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Abstract 

Background Epigenetic clocks were known as promising biomarkers of aging, including original clocks trained 
by individual CpG sites and principal component (PC) clocks trained by PCs of CpG sites. The effects of genetic 
and environmental factors on epigenetic clocks are still unclear, especially for PC clocks.

Methods We constructed univariate twin models in 477 same-sex twin pairs from the Chinese National Twin 
Registry (CNTR) to estimate the heritability of five epigenetic clocks (GrimAge, PhenoAge, DunedinPACE, PCGrim-
Age, and PCPhenoAge). Besides, we investigated the longitudinal changes of genetic and environmental influences 
on epigenetic clocks across 5 years in 134 same-sex twin pairs.

Results Heritability of epigenetic clocks ranged from 0.45 to 0.70, and those for PC clocks were higher than those 
for original clocks. For five epigenetic clocks, the longitudinal stability was moderate to high and was largely due 
to genetic effects. The genetic correlations between baseline and follow-up epigenetic clocks were moderate to high. 
Special unique environmental factors emerged both at baseline and at follow-up. PC clocks showed higher longitudi-
nal stability and unique environmental correlations than original clocks.

Conclusions For five epigenetic clocks, they have the potential to identify aging interventions. High longitudinal 
stability is mainly due to genetic factors, and changes of epigenetic clocks over time are primarily due to changes 
in unique environmental factors. Given the disparities in genetic and environmental factors as well as longitudinal 
stability between PC and original clocks, the results of studies with original clocks need to be further verified with PC 
clocks.
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Background
The process of aging is complex, and individuals of the 
same chronological age usually are on different aging 
trajectories [1]. Owing to the association between DNA 
methylation and aging, DNA methylation-based bio-
markers of aging have been developed, called epigenetic 
clocks. Three compelling epigenetic clocks (GrimAge, 
PhenoAge, and DunedinPACE) have attracted wide-
spread attention [2].

Epigenetic clocks were trained on age-associated 
molecular and physiological measures using machine 
learning [3–5]. The GrimAge clock was based on 1030 
cytosine-phosphate-guanine (CpG) sites associated with 
7 plasma proteins and smoking and had an excellent 
prediction of lifespan and healthspan [3]. The Pheno-
Age clock was developed by identifying 513 CpG sites 
derived from chronological age and 9 blood measures 
[5]. The DunedinPACE, based on a set of 173 CpG sites, 
was developed by using the longitudinal change rate of 19 
biological measures over 20 years as training phenotypes 
[4]. Because of various training phenotypes, epigenetic 
clocks capture different aspects of aging and fall into two 
categories: (1) represent the progress of aging (GrimAge 
and PhenoAge) and (2) represent the pace of aging (Dun-
edinPACE) [2].

At present, the methylation level of most individuals is 
detected by beadchip, and there is great technical noise 
from individual CpG sites [6]. Technical noise threatens 
the repeatability of epigenetic clocks [7]. Hence, the pro-
posed principal component (PC) version of epigenetic 
clocks, called PC clocks (PCGrimAge and PCPhenoAge), 
have been trained by PCs of clock-related CpG sites to 
reduce technical noise and have shown more reliability in 
longitudinal studies [8].

Aging process differs among individuals, as it is driven 
by genetic and environmental factors [9, 10]. Based on 
DNA methylation information, epigenetic clocks are also 
influenced by both genetic and environmental factors. On 
the one hand, it has been proved in previous studies that 
epigenetic clocks are associated with lifestyle, BMI, and 
socioeconomic status [11, 12]. On the other hand, there 
are twin studies using a cross-sectional design to obtain 
the heritability of original clocks (GrimAge, PhenoAge, 
and DunedinPACE) [13–15], but the heritability of PC 
clocks remains unknown. Only one longitudinal twin 
study explored the longitudinal changes of the PhenoAge 
clock and found that the genetic factors of the PhenoAge 
clock at two measured times overlapped [16]. Longitudi-
nal twin study provides a valuable design for examining 
changes in heritability and assessing the genetic and envi-
ronmental influence on the longitudinal stability of epige-
netic clocks over time [17]. Such a design also allows for 
assessing the overlap of genes and environmental effects 

in the epigenetic clocks over time [18]. Given the com-
plexity of aging, we can use the longitudinal twin study 
and epigenetic clocks as aging biomarkers to explore the 
continuity of genetic factors at different stages of aging, 
as well as the relationship between genetic and environ-
mental factors in the progression of aging.

Currently, to our knowledge, no studies have explored 
the heritability of PC clocks and the difference in herit-
ability between original and PC clocks. Only one relevant 
study focused on the longitudinal changes in the genetic 
and environmental effects on the PhenoAge clock. There-
fore, based on twins from the Chinese National Twin 
Registry (CNTR), we first explored the heritability of 
original and PC clocks in Chinese populations. Then, we 
conducted a longitudinal design to estimate the longi-
tudinal changes of genetic and environmental effects on 
original and PC clocks, to explore the reasons for the dis-
crepancy between original and PC clocks.

Methods
Study populations
The twins were assessed in two thematic surveys in 2013 
and 2017–2018 within the CNTR [19]. For baseline and 
follow-up surveys, twins completed questionnaires and 
provided fasting blood samples after informed consent. 
A total of 477 same-sex twin pairs (954 twins) were 
included in the present study who had questionnaires 
and DNA methylation information in only one survey. 
Among them, 134 same-sex twin pairs (268 twins) had 
information in both baseline and follow-up surveys. 
Zygosity diagnosis of twins was conducted using a set of 
59 SNPs based on DNA methylation information [20]. 
Ethical approval was obtained from the Biomedical Eth-
ics Committee at Peking University (IRB00001052-13022, 
IRB00001052-14021).

DNA methylation profiling
Genomic DNA was extracted from fasting peripheral 
blood samples. Of 954 twins who participated in only one 
survey, 253 twins used the Illumina Human Methylation 
450 K BeadChip array and 701 twins used the Illumina 
Infinium Methylation EPIC (850 K) BeadChip array to 
obtain DNA methylation data. For 268 twins who partici-
pated in both two surveys, the 450 K array was employed 
on 107 twins for the baseline survey, and the 850 K array 
was employed on 161 twins for the baseline survey and 
on 268 twins for the follow-up survey. We used the R 
package minfi (1.40.0) to combine the methylation data 
from different arrays and then preprocess [21]. Only 
overlapped probes on both 450 K and 850 K arrays were 
retained for subsequent analyses, using the “combine-
Arrays” function. We compared each probe with the 
background signal level to calculate detection P values 
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by using the “detection” function. Bad-quality probes 
(detection P values > 0.05 in more than 1% of samples) 
and samples of poor quality (detection P values > 0.01) 
were removed from further analysis. We also excluded 
probes that were multi-hit probes, were SNP-related, 
or were located in chromosome X and Y. We used the 
quantile normalization method to normalize methylation 
data and used β-value (number of methylated probes/
[number of both methylated and unmethylated probes]) 
to represent the DNA methylation level. We used the 
“ComBat” function of R package sva (3.42.0) to adjust for 
known batch effects within the DNA methylation data 
[22]. Finally, 409,303 CpG sites remained for the calcula-
tion of epigenetic clocks.

Epigenetic clocks
We calculated five epigenetic clocks. The first two clocks, 
GrimAge and PhenoAge, are composite measures of 1030 
[3] and 513 [5] CpG sites, respectively. GrimAge and Phe-
noAge were assessed using the online calculator (http:// 
dnama ge. genet ics. ucla. edu/) [23]. Beta values were used 
as input, and the normalization method implemented in 
the calculator was utilized. These two epigenetic clocks 
were calculated by aggregating the weighted averages 
of β-values at specific CpG sites. For the unreliability 
of individual CpG sites, we also calculated PC-based 
GrimAge and PhenoAge (“PCGrimAge” and “PCPheno-
Age”), which constructed principal component analysis 
(PCA) on the DNA methylation data to extract covari-
ance among multicollinear CpG sites [8]. The PCs consist 
of multiple CpG sites, and technical noise is unlikely to 
covary with age-related signals [8]. Thus, the PCs of CpG 
sites captured the majority of age-related signals while 
minimizing the influence of technical noise. PC clocks 
were obtained by using PCs to retrain the original clocks. 
PC clocks were calculated using the R code given by the 
researchers (https:// github. com/ Morga nLevi neLab/ PC- 
Clocks/) [8]. For these epigenetic clocks, age acceleration 
(AA) was defined as the residuals obtained from regress-
ing the epigenetic clocks on six blood cell components 
and chronological age (GrimAA, PhenoAA, PCGrimAA, 
and PCPhenoAA, respectively). We used the Houseman 
method to assess the six blood cell components, includ-
ing  CD4+ T cells,  CD8+ T cells, B cells, monocytes, 
granulocytes, and natural killer cells [24]. AA indicated 
the degree of aging compared to the chronological age. 
The fifth clock was DunedinPACE, which represented 
the pace of biological aging [4]. DunedinPACE was cal-
culated by using the public R package “DunedinPACE” 
(https:// github. com/ danbe lsky/ Duned inPACE). Duned-
inPACE removes unreliable CpG sites during the training 
process, so it does not have a PC version. Four measures 
of AA and DunedinPACE were epigenetic age metrics. To 

make the results comparable, we normalized epigenetic 
age metrics before inputting in hereafter twin modeling.

Statistical analyses
Univariate twin models
First, we calculated the heritability of five epigenetic age 
metrics in 954 twins using univariate structural equation 
modelling (SEM). The variance of epigenetic age met-
rics was decomposed into four latent variables, includ-
ing additive genetic (A), common environmental (C), 
or dominant genetic (D) and unique environmental (E) 
components [18]. A represents the cumulative impact 
of individual alleles at various loci affecting epigenetic 
age metrics. C represents the common environment 
twins share. D represents the interplay among alleles at 
the same locus or different loci. E represents the differ-
ent environment among twins and measurement error. 
Monozygotic twins (MZ) share 100% of their genes (all 
additive and dominant effects), because they developed 
from the same fertilised egg. Dizygotic twins (DZ) share 
on average 50% of their segregating genes, that is 25% 
for the dominant effects and 50% for the additive effects 
[25]. The design with twins reared together cannot pro-
vide sufficient information to estimate both C and D, so 
we can only conduct either an ACE or an ADE model 
[26]. For the ACE model, the heritability of the epigenetic 
age metric is the proportion of the variance of A to the 
total variance; for the ADE model, the heritability is the 
proportion of the variance of A and D to the total vari-
ance. Then, A, C or D were dropped respectively to fit 
sub-models of ACE or ADE. We conducted a compara-
tive analysis between the ACE or ADE model and the 
fully-saturated model, as well as between the sub-models 
and the ACE or ADE model, using the likelihood-ratio 
test (LRT). The not statistically significant (P>0.05) result 
of LRT indicates that the more parsimonious model fits 
the data as well as the more complex model. Besides, we 
used Akaike’s information criterion (AIC) value to meas-
ure model parsimony: the smaller the AIC, the more par-
simonious the fit [27]. We chose the most parsimonious 
model that fits the data as the optimal model.

Longitudinal bivariate twin models
We used bivariate Cholesky twin models to explore the 
longitudinal changes of the  genetic and environmen-
tal influence on epigenetic age metrics in two surveys 
[17]. For the baseline survey, the variance of epigenetic 
age metrics was decomposed into A  (a11

2), C  (c11
2) or D 

 (d11
2), and E  (e11

2), respectively. For the follow-up survey, 
the variance of epigenetic age metrics was decomposed 
into A  (a22

2), C  (c22
2) or D  (d22

2), and E  (e22
2), which were 

all independent of genetic and environmental effects at 
baseline. The bivariate ACE/ADE model also decomposes 

http://dnamage.genetics.ucla.edu/
http://dnamage.genetics.ucla.edu/
https://github.com/MorganLevineLab/PC-Clocks/
https://github.com/MorganLevineLab/PC-Clocks/
https://github.com/danbelsky/DunedinPACE
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the covariance of epigenetic age metrics across time into 
A, C or D, and E components as  a21

2,  c21
2 or  d21

2, and  e21
2 

(Fig.  1). For the ACE model, the heritability at baseline 
was given by  a11

2/(a11
2 +  c11

2 +  e11
2), whereas the herit-

ability at follow-up was given by  (a21
2 +  a22

2)/(a21
2 +  a22

2 +  c21
2 +  c22

2 +  e21
2 +  e22

2). Moreover, we calculated the 
cross-twin cross-trait (CTCT) correlations for MZ and 
DZ twins, which describe the correlation between twin 
1’s epigenetic age metrics at baseline and the co-twin’s 
epigenetic age metrics at follow-up. If the CTCT for MZ 
twins is higher than that for DZ twins, genetic factors 
affect the change of epigenetic age metrics across time. 
We calculated the phenotypic correlation  (Rph) of epige-
netic age metrics across times and decomposed  Rph into 
common genetic correlation  (Ra), common environmen-
tal correlation  (Rc), and unique environmental correla-
tion  (Re) [18]. Since it is the same variable across time, 
we used the phenotype correlation to represent the lon-
gitudinal stability of epigenetic age metrics. The propor-
tion of the  Rph can be derived from genetic  (Pa), common 
environmental  (Pc), and unique environmental  (Pe) parts 
[18]. The model selection criteria is as described above.

Twin models were performed using the OpenMx (ver-
sion 2.20.6) package, version R 4.1.2. Because AA was the 
residual from epigenetic clocks regression to chronologi-
cal age, the models of four AAs were adjusted for only 

sex, and the models for DunedinPACE were adjusted for 
sex and chronological age. P < 0.05 indicated statistical 
significance.

Results
Descriptive statistics
Among the 954 (477 pairs) adult twins included in the 
cross-sectional study, 79.7% were MZ twins; 70.2% were 
males; and the mean (standard deviation [SD]) age was 
50.30 (11.86) years (range 19.00 ~ 82.00 years). The means 
(SD) of original and PC clocks were as follows: Grim-
Age 50.30 (10.44) years, PCGrimAge 65.46 (9.79) years, 
PhenoAge 47.65 (9.79) years, PCPhenoAge 56.10 (10.09) 
years, and DunedinPACE 1.14 (0.12) units. The longitu-
dinal analysis included 268 (134 pairs) twins who partici-
pated in baseline and follow-up surveys, with means age 
of 50.24 (range 26.00 ~ 77.00) years at baseline and 54.87 
(range 31.00 ~ 82.00) years at follow-up (Table 1).

The correlation between GrimAge and PCGrimAge 
(r = 0.98, P < 0.001) was higher than that between Phe-
noAge and PCPhenoAge (r = 0.88, P < 0.001) (Additional 
file 1: Fig. S1). The correlations between epigenetic clocks 
and chronological age ranged from 0.38 to 0.97. The 
highest was for PCGrimAge (r = 0.97), and the lowest was 
for DunedinPACE (r = 0.38). The correlations between 
PC clocks and chronological age exceeded that between 

Fig. 1 Bivariate Cholesky model. Note. Components of variance:  a11
2, the variance of A at baseline;  c11

2, the variance of C at baseline;  d11
2, 

the variance of D at baseline;  e11
2, the variance of E at baseline;  a22

2, the variance of A unique at follow-up;  c22
2, the variance of C unique 

at follow-up;  d22
2, the variance of D unique at follow-up;  e22

2, the variance of E unique at follow-up. Components of covariance:  a21
2, the covariance 

of A between baseline and follow-up;  c21
2, the covariance of C between baseline and follow-up;  d21

2, the covariance of D between baseline 
and follow-up;  e21

2, the covariance of E between baseline and follow-up. Orange color indicates the effect of A; green color indicates the effect of C 
or D; blue color indicates the effect of E
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original clocks and chronological age (Additional file  1: 
Fig. S2).

Heritability of epigenetic age metrics
In univariate analyses, for all the five epigenetic age met-
rics, ACE models provided better fits to the data than 
ADE models (Additional file 2: Table S1). Then, we con-
ducted sub-models of the ACE model. We found that the 

best-fit models for four epigenetic age metrics (GrimAA, 
PCGrimAA, PhenoAA, and PCPhenoAA) were the AE 
model, but that for DunedinPACE was the ACE model 
(Additional file 2: Table S1).

Table 2 shows the variance explained by three compo-
nents (A, C, and E) and the heritability of five epigenetic 
age metrics. The heritability of GrimAA and PCGrimAA 
were 0.61 and 0.69, respectively, and no significant differ-
ence existed between them according to the overlapped 
95% confidence interval (CI). The heritability of Phe-
noAA (0.45, 95% CI 0.38 ~ 0.53) was significantly lower 
than that of PCPhenoAA (0.70, 95% CI 0.65 ~ 0.75). The 
heritability of DunedinPACE was 0.59.

Genetic and environmental evolution of epigenetic age 
metrics over time
The  Rph of epigenetic age metrics at baseline and follow-
up ranged from 0.50 to 0.85, indicating the longitudinal 
stability was moderate to strong. The  Rph of PC clocks 
were higher than their corresponding original clocks. 
The CTCT correlations of epigenetic age metrics were 
all higher within MZ twin pairs than that within DZ 
twin pairs, suggesting the influence of genetic factors 
(Table 3). Four epigenetic age metrics (GrimAA, PCGri-
mAA, PhenoAA, and DunedinPACE) showed the opti-
mal model was the AE model, while that for PCPhenoAA 
was the ACE model (Additional file 2: Table S2).

Modest decreases were obtained in the heritability of 
PCGrimAA (from 0.79 to 0.75) and DunedinPACE (from 
0.70 to 0.69) over time, but this trend was not obtained 
in GrimAA (from 0.69 to 0.72), PhenoAA (from 0.52 to 
0.57), and PCPhenoAA (from 0.47 to 0.66) (Fig. 2, Addi-
tional file 2: Table S3).

Figure  3 shows the variance and covariance of three 
components (A, C, and E) for five epigenetic age met-
rics. For GrimAA, PCGrimAA, PhenoAA, and Dunedin-
PACE, the specific variance of A at baseline  (a11

2) were 

Table 1 Characteristics of the study population

Data are presented as n (%) or mean ± standard deviation

Abbreviations: MZ monozygotic, DZ dizygotic
a Epigenetic age accelerations (AA) are derived from adjusting epigenetic age for 
blood cell counts and chronological age

Cross-sectional study Longitudinal study

Baseline Follow-up

N 954 268 268

Chronological age 50.30 ± 11.86 50.24 ± 10.27 54.87 ± 10.21

Age group

 ≤ 25 years 22 (2.3) 0 (0.0) 0 (0.0)

 25 ~ 45 years 282 (29.6) 84 (31.4) 48 (17.9)

 45–60 years 458 (48.0) 140 (52.2) 142 (53.0)

 > 60 years 192 (20.1) 44 (16.4) 78 (29.1)

MZ pairs (%) 380 (79.7) 95 (70.9)

DZ pairs (%) 97 (20.3) 39 (29.1)

Male (%) 670 (70.2) 168 (62.7)

GrimAge 50.30 ± 10.44 49.45 ± 9.08 54.00 ± 8.56

PCGrimAge 65.46 ± 9.79 65.00 ± 8.47 68.87 ± 8.31

PhenoAge 47.65 ± 9.79 49.13 ± 8.87 50.54 ± 9.23

PCPhenoAge 56.10 ± 10.09 58.16 ± 8.79 62.25 ± 8.28
aGrimAA 0.10 ± 3.76 − 0.03 ± 3.81 0.03 ± 3.56
aPCGrimAA 0.06 ± 2.42 0.00 ± 2.42 0.00 ± 2.37
aPhenoAA − 0.08 ± 4.61 − 0.23 ± 5.05 − 0.30 ± 4.96
aPCPhenoAA 0.10 ± 3.98 − 0.22 ± 4.13 − 0.26 ± 3.52

DunedinPACE 1.14 ± 0.12 1.13 ± 0.10 1.14 ± 0.11

Table 2 Parameter estimates (95% CI) from the univariate model of epigenetic age metrics (N = 954)

a2 variance explained by additive genetic component, c2 variance explained by common environmental component, e2 variance explained by unique environmental 
component, h2 heritability, that is, the ratio of  a2 to the total variance

Epigenetic age metrics a2

(95% CI)
c2

(95% CI)
e2

(95% CI)
h2

(95% CI)
e2/total variance
(95% CI)

GrimAA 0.48
(0.41, 0.57)

– 0.30
(0.26, 0.35)

0.61
(0.55, 0.67)

0.39
(0.33, 0.45)

PCGrimAA 0.52
(0.45, 0.61)

– 0.23
(0.20, 0.27)

0.69
(0.64, 0.74)

0.31
(0.26, 0.36)

PhenoAA 0.45
(0.35, 0.56)

– 0.54
(0.47, 0.62)

0.45
(0.38, 0.53)

0.55
(0.47, 0.62)

PCPhenoAA 0.69
(0.59, 0.81)

– 0.30
(0.26, 0.34)

0.70
(0.65, 0.75)

0.30
(0.25, 0.35)

DunedinPACE 0.52
(0.25, 0.61)

0.00
(0.00, 0.25)

0.35
(0.31, 0.41)

0.59
(0.29, 0.65)

0.41
(0.35, 0.47)
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higher than that specific at follow-up  (a22
2). However, for 

PCPhenoAA,  a22
2 was higher than  a11

2. The covariance of 
A between baseline and follow-up  (a21

2) were lower than 
or equal to  a22

2 for four epigenetic age metrics (not Dun-
edinPACE). Except for PhenoAA, the specific variance 
of E at baseline  (e11

2) were lower than those specific at 
follow-up  (e22

2). The covariance of E  (e21
2) were all lower 

than  e22
2. For PCPhenoAA, the variance of C specific at 

follow-up  (c22
2) and the covariance of C  (c21

2) were close 
to zero, indicating that the role of common environmen-
tal factors declines over time.

The genetic correlations  (Ra) were all high, especially 
of PCGrimAA  (Ra = 0.94) and DunedinPACE  (Ra = 0.99). 
The unique environmental correlations  (Re) were low to 
moderate (ranging from 0.22 to 0.67). PC clocks showed 
higher  Ra and  Re than original clocks. For epigenetic age 

Table 3 The correlations from bivariate models of epigenetic age metrics (N = 268)

CTCT r, cross-twin cross-trait (CTCT) correlations; Rph, phenotypic correlation; Ra, genetic correlation; Re, unique environmental correlation; Pa, the proportion of  Rph 
due to genetic factors; Pe, the proportion of  Rph due to unique environmental factors

Epigenetic age metrics CTCT r Rph Ra Re Pa Pe

GrimAA MZ 0.50
(0.34, 0.64)

0.70
(0.62, 0.76)

0.85
(0.74, 0.94)

0.38
(0.21, 0.54)

86% 14%

DZ 0.41
(0.11, 0.64)

PCGrimAA MZ 0.69
(0.56, 0.78)

0.85
(0.81, 0.88)

0.94
(0.89, 0.98)

0.61
(0.47, 0.72)

85% 15%

DZ 0.17
(− 0.15, 0.46)

PhenoAA MZ 0.37
(0.18, 0.53)

0.50
(0.39, 0.59)

0.78
(0.56, 1.00)

0.22
(0.03, 0.40)

86% 14%

DZ 0.19
(− 0.13, 0.48)

PCPhenoAA MZ 0.48
(0.31, 0.62)

0.60
(0.50, 0.68)

0.81
(0.58, 1.00)

0.67
(0.55, 0.77)

75% 25%

DZ 0.07
(− 0.25, 0.38)

DunedinPACE MZ 0.60
(0.45, 0.71)

0.76
(0.70, 0.81)

0.99
(0.91, 1.00)

0.36
(0.20, 0.52)

91% 9%

DZ 0.44
(0.15, 0.66)

Fig. 2 Heritability of epigenetic age metrics in bivariate twin models (N = 268)
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metrics,  Rph were largely due to genetic effects, with the 
proportion of  Rph due to genetic factors  (Pa) ranging from 
75 to 91% (Table 3).

Discussion
Overall, we conducted univariate twin models of epige-
netic age metrics in 954 twins and conducted longitudinal 
bivariate twin models in 268 twins who participated in 
baseline and follow-up surveys. Results from univariate 
models showed the moderate to high heritability of epi-
genetic age metrics (range from 0.45 to 0.70). The results 
from longitudinal bivariate models showed genetic con-
tributions to epigenetic age metrics decreased, and 
unique environmental contributions increased across 
time. There was a large overlap in genetic effects and a 
small overlap in unique environmental effects across 
5  years. However, for all epigenetic clocks, new genetic 
and new unique environmental influences emerged 
across time. Moreover, the phenotypic correlation rep-
resenting the longitudinal stability of epigenetic clocks 
were moderate to strong, mainly due to genetic factors. 
PC clocks showed higher correlations with chronological 
age, higher heritability, greater longitudinal stability, and 
higher genetic and unique environmental correlations 
than original clocks.

To our knowledge, a few studies have investigated the 
heritability of epigenetic clocks, and virtually no study 
has explored the heritability of PC clocks. Some studies 
used polygenic models to measure heritability of epige-
netic age accelerations and obtained low to moderate 
SNP-based heritability estimates: GrimAA at 0.10 ~ 0.30 
[3, 28] and PhenoAA at 0.10 ~ 0.33 [5, 28]. However, sim-
ilar to our results, other twin studies have reported the 
moderate to high heritability of epigenetic clocks [13–
15]. A twin study estimated the heritability of GrimAA at 
0.58 (95% CI 0.51 ~ 0.65) involving 1424 twins on average 
34.5 years (age ranged 21 ~ 73 years) [13]. A study calcu-
lated the heritability in two twin cohorts and found that 
the heritability of GrimAA and PhenoAA in the young 
cohort (age ranged 21 ~ 25 years) were 0.62 and 0.64, and 
that in the older cohort (age ranged 55 ~ 72 years) were 
0.58 and 0.60, respectively [14]. Only one study reported 
on the heritability of DunedinPACE at 0.68 (95% CI 
0.52 ~ 0.82), which involved 730 twins with a mean age of 
22.4 years [15]. It also estimated the heritability of Gri-
mAA at 0.73 (95% CI 0.66 ~ 0.80) and PhenoAA at 0.65 
(95% CI 0.56 ~ 0.74) [15]. All three studies involved twins 
from the Finnish Twin Cohort, fitted the AE model for 
epigenetic clocks and had a higher estimation of the her-
itability of epigenetic clocks (GrimAA, PhenoAA, and 
DunedinPACE) than our results. This may be due to the 

Fig. 3 Bivariate twin models for epigenetic age metrics (N = 268). Note: Orange color indicates the effect of A; green color indicates the effect of C 
or D; blue color indicates the effect of E
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older age of our participants (age ranged 19 ~ 82 years, 
mean age of 50.3 years). From the longitudinal bivari-
ate models, we proved that the estimate of heritability 
for DunedinPACE decreased over time. We utilized the 
cross-sectional design (954 twins) to obtain the heritabil-
ity in the Chinese population. Besides, we used a longi-
tudinal design (268 twins) to understand changes of the 
heritability.

Even so, new genetic factors still emerged at follow-up. 
Moreover, the genetic correlations of epigenetic clocks 
were high, and it could either be due to a large overlap in 
genes across time or due to persistent effects of genetic 
factors at baseline [16]. Given the emerging genetic fac-
tors at follow-up, we advocated the latter assumption. 
The genetic components for epigenetic clocks across 
time appeared pleiotropic, indicating the mechanisms of 
genes behind aging are complex. Our study confirms that 
age affects gene expression and that the influence of early 
genetic factors can extend into later periods. A previous 
longitudinal twin study investigated the PhenoAge clock 
and thought that the high genetic correlation of Pheno-
Age was attributed to the large overlap of genes, because 
no new genetic effects emerged during the follow-up 
period [16]. The discrepancy in outcomes may be attrib-
uted to the fact that the participants in the previous study 
had a mean age of 69.8 years at baseline and 78.9 years 
at follow-up, which is older than our study participants. 
Age significantly impacts gene expression, and the effect 
is more pronounced in older adults [29].

Contributions of unique environmental factors 
increased over time. New unique environmental fac-
tors emerged at follow-up, consistent with the previous 
study [16], indicating that epigenetic clocks would still 
be responsive to environmental factors even at old age, 
which further reveals the potential of epigenetic clocks as 
biomarkers of aging for the identification and evaluation 
of longevity interventions. However, we found significant 
unique environmental correlation across time, which 
were not found in the previous study [16]. The length of 
the follow-up period may be the reason for the discrep-
ancy of unique environmental correlation between the 
two studies. Epigenetic clocks showed moderate to high 
longitudinal stability, most of which was due to genetic 
factors, and changes of epigenetic clocks over time were 
mainly due to changes in unique environmental factors, 
consistent with previous longitudinal twin studies for 
clock-related CpG sites and the PhenoAge clock [16, 17].

The difference between original and PC clocks lies 
in CpG sites. The former was trained from individual 
CpG sites, and the latter was trained from PCs of CpG 
sites to minimize the technical noise [8]. PCA was used 
to extract information from higher dimensions (several 
possibly correlated variables, as individual CpG sites) to 

lower dimensions (a smaller number of uncorrelated var-
iables, as PCs) [30]. PC clocks discarded the low-variance 
PCs that primarily represent noise or otherwise do not 
contribute to prediction [31]. Notably, PC clocks were 
more strongly correlated with chronological age because 
the information of chronological age was contained in 
the PCs with a large variance, which was retained in PC 
clocks [8]. As expected, we found that PC clocks showed 
higher longitudinal stability than original clocks. The 
higher longitudinal stability of PC clocks was mainly due 
to removing technical noise which is expected to belong 
to the unique environmental component. We also found 
that the heritability and unique environmental correla-
tion of PCPhenoAA were significantly higher than that 
of PhenoAA. The removal of technical noise allowed the 
preservation of truly unique environmental factors and 
increased the proportion of genetic factors. As demon-
strated in previous studies [8, 32], compared to PCGrim-
Age and GrimAge, the correlation between PCPhenoAge 
and PhenoAge was weaker. This may be due to the fact 
that PCPhenoAge chose a smaller proportion of principal 
components (PCPhenoAge: 1000 of 4504 PhenoAge PCs; 
PCGrimAge: 1936 of 3934 GrimAge PCs) in training.

As far as we know, only one study has applied both 
original and PC clocks to examine the degree of aging 
[33]. Only a few longitudinal studies used PC clocks to 
evaluate the influence factors or interventions of aging 
[32, 34–38]. Because of the different study designs and 
populations, it is difficult to compare results from PC 
clocks with those from original clocks. However, due to 
the differences between PC and original clocks in genetic 
and environmental effects and longitudinal stability, the 
results of previous studies using original clocks, espe-
cially longitudinal studies, should be verified with PC 
clocks. Future longitudinal studies also need to take into 
account PC clocks instead of original clocks as biomark-
ers of aging.

The strengths of our study include the longitudinal 
design to investigate genetic and environmental effects 
behind the changes of epigenetic clocks over time, and 
the comparison between original and PC clocks. Never-
theless, some limitations should be considered. First, we 
relied on confidence intervals to judge the difference of 
genetic and environmental effects between original and 
PC clocks. When confidence intervals overlapped, we 
could not clearly judge whether there was a significant 
difference. In addition, given the limited sample size, fur-
ther analysis cannot be taken into consideration, such 
as using the sex-limitation model to explore the effect 
of sex. Finally, the structural equation model can only 
approximate the impact of genetic and environmen-
tal factors on epigenetic clocks, and the specific genetic 
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mechanism and environmental factors still need to be 
explored in future studies.

Conclusions
In conclusion, we found the moderate to high herit-
ability of epigenetic clocks and explored the extent to 
which the effects of genetic and environmental factors 
contribute to epigenetic clocks across 5 years. High lon-
gitudinal stability is mainly due to genetic factors, and 
changes of epigenetic clocks over time are mainly due to 
changes in unique environmental factors. The effects of 
genetic factors at baseline are persistent, and the mecha-
nisms of genes behind epigenetic clocks are complex. 
The potential of epigenetic clocks as markers of aging 
for identifying interventions affecting aging was demon-
strated, even at old age. PC clocks showed higher herit-
ability and longitudinal stability than original clocks due 
to the reduction in technical noise belonging to unique 
environmental factors. Due to the differences between 
PC and original clocks in the genetic and environmen-
tal effects and longitudinal stability, the results of studies 
with the original clocks need to be further verified with 
PC clocks. Further studies should focus on PC clocks to 
explore the aging mechanism.
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