating index (HEI) was strongly associated with gut microbiome diversity and with all carotenoid com-
pounds, but not retinoids. We investigated the mediating role of carotenoid compounds on the effect of a healthy 
diet (HEI) on gut microbiome diversity, finding that carotenoids significantly mediated between 18 and 25% 
of the effect of HEI on gut microbiome alpha diversity.

Conclusions  Our results show strong links between circulating carotene compounds and gut microbiome composi-
tion and potential links to a healthy diet pattern.
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Background
Vitamins are micronutrients with antioxidant and neu-
roprotective properties. In addition to these functions, 
some vitamins have been linked to changes in the com-
position and diversity of the gut microbiome [1]. The 
human body requires 13 vitamins for proper physiologi-
cal function, which can be divided into two categories, 
fat-soluble (vitamins A, D, E, and K), and water-soluble 
vitamins (8 B vitamins, and vitamin C).

Fat-soluble vitamins, particularly vitamins A, and D, 
have been studied for their effects on the immune system 
when absorbed in the gastrointestinal tract and secreted 
into the bloodstream [2]. A recent cross-sectional study 
of 567 older people found that those with higher levels 
of vitamin D had a greater abundance of butyrate-pro-
ducing bacteria in the gut [3]. However, the relation-
ship between vitamin A levels and the gut microbiome 
remains under-researched.

Vitamin A is an essential macronutrient for maintain-
ing the integrity of the gut epithelial barrier [4, 5]. It sup-
ports the production and maintenance of mucus, tight 
junction proteins [6], and antimicrobial peptides, all of 
which protect the gut lining from pathogenic invasion 
and maintain a stable environment for the microbiota. A 
healthy gut barrier prevents dysbiosis (microbial imbal-
ance) and supports a diverse microbial ecosystem [7]. 
Moreover, vitamin A has anti-inflammatory properties 
[8], which can help mitigate chronic inflammation in the 
gut [9]. By reducing inflammation and supporting the 
gut epithelial barrier, vitamin A fosters a more stable and 
diverse microbial environment increasing the abundance 
of beneficial commensals and decreasing the abundance 
of less favourable ones.

Vitamin A is derived from both retinyl acids found in 
animal-derived foods, or through a series of enzymatic 
reactions from carotenes and carotenoids in plant-based 
foods. Although the term vitamin A is mostly associated 
with retinol, and retinol is, in fact, the predominant form 
of retinoids in the human body, the main biologically 
active molecules are the oxidised derivates 11-cis-retinal 
and all-trans-retinoid acid (ATRA) [10]. ATRA acts as 
the active form, binding to retinoic acid receptors.

More than 80% of vitamin A in the liver is stored in 
hepatic stellate cells [11]. In hepatocytes, retinyl esters 
are hydrolysed by retinyl ester hydrolase to generate reti-
nol, which subsequently binds to retinol-binding protein 
(RBP), before being released into circulation, where  it is 
up-taken by systemic cells via membrane receptors, such 
as STRA6 [12]. The process of mobilising retinol is tightly 
regulated by variables that govern the rates of synthesis 
and secretion of RBP [10].

Since, the human body cannot produce vitamin A, 
it must be obtained from the diet, either as preformed 

vitamin A, found in foods of an animal origin, or as pro-
vitamin A carotenoids, found in several fruit and vegeta-
bles [10]. Milk and dairy products, as well as meat and its 
products, are the largest contributors of preformed vita-
min A to the human diet, followed by eggs, egg products, 
and fish [10, 13].

Carotenoids can eventually be metabolised to retinol 
[14]. Retinoic acid has been shown to be an important 
determinant of intestinal immunity and permeability [15]. 
Importantly, absorption of dietary vitamin A depends on 
the fat-solubilising properties of bile acids [16], which are 
in turn modulated by gut microbiome composition, and 
bacterial conjugation of secondary bile acids [17].

Given that diets rich in carotenoids are likely to sup-
port a healthy gut microbiome [18] and the multiple ben-
eficial effects of vitamin A on immune function and gut 
barrier integrity [18, 19], we hypothesised a positive rela-
tionship between alpha diversity and vitamin A.

The purpose of this study is to investigate whether 
there is a connection between the composition and alpha 
diversity of the gut microbiome and the presence of vita-
min A-related metabolites, specifically retinoids and 
carotenoids, in the bloodstream and stool, using machine 
learning methods. We further quantify the extent to 
which bile acids influence the levels of retinoids and 
carotenoids. Finally, we investigate the role that vitamin 
A metabolites play in the favourable association between 
the healthy eating index (HEI) [20] and the composition 
of the gut microbiome.

Methods
Discovery cohort
Study participants were individuals enrolled in the Twin-
sUK registry, a national register of adult twins recruited 
as volunteers without selecting for any particular disease 
or trait [21]. Twins provided informed written consent, 
and the study was approved by St. Thomas’ Hospital 
Research Ethics Committee (REC Ref: EC04/015). Here 
we included 1053 individuals with concurrent vitamin A 
metabolites, bile acids measured by mass spectrometry, 
and gut microbiome profiled by shotgun metagenome. A 
subset of the included individuals also had available data 
on the quality of their habitual diet, as measured by the 
HEI [20].

Replication cohort
The replication cohort consisted of an independent sam-
ple of 327 females from the UK-based ZOE PREDICT-1 
study [22]—in a post hoc analysis, with serum and stool 
vitamin A metabolites measured by Metabolon Inc. as 
well as whole-shotgun metagenomic data available, and 
who completed a food frequency questionnaire (FFQ). 
Ethical approval for ZOE PREDICT-1 was obtained from 
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St. Thomas Hospital research ethics committees. All 
individuals provided informed written consent (IRAS 
236407) and the trial was registered on ClinicalTrials.gov 
(registration number: NCT03479866).

Vitamin A metabolomics profiling
Vitamin A concentrations were measured from stool and 
serum samples by Metabolon Inc. (Durham, USA) using 
an untargeted LC–MS platform, as previously described 
[23, 24]. Six vitamin A-related metabolites were detected 
in serum, of which two retinols and four carotenoids, 
while five vitamin A-related metabolites were detected 
in stool (one retinol and four carotenoids). To remove 
batch variability from vitamin A profiling, for each vita-
min A-related metabolite, the values in the experimental 
samples were divided by the median of those samples in 
each instrument batch, giving each batch and thus each 
vitamin A metabolite a median of one. Vitamin A metab-
olites with more than 80% missing measurements were 
excluded, and those with missingness between 20 and 
80% were dichotomised. Vitamin A metabolites present 
in over 80% of the sample were batch normalised and 
inverse normalised. After cleaning, 6 vitamin A metab-
olites in serum (2 retinols and 4 carotenoids) and 5 in 
stool (1 retinol and 4 carotenoids) remained. Carotenoid 
metabolites include beta-cryptoxanthin, and carotene 
diol (1–3). Retinol metabolites include 4-oxoretinol acid 
(oxoRA) and retinol.

Bile acid metabolomics profiling
Circulating primary bile acids, including cholic acid 
(CA), chenodeoxycholic acid (CDCA), taurocholic acid 
(TCA), glycocholic acid (GCA), taurochenodeoxy-
cholic acid (TCDCA), and glycochenodeoxycholic acid 
(GCDCA) were measured from the same serum samples 
by Metabolon Inc. (Durham, USA) using an untargeted 
LC–MS platform, as described above.

Dietary information
A validated 131-item semi-quantitative food frequency 
questionnaire (FFQ) established for the European Pro-
spective Investigations into Cancer and Nutrition 
(EPIC)-Norfolk study [25] was used to estimate habitual 
dietary information. From FFQs, food item, macro- and 
micronutrient intakes were determined using FETA soft-
ware [25, 26], we then calculated indexes to represent the 
whole dietary pattern, including HEI, which characterises 
intakes of foods and nutrients and is understood to be 
associated with various chronic diseases [27].

Microbiome sequencing and profiling
Deep shotgun metagenomic sequencing in stool samples 
from TwinsUK and ZOE PREDICT-1 and its profiling 

was performed as previously described [28, 29]. To 
reduce noise caused by species with low prevalence and 
improve power to detect statistically significant species, 
we removed species with a prevalence < 20%.

Statistical analysis
Statistical analyses were performed using Stata version 
18 and R version 4.3.1 [30].

For alpha diversity, we constructed several metrics to 
quantify diversity of the gut microbiome within individ-
ual participants. The Shannon diversity index also called 
Shannon Entropy [31] uses Claude Shannon’s formula for 
entropy to estimate species diversity [22] and the Simp-
son diversity index, which gives more weight to common 
or dominant species, were calculated using the ‘diversity’ 
function in the ‘vegan’ R package [32]. Observed rich-
ness, which is simply the count of species observed, was 
calculated using the ‘specnumber’ function. To account 
for the twin nature of our data, linear mixed models 
adjusting for age, sex, body mass index (BMI) as fixed 
effect, and family structure, as random effect, were used 
independently in both TwinsUK and ZOE PREDICT-1 to 
investigate the univariate associations between vitamin 
A-related metabolites and gut microbiome characteris-
tics. Specifically, we investigated associations with several 
alpha diversity metrics and at the taxonomic level with 
inverse normalised species abundances. P-values were 
corrected for multiple testing using Bonferroni correc-
tion, and associations with adjusted P-value < 0.05 were 
considered as significant. Results were combined using 
fixed effect meta-analyses. To assess between participant 
differences (beta diversity) and vitamin A-related metab-
olite levels, we constructed a Bray–Curtis dissimilarity 
matrix from the gut microbial community data, and we 
performed a PERMANOVA (1000 simulations) using the 
‘adonis’ function (‘vegan’ package [32]) to determine sig-
nificance, adjusting for age, sex, and BMI.

To quantify how much of the vitamin A-related metab-
olite levels could be predicted using gut metagenome 
data, we used random forest (RF) models from the ran-
domForest package in R [33] (version 4.7–1.1). Models 
were conducted in TwinsUK and ZOE-PREDICT-1 data 
independently. We split the dataset into a training set 
(80%) and a test set (20%), which was held out to test per-
formance. In the training data, predictors with zero or 
near-zero variance were excluded using the ‘nearZeroVar’ 
function (caret R package [34]). Hyperparameters, mtry 
(number of variables randomly sampled as candidates for 
each split) and min.node.size (minimum size of terminal 
nodes in each tree) were tuned using fivefold adaptive 
resampling (caret package in R [34]) with 3 repeats. The 
optimal number of features for each model was decided 
by fivefold recursive feature elimination (‘rfcv’ function 
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from the randomForest package [33]). We iteratively 
removed features by assessing the model’s performance 
against the cross-validated error rate to determine the 
optimal subset of features (smallest number of features 
with smallest error rate). The model was retrained on the 
training data and the predictive performance tested using 
the test set. The performance of each model was assessed 
using the area under the receiver operating characteris-
tic (AUC), which measures the model’s capacity to dis-
criminate different classes and Spearman’s correlations 
between the model’s predicted class and the true class to 
quantify the model’s accuracy and reliability.

Linear mixed models were also employed to investigate 
the associations between vitamin A-related metabolites 
and (i) serum levels of bile acids and (ii) HEI, adjust-
ing for age, sex, BMI, and family relatedness as random 
effects.

To investigate whether vitamin A-related metabolites 
mediate the relationship between a healthy diet and gut 
microbiome diversity, we conducted causal mediation 
analyses using the Baron and Kenny approach [35]. We 
first tested the three mediation assumptions and we then 
performed causal mediation analysis using the ‘medi-
ate’ function in the R package ‘mediation’ (version 4.5.0) 
[36]. Each analysis was performed independently for 
each vitamin A metabolite and adjusted for age, sex, and 
BMI. A significant mediatory effect was determined by 

the significance (p < 0.05) and magnitude of the indirect 
effect. We further computed the variance accounted for 
(VAF) as the ratio of the indirect-to-total effect, which 
describes the proportion of the variance explained by 
the mediation process, e.g. the proportion of the effect 
of a healthy diet on gut microbiome that goes through 
the vitamin A metabolite. We used Vanderweele’s sensi-
tivity analysis [37, 38] to evaluate the robustness of the 
estimated mediation effects to unmeasured confounding. 
This involves assessing the potential impact of unmeas-
ured confounders on both the mediator-outcome and 
exposure-mediator relationships.

Results
A flowchart of the study design is presented in Fig. 1.

The descriptive characteristics of the study populations 
are presented in Table  1. We included 1053 individuals 
from the TwinsUK cohort [21], and 327 female individu-
als from the ZOE PREDICT-1 study [21, 22], with vita-
min A metabolites measured in serum (n = 6) and stool 
(n = 5) by Metabolon Inc. [24], and gut microbiome com-
position assessed by whole-shotgun metagenomics. The 
average (standard deviation, SD) age in TwinsUK was 
57.72 (15.20), and in ZOE PREDICT-1 53.80 (7.00) years, 
while average body mass index (BMI) was 26.18 (5.15) 
and 26.24 (5.62) kg/m2, respectively.

Fig. 1  Schematic representation of the study. The figure describes the links between dietary intake and the studied vitamin A-related metabolites, 
and highlights the research questions we are addressing, the data, and the analytical workflow used
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Vitamin A metabolites and gut microbiome association
All vitamin A-related serum metabolites except reti-
nol were positively correlated with the Shannon diver-
sity index after adjusting for age, sex, BMI, and family 
relatedness in the TwinsUK cohort (Fig.  2, panels A 
and B). Further adjusting for history of cardiovascular 
diseases (including cerebrovascular disease, heart fail-
ure, ischemic heart disease, coronary artery disease, 
and atrial fibrillation), type 2 diabetes, chronic obstruc-
tive pulmonary disease, allergy, diet (including healthy 
eating index, fibre intake, vegetable intake, and energy 

Table 1  Descriptive characteristics of the study populations

BMI body mass index, HEI healthy eating index

Phenotype TwinsUK ZOE-PREDICT 1

N 1053 327

Females, n (%) 884 (83.95%) 327 (100%)

Age, years (SD) 57.72 (15.20) 53.80 (7.00)

BMI, kg/m2 26.18 (5.15) 26.24 (5.62)

HEI (SD) 59.27 (9.93) 65.42 (7.02)

Shannon diversity index 
(SD)

3.91 (0.54) 4.23 (0.38)

Fig. 2  Associations between vitamin A metabolites from serum and stool and the Shannon diversity index (A and B) and the healthy eating 
index (C and D). Data shown. Circles show effect sizes in the TwinsUK and ZOE PREDICT 1 cohorts, diamonds are summary effect sizes derived 
from fixed effects meta-analysis (MA) combining both cohorts. Whiskers represent the 95% confidence intervals. Statistical significance is indicated 
by asterisks as follows: * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001
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intake), antibiotics use, physical exercise, vitamin sup-
plementation, and sequencing depth, did not change the 
results (Additional File 1:TableS1). Consistent results 
were observed in ZOE-PREDICT 1 (Fig.  2, panels A 
and B) and when investigating the correlation with the 
Simpson index and with the number of observed spe-
cies (Additional File 1:TableS2). Moreover, we detected 
a significant relationship between vitamin A metabolites 
and beta-diversity (as determined by Bray–Curtis indi-
ces), after adjusting for age, sex, and BMI (Additional File 
1:TableS3).

We then investigated, in TwinsUK, the univariate asso-
ciation between vitamin A-related metabolites and gut 
microbial species with a prevalence > 20%, identifying 
96 significant associations (Bonferroni < 0.05), involv-
ing 49 unique bacterial species (Fig. 3A, Additional File 
1:TableS4). Similar but weaker associations were seen 
with stool metabolite levels (Fig.  3A). Among the asso-
ciated species, we identified Faecalibacterium prausnitzii 
and Coprococcus eutactus to be positively correlated with 
all carotenoid metabolites, whereas negative correlations 
included species such as Ruminococcus torques and R. 
gnavus and Eggerthella lenta, Tyzzerella nexilis, and Fla-
vonifractor plautii. No association was found between 
individual taxa and serum or stool levels of retinol.

Next, we used random forest models to measure the 
ability of microbial species abundances to predict cir-
culating vitamin A-related metabolite levels and gen-
erate a quantitative estimate of the extent to which gut 
microbiome composition is linked to vitamin A metabo-
lite levels underscoring the importance of gut health in 
overall nutritional and anti-inflammatory status. The 
model performance was evaluated using the area under 
the receiver operating characteristic curve (AUC) and 
calculating Spearman’s correlations between predicted 
and observed values (Rho). In TwinsUK, on average, the 
gut microbiome was able to predict circulating levels of 
carotenoid metabolites across the 5-folds (Fig. 3B), with 
carotene diol (2) presenting the strongest association 
(AUC [95%CI] = 0.74 [0.67; 0.81], rho [95%CI] = 0.31 
[0.15, 0.45]).

We performed a sensitivity analysis to explore whether 
our results were dependent on the transformation used 

on the gut microbiome (inverse normalisation). We 
transformed the data using the centred log-ratio (CLR) 
transformation and results were consistent (e.g. caro-
tenediol (2) AUC [95% CI] = 0.68 [0.6; 0.76], rho [95% 
CI] = 0.25 [0.1; 0.4]).

We replicated the predictive models in the ZOEP-
REDICT-1 cohort. Consistent with the observations in 
TwinsUK, the gut microbiome was able to predict cir-
culating levels of carotenoid metabolites with the largest 
AUC for carotene diol (2) (0.73 [0.60, 0.86]) (Fig. 3B).

Vitamin A metabolites and bile acid levels
In TwinsUK, we quantified the effect of circulating pri-
mary bile acids on carotenoid and retinoid circulating 
levels to test whether fat absorption, which is modulated 
by primary BAs [4], influenced serum vitamin A levels. 
We tested their correlation with CA and CDCA, and their 
conjugated bile salts TCA, GCA, TCDCA, and GCDCA, 
which have been suggested in the literature to influence 
vitamin A absorption and metabolism [16], and which 
are known to have strong links to gut microbiome com-
position and function [39, 40]. We found three vitamin 
A-related metabolites nominally associated with bile acid 
levels: carotene diol (2) was negatively correlated with 
both GA (beta [95% CI] =  − 0.08 [− 0.14, − 0.07], p = 0.01) 
and GCDCA (beta [95% CI] =  − 0.06 [− 0.12, − 0.004], 
p = 0.03), carotene diol (1) was positively associate with 
CA (beta [95% CI] = 0.07[0.001,0.15], p = 0.05], while 
oxoRA was positively associated with CA (beta [95% 
CI] = 0.07, [0.001, 0.16], p = 0.045, and 0.12 [0.05, 0.12], 
p = 5.43 × 10−4, respectively, Additional File 1:Fig.  1). 
After adjusting for multiple testing (Bonferroni p-value 
= 0.05/30 = 1.6 × 10−3), only oxoRA was associated with 
CA levels. None of the carotenoids nor retinol were cor-
related with primary bile acids after adjustment for mul-
tiple testing.

Vitamin A metabolites and diet quality association
We further investigated the association between serum 
and stool vitamin A-related metabolites, and the quality 
of habitual diet, as measured by the HEI in a subset of 
664 TwinsUK individuals with FFQs available. We found 
strong positive associations between serum carotenoids 

Fig. 3  A Heatmap representing correlation of vitamin A-related metabolites from serum and gut bacterial species. Each cell of the matrix contains 
the regression coefficient between one vitamin A-related metabolite and a bacterial species. The table is colour-coded by correlation according 
to the table legend (red for positive and blue for negative correlations). * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. B Prediction of the gut 
microbiota in vitamin A-related metabolites estimated by random forestregressors (using Spearman’s correlations) and classifiers (using AUC 
values) in TwinsUKand ZOE PREDICT-1 participants. Boxplots represent the mean AUC and the 95% confidence intervals across fivefold for TwinsUK 
and ZOE PREDICT-1. Dark blue and light blue circles indicate the mean of Spearman’s correlations between the real value of each vitamin A-related 
metabolite and the value predicted by the models across fivefold in TwinsUK and ZOE PREDICT-1

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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and HEI after adjusting for covariates, while no effects 
were observed for retinols or for stool vitamin A metabo-
lite abundances (Fig. 2C). Results were replicated in PRE-
DICT 1 (Fig. 2D).

Consistent with the literature [41], we found a posi-
tive association between the HEI and the Shannon diver-
sity index (beta [95% CI] = 0.10 [0.02, 0.19], p = 0.01) 
after adjusting for age, sex, BMI, and family relatedness. 
Importantly, when adjusting for each of the carotenoids 
in turn, the effects were attenuated (Additional File 
1:TableS5). We, therefore, performed a formal media-
tion analysis adjusting for age, BMI, and sex to deter-
mine whether the serum carotenoid metabolites mediate 
the association between HEI and the Shannon diversity 
index. We only focused on carotenoids mediating the 
effects of healthy diet on the microbiome and not vice 
versa as experimental evidence has shown that in anaer-
obic conditions (as is the case in the human colon) that 
gut microbes cannot produce carotenoids [42, 43]). All 
four carotenoid metabolites met the criteria for a media-
tor, as laid out by Baron and Kenny [35]. Following a for-
mal mediation analysis, all four carotenoids significantly 
mediated the effect of a healthy diet (HEI) on gut micro-
bial diversity (Fig. 4). The variance accounted for ranged 
from 19.8% for beta-cryptoxanthin to 39.9% for carotene 
diol (1).

However, our findings surrounding carotene diol 
(1) and (2) could be sensitive to unmeasured residual 

confounding (e-values = 1.32 [LowerBound = 1.0] [37, 38] 
(Additional File 1:TableS6). On the other hand, for caro-
tene diol (3) and beta-cryptoxanthin, our results appear 
robust (e-values = 1.35 [LowerBound = 1.04].

Discussion
In this large-scale study investigating the links between 
stool and serum vitamin A-related metabolites and the 
gut microbiome, we report that carotenoids are strongly 
correlated with gut microbiome composition, while reti-
noids are only weakly associated with gut microbes.

In addition to strong positive associations with alpha 
diversity, we also observed significant positive correla-
tions between circulating levels of carotenoid compounds 
and the abundance of short-chain fatty acid (SCFA) pro-
ducing gut microbes, such as Faecalibacterium praus-
nitzii and Coprococcus eutactus [44–46]. Carotenoids are 
known for their antioxidant properties [47], which may 
contribute to a higher abundance of beneficial bacterial 
species. Similarly, we found that carotenoids were nega-
tively correlated with species previously linked to inflam-
mation (Ruminococcus torques, Ruminococcus gnavus) 
[48], or unfavourable cardiometabolic outcomes [29] as 
well as colorectal cancer risk and progression (Eggerthella 
lenta, Tyzzerella nexilis, Flavonifractor plautii) [49–51].

Consistently, the levels of these compounds in serum, 
though much less in stool, were partially predicted by 
the gut microbiome composition using random forest 

Fig. 4  Mediation analysis diagram. A healthy diet, represented by the healthy eating index, was modelled as the exposure. Alpha diversity 
of the gut microbiome, measured by the Shannon diversity index, was modelled as the outcome. Each vitamin A metabolite was modelled 
as a mediator. Summary statistics from the mediation analysis are depicted as beta (95% confidence interval). Abbreviations: HEI, healthy eating 
index; CI, confidence interval
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models and, importantly, these results were replicated 
in an independent cohort. The lack of prediction of the 
gut microbiome on stool carotenoid and retinoid levels 
may be reflecting that absorption of these substances 
takes place mostly in the proximal intestine (jejunum and 
duodenum) [52] and hence it is likely that the systemic 
effects of carotenoids and retinoids influence the gut 
microbiome and not gut microbes affecting absorption of 
these fat-soluble molecules.

We also report that, although all these compounds are 
fat soluble, levels of primary bile acids (which are key in 
the absorption of fat substances and have been impli-
cated in the absorption and metabolism of vitamin A 
and its metabolites [16]) are not correlated with circulat-
ing levels of carotenoid compounds or of retinol. Strong 
links between bile acid metabolism and gut microbiome 
composition have been reported [17, 40], but the asso-
ciations reported here with gut microbiome diversity 
are unlikely to be caused by the effects of the gut micro-
biome on absorption in the upper GI tract, suggesting 
that this mechanism may play only a small role in deter-
mining levels of circulating carotenoids and retinoids 
within the ranges seen in a healthy population. Indeed, 
recent experimental data has shown the inability of gut 
microbes to synthesise carotenoids in anaerobic condi-
tions comparable to the human gut [43], hence our data 
are consistent with dietary carotenoids influencing the 
gut microbiome composition and not vice versa.

Finally, we showed that, to some extent, the effect of 
eating a healthy diet (as measured by adherence to HEI) 
on gut microbiome alpha diversity is mediated by levels 
of carotenoid compounds. The proportion of the effect 
ranged from 19.8% for beta-cryptoxanthin to 39.9% for 
carotene diol (1). No significant effect was seen for reti-
noid compounds. These results could have potential 
implications for personalised nutrition, and the devel-
opment of dietary interventions to promote a healthy 
gut microbiome [53]. Indeed, these data highlight strong 
links between fat-soluble carotenoids and beneficial gut 
microbes, suggesting the potential of modulating some 
of these species by carotenoid intake. Further research in 
this area may contribute to the development of targeted 
dietary recommendations for individuals aiming to opti-
mise their gut microbial composition and promote over-
all health.

Our study has many strengths. First, we used a well-
validated large population-based cohort for discovery 
and validated our findings in an independent cohort. 
Both cohorts had the same omics profiling and were pro-
cessed using the same quality control and analysis pipe-
lines. Second, we used whole-shotgun metagenomics 
data, which provides considerably more depth than char-
acterisation via 16S rRNA gene amplicon data. Third, we 

measured vitamin A metabolites as well as several pri-
mary and secondary bile acids in both serum and stool 
using one of the best-characterised targeted commer-
cially available metabolomic panels.

We also note some limitations. First, our study sam-
ple is predominantly female, and our replication cohort 
included females only. Second, vitamin A metabolite 
levels the metabolomics panel used provides relative val-
ues, and not absolute concentrations of the metabolites 
in serum or stool. This limitation also affects the clinical 
interpretability of our results, where absolute quantifica-
tion is necessary for comparing results to clinical thresh-
olds used to diagnose/manage vitamin A deficiency 
or toxicity. Nevertheless, our results indicate relative 
changes and associations facilitating deeper exploration 
within future studies and subsequent improved clini-
cal relevance. Third, dietary intake was measured using 
a food frequency questionnaire, which has inherent 
biases, including response bias and potential misclas-
sification. Fourth, our mediation analysis may not truly 
identify a causal relationship, due to a lack of a tempo-
ral relationship between measurement of our exposure, 
mediator, and outcome, and we are unable to exclude the 
possibility of residual unmeasured confounders, which 
highlights the need for further research into the inter-
actions between vitamin A-related metabolites and the 
gut microbiome, and to understand what, if any, such 
unmeasured confounders might be. Nevertheless, we 
successfully replicated the results in both TwinsUK and 
ZOE Predict-1. Finally, we are unable to infer causality 
between carotenoids levels, gut microbiome composi-
tion, and HEI.

Conclusions
In summary, this is, to the best of our knowledge, the first 
large-scale study investigating the links between vitamin 
A metabolites and the gut microbiome using whole-
genome shotgun metagenomic sequencing. Here, we 
show that carotenoids but not retinoids are strongly cor-
related with higher alpha diversity and with higher rela-
tive abundance of beneficial bacteria, and that vitamin A 
metabolites mediate between 20 and 39% of the effects of 
adherence to a healthy diet on microbiome diversity.
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