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Abstract 

Background Exposure to famine in the prenatal period is associated with an increased risk of metabolic disease, 
including obesity and type 2 diabetes. We employed nuclear magnetic resonance (NMR) metabolomic profiling 
to identify the metabolic changes that are associated with survival of prenatal famine exposure during the Dutch 
Famine at the end of World War II and subsequently assess their link to disease.

Methods NMR metabolomics data were generated from serum in 480 individuals prenatally exposed to famine 
(mean 58.8 years, 0.5 SD) and 464 controls (mean 57.9 years, 5.4 SD). We tested associations of prenatal famine expo-
sure with levels of 168 individual metabolic biomarkers and compared the metabolic biomarker signature of famine 
exposure with those of 154 common diseases.

Results Prenatal famine exposure was associated with higher concentrations of branched-chain amino acids ((iso)-
leucine), aromatic amino acid (tyrosine), and glucose in later life (0.2–0.3 SD, p < 3 ×  10−3). The metabolic biomarker 
signature of prenatal famine exposure was positively correlated to that of incident type 2 diabetes from the UK 
Biobank (r = 0.77, p = 3 ×  10−27), also when re-estimating the signature of prenatal famine exposure among individu-
als without diabetes (r = 0.67, p = 1 ×  10−18). Remarkably, this association extended to 115 common diseases for which 
signatures were available (0.3 ≤ r ≤ 0.9, p < 3.2 ×  10−4). Correlations among metabolic signatures of famine exposure 
and disease outcomes were attenuated when the famine signature was adjusted for body mass index.

Conclusions Prenatal famine exposure is associated with a metabolic biomarker signature that strongly resem-
bles signatures of a diverse set of diseases, an observation that can in part be attributed to a shared involvement 
of obesity.
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Background
Metabolomics is a powerful tool for illuminating molecu-
lar phenotypes underpinning disease [1]. With nuclear 
magnetic resonance (NMR) approaches, metabolomics 
is now possible within large-scale epidemiologic studies 
and biobanks. Within these settings, NMR metabolomics 
has identified metabolic changes across a broad spectrum 
of diseases, revealing both common and disease-specific 
metabolic biomarkers [2–5]. Less is known about how 
the metabolome may reflect or mediate effects of prena-
tal exposure on disease pathogenesis. Here, we investi-
gate the long-term metabolomic sequelae associated with 
gestational exposure to famine, an established risk factor 
for the development of metabolic disease [6, 7].

The Dutch Hunger Winter of 1944–1945, a 6-month 
famine at the end of World War II, provides a unique set-
ting to study the long-term effects of an adverse prena-
tal environment [6, 8, 9]. Previous studies revealed that 
prenatal famine exposure is associated with an increased 
risk in unfavorable metabolic phenotypes in adulthood 
including increased fasting glucose and triglyceride lev-
els, obesity, and type 2 diabetes [10–17]. These associa-
tions have also been observed for other historical famines 
[6]. To date, a comprehensive view of metabolic changes 
linked to prenatal famine exposure is lacking. Therefore, 
in this study, we seek to define the metabolomic differ-
ences associated with prenatal famine exposure and 
how these metabolic biomarkers are linked to diseases. 
We expect to identify changes in metabolic biomarkers 
that reflect metabolic diseases known to be associated 
with prenatal famine exposure, while the metabolomics 
approach also provides the opportunity to uncover 
metabolic biomarkers related to diseases not previously 
reported in the context of prenatal famine exposure.

We profiled samples for 944 participants from the 
Dutch Hunger Winter Families Study using nuclear 
magnetic resonance (NMR) metabolomics. First, we 
compared individuals exposed to  prenatal famine 
with  unexposed control participants on 168 different 
serum metabolic biomarkers to define the metabolic 
differences associated with prenatal famine exposure. 
To exclude that effects were partially driven by genetic 
rather than environmental influences, we corrected for 
genetic effects using polygenic risk scores that are known 
to explain part of the variance in metabolic biomarker 
levels [18, 19]. Second, we compared the metabolome-
wide signature of prenatal famine exposure to an atlas of 
metabolic signatures marking risk of a range of common 
diseases to test for commonalities between the metabolic 
differences associated with prenatal exposure to famine 
and those previously associated with future disease risk. 
Our study reveals specific metabolic biomarker altera-
tions and broader connections with a range of chronic 

diseases, providing new insights into how prenatal fam-
ine exposure shapes health across the life course.

Methods
Study population
The Dutch Hunger Winter Families study (DHWFS) is 
described in detail elsewhere [20]. In short, historical 
birth records were retrieved from three institutions in 
famine-exposed cities of all singleton births between 1 
February 1945 and 31 March 1946 and a systematic sam-
ple of births born in 1943 or 1947. From these records, 
we identified 3307 individuals whose mothers were 
exposed to the famine during or immediately preceding 
that pregnancy and unexposed time-controls born before 
or after the famine. In total, 2300 of the 3307 individu-
als were located through population registries and were 
invited to participate in a telephone interview and in a 
clinical examination, together with a same-sex sibling 
not exposed to the famine (family-control). No differ-
ences were found in birth characteristics when compar-
ing the subjects who were located to those who could not 
be located or when comparing the positive responders to 
those who did not respond to our invitation letter [20].

We conducted 1031 interviews and 971 clinical exami-
nations between 2003 and 2005. One non-biological sib-
ling identified with genetic analyses was excluded from 
the cohort. NMR metabolomics profiling was performed 
on serum samples of 962 individuals. Our sample for this 
study included 944 individuals after excluding non-fasted 
samples (n = 17) and an outlier in the metabolomics 
dataset as identified with principal component analysis 
(n = 1). For more information, refer to the flow chart of 
our study population (Additional file  1: Fig. S1, Addi-
tional file 1: Table S1).

The Dutch Hunger Winter Families study was approved 
by the Medical Ethics Committee of Leiden University 
Medical Center (P02.082), and the participants provided 
verbal consent at the start of the telephone interview 
and written informed consent at the start of the clinical 
examination.

Famine exposure definitions
Food rations were distributed centrally and below 
900  kcal/day between 26  November 1944, and 15  May 
1945 [8]. We defined famine exposure by the number of 
weeks during which the mother was exposed to < 900 kcal/
day after the last menstrual period (LMP) recorded on the 
birth record [20]. The gestational period was estimated 
from the LMP of the mother and the date of birth of the 
child. To analyse the effect of timing of gestational expo-
sure, we subdivide the gestational period into units of 
10  weeks. We considered the mother exposed in gesta-
tional weeks 1–10, 11–20, 21–30, or 31 to delivery if these 
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gestational time windows were entirely contained within 
this period and had an average exposure of < 900 kcal/day 
during an entire gestation period of 10 weeks. As the fam-
ine lasted 6  months, some participants were exposed to 
famine during two adjacent 10-week periods. In chrono-
logical order, pregnancies with LMP between 30 April 
1944 and 24 August 1944 were considered exposed in 
weeks 31 to delivery, between 9 July 1944 and 15 October 
1944 in pregnancy weeks 21–30, between 17 September 
1944 and 24 December 1944 in pregnancy weeks 11–20, 
and between 26 November 1944 and 4 March 1945 in 
pregnancy weeks 1–10. Individuals with a LMP between 
4 February and 12 May 1945 which were exposed to an 
average of < 900  kcal/day for less than 10  weeks before 
conception and up to 8  weeks post-conception are 
denoted as the weeks 9–0 weeks group. We defined indi-
viduals exposed to one or two of these definitions exposed 
to ‘any’ gestational exposure.

Characteristics
Information on health history, including information 
on the use of cholesterol-lowering drugs, was collected 
through telephone interviews. Measurement of height 
was carried out to the nearest millimeter using a portable 
stadiometer (Seca), and body weight was measured to the 
nearest 100 g by a portable scale (Seca). BMI was calcu-
lated from these measures (weight (kg)/[height (m)]2). 
Waist circumference (at level of iliac crests, intersection 
with midaxillary line) was measured to the nearest 1 mm 
with the use of a non-extensible measuring tape (Hoech-
stmass). Cholesterol measures were reported previously 
[14] and were assessed using standard enzymatic assays. 
LDL cholesterol was calculated for individuals with a tri-
glyceride concentration lower than 400  mg/dl using the 
Friedewald formula. A blood draw was performed at the 
start of a 75-g oral glucose test, and fasted glucose was 
quickly assessed in serum by hexokinase reaction on a 
Modular P800 (Roche). The presence of type 2 diabetes 
was either determined through previous health history or 
defined as fasting glucose ≥ 7.0 mmol/l or 2 h glucose tol-
erance test ≥ 11.1 mmol/l [21].

Metabolic biomarker quantification
Metabolic biomarkers were measured from serum sam-
ples using a high-throughput 1H-NMR metabolomics 
platform developed by Nightingale Health Ltd. (Helsinki, 
Finland; nightingalehealth.com; biomarker quantification 
version 2021). Details of the procedure and application 
of the NMR metabolomics platform have been described 
elsewhere [22, 23]. This method provides simultaneous 
quantification of 249 metabolic biomarkers, of which 
168 are directly measured and 81 are derived metabolic 
biomarkers, including 37 clinically validated metabolic 

biomarkers certified for diagnostic use. The metabolic 
biomarkers measured include amino acids, ketone bod-
ies, lipids, fatty acids, and lipoprotein subclass distri-
bution, particle size, and composition. A subset of the 
biomarkers was selected for inclusion in the presented 
analysis, focusing on the 168 directly measured meta-
bolic biomarkers.

Values below the detection limit were treated as miss-
ing and imputed by setting them to the minimum value 
for each metabolic measure. A value of one was added to 
all metabolic biomarkers containing zeroes (i.e., x + 1), 
which indicated that they were below the limit of quan-
tification. All metabolic biomarkers were then natural 
logarithmic transformed to obtain an approximately nor-
mal distribution. The metabolic biomarkers were subse-
quently scaled to standard deviation (SD) units (mean 0, 
SD 1) for use in the analysis, enabling the comparison of 
multiple metabolic measures with different units or with 
large differences in their concentration distributions.

Genotype data generation and polygenic scores
From our metabolomics sample population, 931 indi-
viduals also had genotype data available. Genotype data 
were measured using the Illumina Infinium™ Global 
Screening Array (GSA) genotyping platform (version 
24 v3.0. Illumina Inc., San Diego, USA) by the Human 
Genomics Facility in the Genetic Laboratory Rotterdam 
(Rotterdam, the Netherlands). Imputation was performed 
using the 1000G P3v5 reference panel [24]. Polygenic 
scores were calculated for tyrosine, leucine, and glucose 
levels with the PRSice-2 software using the independent 
hits of publicly available genome-wide association study 
(GWAS) summary statistics (Additional file 1: Table S2) 
[25]. The base GWAS study utilized the same NMR plat-
form and had participants with the same ancestry (Euro-
pean) as those in our study [18]. The polygenic scores 
were residualized on the first ten genetic principal com-
ponents and subsequently scaled to standard deviation 
(SD) units (mean 0, SD 1) for analysis.

Statistical analysis
All analyses were performed in the R programming 
environment (R version 4.2.2). For all linear regression 
analyses, we used linear regression within a generalized 
estimating equations framework to account for the cor-
relation between sibships (R geepack package, version 
1.3.9) [26].

Validation of NMR metabolomics measures
We first validated the NMR measurements by testing 
the correlation between glucose, triglycerides, total cho-
lesterol, LDL, and HDL cholesterol measured by rou-
tine clinical chemistry and Nightingale Health NMR 
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(Additional file  1: Fig. S2) (26, 27). We subsequently 
tested whether previously observed associations between 
prenatal famine exposure and these five metabolic bio-
markers as measured by routine clinical chemistry were 
consistently found when the same biomarkers were 
measured using Nightingale Health NMR. For this, we 
used linear regression models adjusted for age, sex, and 
cholesterol-lowering medication.

Metabolome‑wide association study (MWAS)
Next, we performed a metabolome-wide association 
study of prenatal famine exposure by assessing the rela-
tionship between famine exposure and 168 metabolic 
biomarkers through linear regression models adjusted 
for age, sex, and cholesterol-lowering medication (main 
model). Due to the correlated nature of the metabolic 
biomarkers, 95% of the variation in the 168 metabolic 
biomarkers was explained by 14 principal components 
(Additional file  1: Fig. S3). Therefore, as previously 
described [27–29], we corrected for 14 independent 
tests using Bonferroni multiple testing correction (p 
value = 0.05/14 = 3.57 ×  10−3).

Sensitivity analysis of the MWAS results
Sensitivity analyses were performed to assess the robust-
ness of the results of the metabolome-wide association 
study of prenatal famine. First, to assess the effect of 
famine exposure independent of anthropometric meas-
ures or type 2 diabetes, the main model was addition-
ally adjusted for BMI, waist circumference, and type 2 
diabetes. Second, to isolate environmental influences 
on our metabolic outcomes, we corrected for potential 
differences in metabolic biomarker levels that could be 
attributed to genetics by additionally adjusting the main 
model for the polygenic scores of the metabolic biomark-
ers. Third, to check for potential differences between 
sexes, sex-stratified analyses were performed adjusting 
for the same covariates as the main model and an inter-
action term for sex and metabolic marker was included 
in the model to test whether potential differences were 
statistically significant. Fourth, potential gestation tim-
ing specific effects of famine exposure were examined 
by subdividing famine exposure into 5 gestational time 
windows. In the regression analysis, the single indicator 
of famine exposure was replaced with indicator variables 
identifying exposure within each of the gestational time 
windows.

Comparison to metabolic biomarker signatures of diseases
To assess whether the metabolic biomarkers associated 
with prenatal famine exposure were linked to metabolic 
changes previously associated with future disease risk, 
we first compared the metabolic biomarker signature 

associated with prenatal famine exposure to the meta-
bolic biomarker signature predicting the incident risk of 
type 2 diabetes. For this, we utilized published results 
from a metabolome-wide study on incident type 2 diabe-
tes using UK Biobank data [2]. Specifically, we correlated 
the effect sizes of famine exposure in DHWFS with the 
effect sizes in the UK Biobank for incident type 2 diabe-
tes across the 135 shared metabolic biomarkers in both 
datasets.

We then extended our analysis and correlated the met-
abolic profile of prenatal famine to the publicly available 
metabolic signatures of a large set of diseases as esti-
mated with UK Biobank data [3]. Out of 674 incident 
diseases available in the metabolomics atlas, we selected 
those with at least 1000 cases (out of a total population 
ranging from ~ 103,300 to ~ 118,000) to represent com-
mon diseases (n = 162), and those with at least one signif-
icant association with a metabolic biomarker in the UK 
Biobank analysis (p < 5 ×  10−4) (n = 154), resulting in 154 
diseases. The effect sizes of the overlapping 168 metabolic 
biomarkers were correlated between prenatal famine and 
each disease. We corrected for multiple testing using Bon-
ferroni correction (p value = 0.05/154 = 3.2 ×  10−4). Finally, 
we re-estimated the effect sizes of the association between 
prenatal famine exposure and all 168 metabolic biomarkers, 
while additionally adjusting for BMI and waist circumfer-
ence. We then repeated the correlation analysis comparing 
this BMI- or waist circumference-adjusted prenatal famine 
metabolic biomarker signature with the 154 metabolic bio-
marker disease signatures from the UK Biobank.

Results
Population characteristics
Within the Dutch Hunger Winter Families Study, fast-
ing NMR metabolomics data were available for 944 
study participants. Among these participants, 480 (51%) 
were prenatally exposed to famine, and 464 (49%) were 
controls (including unexposed time controls born at the 
same institution as the exposed individuals and unex-
posed same-sex sibling controls both born either before 
or conceived after the famine). As previously reported, 
famine-exposed participants had an increased BMI [11] 
and a higher prevalence of type 2 diabetes [16], and con-
trols were on average 0.9  years younger than famine-
exposed. No differences were observed in sex or the use 
of cholesterol lowering medication (Table 1).

Validation of NMR metabolomics measures
To confirm the validity of the newly measured metabo-
lomics measures in our study, we first compared our 
results to previously measured clinical chemistry data 
available for five metabolic biomarkers, namely fasted 
glucose, triglycerides, total cholesterol, LDL, and HDL 
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cholesterol [14, 17]. We observed high correlations 
(r ≥ 0.9) in line with previous studies [3, 30], and the asso-
ciations of clinical chemistry and NMR biomarkers with 
prenatal famine were consistent (Additional file 1: Fig. S2, 
Additional file 1: Table S3).

Metabolome‑wide association study on prenatal famine 
exposure
Next, we examined the association of any prenatal fam-
ine exposure with all 168 metabolic biomarkers individu-
ally. Prenatal famine exposure was associated with higher 
tyrosine (effect size 0.28 SD), leucine (0.21 SD), glu-
cose (0.23 SD), and isoleucine (0.18 SD) concentrations 
(p < 3 ×  10−3; all analyses adjusted for age, sex, and use of 
cholesterol-lowering drugs) (Fig.  1A, Additional file  2: 
Table S4).

We performed three sets of follow-up analyses for 
tyrosine, leucine, and glucose to gain further insight 
into these associations. Isoleucine was excluded because 
it was highly correlated with leucine (r = 0.9), both are 
branched-chain amino acids, while leucine showed the 
stronger association with famine exposure (Fig. 1B, Addi-
tional file 1: Fig. S4). First, the associations between pre-
natal famine exposure and tyrosine, leucine, and glucose 

Table 1 Population characteristics

Values are means (standard deviation) or numbers of subjects (valid %) shown 
for famine-exposed and controls of the study population. Comparing the two 
categories by a two-sample t-test or chi-square test, as appropriate

Controls 
(n = 464)

Famine‑exposed 
(n = 480)

p value

Age, years (SD) 57.9 (5.4) 58.8 (0.5) 1.1 ×  10−3

Sex, males, n (%) 200 (43.1) 225 (46.9) 0.24

Use of cholesterol-lowering 
medication, n (%)

55 (11.9) 61 (12.7) 0.69

Body mass index, kg/m2 (SD) 27.0 (4.2) 28.2 (4.8) 1.6 ×  10−4

Type 2 diabetes, n (%) 38 (8.2) 61 (12.8) 0.02

Fig. 1 Metabolome-wide association study on prenatal famine exposure. A Association of prenatal famine exposure with 168 metabolic 
biomarkers. Regression models were adjusted for age, sex, and cholesterol-lowering medication and correlation within sibships were controlled 
for (main model). Scattered points represent metabolic biomarkers: the x-axis shows the effect size for the association of famine with the respective 
metabolic biomarker, while the y-axis is negative log of the p value. The grey line represents the significance threshold for this analysis (p 
value = 3.57 ×  10−3). B Heatmap showing the correlation of famine-associated metabolic biomarkers. Pearson’s correlation was calculated for each 
metabolic biomarker pair. C Sensitivity analyses on famine-associated metabolic biomarkers. Main: main model; BMI-adjusted: main model 
additionally adjusting for BMI; Diabetes-adjusted: main model additionally adjusted for type 2 diabetes; polygenic score (PGS)-adjusted: main model 
additionally adjusted for the polygenic score of the metabolic biomarkers. Effect estimates and 95% confidence intervals are depicted for each 
model and are reported in standard-deviation (SD) units of the log-transformed metabolic biomarkers
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remained after including BMI, waist circumference, or 
type 2 diabetes as a covariate in the model (Fig. 1C, Addi-
tional file  1: Table  S5). Second, we adjusted these asso-
ciations for potential differences that may be attributed 
to genetics. Since the polygenic scores of each metabolic 
biomarker explained only approximately 1–5% of their 
variance (Additional file  1: Table  S2), the associations 
were not affected by including the polygenic scores as 
covariates (Fig.  1C). Third, we explored whether asso-
ciations between famine exposure and the three meta-
bolic biomarkers were dependent on sex or the timing of 
exposure during gestation (Additional file 1: Fig. S5). We 
found no evidence that our findings differed according to 
sex or timing of exposure during pregnancy. The effect 
sizes across different exposure timing subgroups were 
similar to estimates of the main analysis, although the 
majority of these exposure timing sub-categories were 
not statistically significant (0.02 ≤ p ≤ 0.8). In the sex-
stratified analysis, the effect sizes for glucose and tyrosine 
were lower in females than males (0.0002 ≤ p ≤ 0.08), but 
we found no statistical evidence for effect modification 
(interaction p values > 0.39).

Comparison to metabolic biomarker signatures of diseases
The metabolic biomarkers we found to be associated 
with prenatal famine exposure, namely tyrosine, glu-
cose, leucine, and isoleucine, were previously reported 
to be associated with type 2 diabetes risk [2, 31]. To 
further investigate whether these associations reflect 
an increased risk of type 2 diabetes among individuals 

prenatally exposed to famine, we utilized a previously 
reported metabolic biomarker signature of incident type 
2 diabetes from UK Biobank [2] and compared it to the 
complete set of biomarker associations in our study. Spe-
cifically, we took the effect sizes of 135 metabolic bio-
markers for the risk of type 2 diabetes and compared 
them to the effect sizes we observed for prenatal famine. 
The metabolic biomarker signature of prenatal famine 
exposure was highly correlated with that of incident type 
2 diabetes (r = 0.77, p = 3 ×  10−27; Fig. 2A). This similarity 
persisted when we re-estimated the effect sizes for pre-
natal famine exposure after excluding participants with 
type 2 diabetes (r = 0.67, p = 1 ×  10−18) (Fig. 2B).

To explore whether the metabolic biomarker profile 
of prenatal famine exposure may reflect a risk of dis-
eases beyond type 2 diabetes, we extended the analy-
sis to recently published atlas of signatures of a wide 
range of diseases in the UK Biobank [3]. We focused on 
metabolic biomarker signatures for the future onset of 
disease obtained from individuals not affected by the 
disease of interest at baseline. For the analysis, we uti-
lized a subset of 154 common incident diseases that 
had at least one metabolic biomarker association in 
the UK Biobank (p < 5 ×  10−4). Remarkably, the meta-
bolic biomarker signature of prenatal famine expo-
sure was positively correlated with the metabolic 
biomarker signature of 115 diseases (75%; 0.3 ≤ r ≤ 0.9, 
p < 3.2 ×  10−4) and negatively correlated with 13 diseases 
(8%; − 0.9 ≤ r ≤ -0.4, p < 3.2 ×  10−4) (Additional file  2: 
Table S6). The metabolic biomarker signature of prenatal 

Fig. 2 Correlation analysis of the metabolic biomarker signature associated with famine and the metabolic biomarker signature associated 
with incident type 2 diabetes. A Overall metabolic biomarker signature comparison of 135 metabolic biomarkers for prenatal famine exposure 
and incident type 2 diabetes (r = 0.77, p = 3 ×  10−27) as established in the UK Biobank Study in a 12-year follow-up. B Overall metabolic biomarker 
signature comparison of 135 metabolic biomarkers for prenatal famine exposure (excluding 99 individuals with type 2 diabetes from the analysis) 
and incident type 2 diabetes as established in the UK Biobank Study in a 12-year follow-up (r = 0.67, p = 1 ×  10−18). The effect size estimates for each 
metabolic biomarker are shown as points. Famine-associated metabolic biomarkers are indicated in blue
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famine exposure exhibited the strongest correlation with 
the signature of the future risk of myocardial infarction 
(r = 0.9, p = 1.8 ×  10−47). Other diseases with a strong cor-
relation (r ≥ 0.7) included those related to the digestive 
system, diseases with an endocrine, and nutritional and 
metabolic component as well as diseases of the nervous 
system (Fig.  3). The diseases displaying a negative cor-
relation were primarily associated with injury and other 
consequences of external causes, such as fractures and 
open wounds (Additional file 2: Table S6).

We hypothesized that a potential common factor 
among the diseases with a similar metabolic biomarker 
signature is obesity. To test this hypothesis, we re-esti-
mated the effect sizes for prenatal famine exposure while 
additionally adjusting for BMI and then re-calculated the 

correlation between the resulting BMI-adjusted meta-
bolic biomarker signature with the signatures of the 154 
common incident diseases (Additional file  2: Table  S6). 
The strength of the correlations was consistently atten-
uated across all diseases (mean =  − 58%; SD = 19%). 
Among the 30 diseases whose metabolic biomarker sig-
nature was most similar to that of prenatal famine, the 
attenuation ranged between 27 and 48%, and the corre-
lations remained moderate (0.4 ≤ r ≤ 0.6). The degree of 
attenuation was not linked to whether the disease had 
an obvious metabolic component (Fig. 4). Similar results 
were obtained when repeating the analysis adjusting for 
waist circumference instead of BMI (Additional file  1: 
Fig. S6).

Fig. 3 Correlation analysis of the metabolic biomarker signature associated with famine and the metabolic biomarker signature associated 
with various common diseases. Heatmap showing the effect size estimates of the 30 most correlated diseases to prenatal famine exposure. The 
columns are clustered according to the metabolic biomarker effect sizes and the rows are ordered according to the correlation of the metabolic 
biomarker signature of the disease to prenatal famine exposure (Pearson r for IK21 Acute myocardial infarction = 0.85, Pearson r for E11 type 2 
diabetes mellitus = 0.69). Only metabolic biomarkers that are nominally associated with prenatal famine exposure are shown (p < 0.05). The diseases 
are shown with their ICD-10 (International Classification of Diseases 10th Revision) classification. The full names of the metabolic biomarkers can be 
found in Additional file 2: Table S4
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Discussion
We further defined the metabolic phenotype associated 
with prenatal famine exposure using nuclear magnetic 
resonance (NMR) metabolomic profiling. We show that 
prenatal exposure to famine is associated with specific 
metabolic differences later in life, including higher lev-
els of branched-chain amino acids (BCAA), an aromatic 
amino acid, and glucose. In addition, we report that the 
metabolic biomarker signature of prenatal famine has 
marked similarities to the signature of a wide range of 
common diseases.

Our study indicated specific differences in the meta-
bolic profiles of famine-exposed individuals compared 
to controls. We observed that those exposed to fam-
ine prenatally have higher levels of the aromatic amino 
acid tyrosine, the branched-chain amino acids leucine 
and isoleucine, and glucose six decades after expo-
sure. All four metabolic biomarkers have been linked to 
type 2 diabetes and thus support the known association 
between prenatal famine exposure and type 2 diabetes 
risk in adulthood [2, 6]. In addition, higher levels of other 
branched-chain and aromatic amino acids such as valine 

and phenylalanine that have also been associated with 
type 2 diabetes showed a nominally significant associa-
tion with prenatal famine exposure, further supporting 
the link between prenatal famine and type 2 diabetes risk 
[2]. Interestingly, the metabolic biomarker associations 
with prenatal famine were independent of BMI and type 
2 diabetes status, indicating that they may not be fully 
driven by the higher BMI and increased prevalence of 
type 2 diabetes among famine-exposed individuals.

The link with a higher type 2 diabetes risk among indi-
viduals exposed to famine in the prenatal period was 
supported by investigating the complete range of meta-
bolic biomarkers. We observed a strong resemblance in 
the metabolic biomarker signature of prenatal famine 
with that of the future onset of type 2 diabetes [2]. More-
over, the strong correlation of the famine signature with 
the incident type 2 diabetes signature persisted after 
excluding participants who were already diagnosed with 
type 2 diabetes at the time of assessment. This result 
reinforces that type 2 diabetes is a main health outcome 
of prenatal famine exposure [6] and indicates that even 
exposed individuals not diagnosed with type 2 diabetes 

Fig. 4 Effect of additional adjustment of BMI in the correlation analysis of the metabolic biomarker signature associated with famine 
and the metabolic biomarker signature associated with various common diseases. The main model within the DHWFS cohort was adjusted for age, 
sex, and cholesterol-lowering medication. The BMI-adjusted model within the DHWFS cohort was adjusted for age, sex, cholesterol-lowering 
medication, and BMI. The effect sizes estimated for these two models of prenatal famine exposure were each correlated to the effect sizes estimated 
for the risk of common diseases. The 30 diseases most correlated to the metabolic biomarker signature of prenatal famine exposure are shown
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have an increased risk of developing this condition in the 
future.

Upon extending our analysis beyond type 2 diabe-
tes, we observed a striking similarity between the meta-
bolic biomarker signature of famine exposure and a wide 
range of other incident disease signatures. This not only 
included  conditions like disorders of lipoprotein metabo-
lism, obesity, and type 2 diabetes but also a priori less 
expected diseases like osteoarthritis, kidney stones, and 
depressive disorders. Interestingly, these high correla-
tions were substantially attenuated for all incident diseases 
when we repeated the analysis using a metabolic biomarker 
profile of prenatal famine that was adjusted for BMI. Our 
findings suggest that BMI is a shared risk factor for or con-
sequence of the diseases and that the metabolic biomarkers 
measured by the NMR platform used may have a particu-
larly strong association with BMI. Of note, after account-
ing for BMI, moderate correlations between the metabolic 
biomarker profiles of incident disease and prenatal famine 
remained. Our findings combined with previous studies 
highlight that the NMR platform is especially useful for dis-
ease risk prediction, but is of limited value to gain mecha-
nistic insights  in specific diseases. Further studies with 
more comprehensive metabolomics platforms are needed 
to fully understand why the metabolic biomarker signature 
of prenatal famine exposure links to a broad range of dis-
eases, including effects independent of obesity.

Conclusions
Prenatal exposure to famine is associated with marked 
metabolic alterations later in life. Differences in indi-
vidual metabolic biomarkers include higher levels of 
branched-chain amino acids, aromatic amino acids, and 
glucose. Moreover, the metabolic biomarker signature 
characteristic of prenatal famine strongly resembles that 
of a diverse set of diseases. Overall, our findings under-
score the broad impact of prenatal famine on adult health 
and highlight obesity as a plausible contributing factor.
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