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Abstract 

Background The causal relationship between daytime napping and the risk of Parkinson’s disease (PD) remains 
unclear, with prospective studies providing limited evidence. This study investigated the association between daytime 
napping frequency and duration and PD incidence and explored the causality relationship between this association 
by conducting Mendelian randomization (MR) analysis.

Methods This prospective cohort study included 393,302 participants, and accelerometer-measured daytime 
napping data were available only for 78,141 individuals. Cox proportional hazards regression was used to estimate 
the association between the daytime napping frequency and duration and the PD risk. The role of the systemic 
immune-inflammation index (SII) in the association between daytime napping frequency and PD risk was assessed 
through mediation analyses. Moreover, the causal association between the daytime napping frequency and the PD 
risk was preliminarily explored by conducting two-sample MR analyses.

Results The median follow-up duration was 12.18 years. The participants who reported napping sometimes or usu-
ally exhibited a significantly higher PD risk than those who never/rarely napped during the day [sometimes: hazard 
ratio (HR), 1.13; 95% confidence interval (CI), 1.03–1.23; usually: HR, 1.33; 95% CI, 1.14–1.55], and SII played a mediat-
ing role in this association. However, the MR analyses did not indicate that the daytime napping frequency and PD 
risk were significantly associated. The participants napping for over 1 h exhibited a significantly elevated PD risk (HR, 
1.54; 95% CI, 1.11–2.16). Moreover, no significant interaction was identified between napping frequency or duration 
and genetic susceptibility to PD (P for interaction > 0.05).

Conclusions In this study, increased daytime napping frequency and duration were associated with an increased 
PD risk, but no causal relationship was observed between napping frequency and PD risk in the MR analysis. Larger 
GWAS-based cohort studies and MR studies are warranted to explore potential causal relationships.
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Background
Being the second most prevalent neurodegenerative disease 
worldwide, Parkinson’s disease (PD) is the fastest-growing 
neurological condition at the global scale in terms of mor-
bidity, disability, and mortality since 1990 [1, 2]. Sleep dis-
order is among the most common non-motor symptoms 
of PD, occurring in 60–98% people diagnosed with PD. 
Sleep disorder is also frequently considered among the 
main causes of severe discomfort in patients [3]. Daytime 
napping has become a very common lifestyle habit, espe-
cially among elderly people [4]. Given the PD burden and 
popularity of daytime napping, determining the association 
between daytime napping and PD and developing preven-
tive interventions are crucial public health concerns.

Few prospective studies have examined the association 
between daytime napping and PD risk, and their findings 
have been inconsistent. The Honolulu-Asia Aging Study, 
which included 3078 older adult men, reported no associ-
ation between daytime napping and PD risk [5]. However, 
some other studies have drawn the opposite conclusion. 
For example, in a study based on osteoporotic fractures 
in men, objective prolonged napping was associated with 
an increased PD risk in older men [6]. Moreover, a cross-
sectional study suggested that daytime napping is signifi-
cantly associated with PD in older adult women [7]. In 
another study analyzing an older US population, longer 
daytime naps were associated with higher odds of PD [8]. 
However, considering the presence of study design limi-
tations or population generalizability issues, further stud-
ies are warranted to assess this association.

By using self-reported and accelerometer-measured 
napping data from a large-scale population-based UK 
Biobank study, this study explored the relationship 
between daytime napping frequency and PD incidence 
through prospective observational analysis and Mende-
lian randomization (MR). MR analysis leverages genetic 
variants that affect modifiable risk factors to infer causal 
relationships between these exposures and health out-
comes. This method is generally regarded as more robust 
against confounding factors and reverse causation com-
pared to traditional observational approaches [9]. We 
also investigated, based on the polygenic risk score (PRS), 
whether daytime napping was associated with disease 
onset in a PD-susceptible population.

Methods
Study population
Between 2006 and 2010, the UK Biobank recruited 
approximately 500,000 UK residents who were aged 
37–73 years at the time of recruitment. These participants 

provided regular blood, urine, and saliva samples and 
details about their lifestyles for analysis. These data 
were then linked to their health-related records. The UK 
Biobank conducted three major resurveys. The first resur-
vey was conducted in 2012–2013 and involved approxi-
mately 20,000 participants, the second resurvey started 
in 2014 and involved approximately 65,000 partici-
pants, and the third resurvey began in 2019 and involved 
approximately 5000 participants. This prospective cohort 
study was approved by the UK North West Multi-Cen-
tre Research Ethics Committee. Written informed con-
sent was obtained from all participants [10]. The study 
was conducted in accordance with the Strengthening 
the Reporting of Observational Studies in Epidemiology 
(STROBE) reporting guidelines. Fig. S1 in the Additional 
File 2 presents the detailed participant inclusion and 
exclusion process in this study.

Assessment of exposure
The daytime napping frequency was determined based 
on the participant’s response to the question “Do you 
have a nap during the day?” presented on a touch 
screen questionnaire. The response options included 
were never/rarely, sometimes, usually, and prefer not 
to answer. The option “Prefer not to answer” was cat-
egorized as missing data. The stability of the napping 
exposure frequency was verified using the Cochran-
Mantel–Haenszel test [11]. The daytime napping dura-
tion was determined using the wrist-worn accelerometer 
data (Field 40030), which provided average sleep rates 
during each period. The sleep state was calculated using 
a combination of data sources and methodologies [12]. 
To deduce sleep state, the participants were made to 
wear a wrist-worn triaxial accelerometer (Axivity AX3) 
for capturing tri-axial acceleration data at 100  Hz [13–
15]. On the study measurement day, a Vicon autographer 
wearable camera was worn by the participants during 
wakeful periods. The camera took photos every approxi-
mately 20  s [16]. Annotated images from the wearable 
camera were employed to construct a groundtruth of 
reference behaviors, including sleep. Sleep information 
was obtained from a simple sleep diary and a HETUS 
time-use diary. The groundtruth resulted in 213 activ-
ity labels, which were condensed into six free-living 
behavior labels, including “sleep.” Accelerometer data 
were preprocessed using standard procedures, including 
device calibration, resampling to 100 Hz, and removal of 
noise and gravity [17]. Features were extracted from 30-s 
time windows, which resulted in a 126-dimensional fea-
ture vector. Random forests (RFs) were used to classify 
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the activities, thereby providing predictions based on an 
aggregate of individual CART trees. Balanced RFs were 
employed to account for the unbalanced dataset [18]. 
RFs classify data points but have a dearth of understand-
ing of the temporal structure. A hidden Markov model 
(HMM) was used for time smoothing by encoding the 
temporal sequence of classes [19]. The Viterbi algorithm 
was applied to identify the most likely sequence of true 
activity states given observed emissions, thus correcting 
erroneous predictions. The HMM, which incorporated 
the temporal structure, was used to infer the most likely 
sequence of true activity states. The state of sleep, a spe-
cific behavior label, was deduced using the corrected 
sequence of predicted classes. The model trained on 
free-living groundtruth data was used to predict behav-
ior in a large health dataset (UK Biobank) with 103,712 
participants. The probability of engaging in specific 
behavior types, including sleep, was expressed for each 
30-s epoch. In summary, the sleep state was deduced 
by collecting information from wearable cameras, sleep 
diaries, and accelerometer data. Using machine learning, 
including RFs and HMMs, helped to improve the accu-
racy of sleep state prediction and correct errors in ini-
tial classifications. We used 9 a.m. and 6 p.m. as the start 
and end times for daytime napping because our study 
included elderly participants and who are known to have 
phase advance (earlier bedtime) [20]. Additionally, we 
avoided potential morning and evening transition peri-
ods (7 a.m. to 9 a.m. and 6 p.m. to 8 p.m.). To eliminate 
interference from participants’ main sleep periods dur-
ing the day, the habitual sleep/wake times were calcu-
lated for the individuals. Specifically, sleep scores were 
presented for each period based on the weighted sum of 
the current period, four preceding periods, and two sub-
sequent periods. The calculation involves determining 
whether the sum is smaller than 1 h (indicating sleep) or 
not (indicating wakefulness). This methodology has been 
described in studies related to the UK Biobank database 
[21].

Systemic immune‑inflammation index
Peripheral blood samples collected from the UK Biobank 
participants were analyzed by the UK Biobank Central 
Laboratory within 24 h of sampling. The Beckman Coul-
ter LH750 Hematology Analyzer was used to examine the 
blood cell samples in 4 mL of ethylenediaminetetraacetic 
acid vacuole (details at https:// bioba nk. ndph. ox. ac. uk/ 
ukb/ ukb/ docs/ haema tology. pdf.). The systemic immune-
inflammation index (SII) was calculated using the fol-
lowing formula: SII = (neutrophil count * platelet count)/
lymphocyte count [22].

Assessment of outcomes
As recommended by the UK Biobank and previous stud-
ies [23, 24], algorithmically defined outcomes were used 
for determining PD onset in the cohort participants. Dis-
ease-related information was gathered by reviewing inpa-
tient electronic health records and death registers linked 
to the Hospital Episode Statistics England, Scottish Mor-
bidity Records, and Patient Episode Database for Wales 
on October 31, 2022 (England), July 31, 2021 (Scotland), 
and February 28, 2018 (Wales), respectively. Follow-up 
lasted from baseline to the time of PD diagnosis, death, 
loss to follow-up, or review, whichever occurred first.

Polygenic risk score
The polygenic risk score (PRS) represents the correlation 
between the genotype and the PD risk. We here used the 
standard PRS for PD released by the UK Biobank (Field 
ID: 26,260), which was extracted from an external GWAS 
meta-analysis dataset, as described by Thompson et  al. 
[25]; these authors had calculated PRS for 28 diseases 
and 25 quantitative traits. By using a Bayesian approach, 
the RPS algorithm was built based on trait-specific 
meta-analyses. An individual’s PRS was calculated as the 
genome-wide sum of posterior effect sizes per variant 
multiplied by the allelic dose. The raw PRS was centered 
and normalized to produce a corrected PRS for subse-
quent analyses.

Two‑sample MR
For determining the daytime napping frequency, 104 
independent single nucleotide polymorphisms (SNPs) 
(P < 5 ×  10−8, r2 < 0.001, distance = 10,000  kb) from the 
GWAS study at the UK Biobank (n = 452,633) were 
used. These SNPs were replicated and validated in the 
23andMe cohort (n = 541,333) [26]. The daytime napping 
category (never, sometimes, or usually) was considered 
a continuous variable in the MR analysis. Genotyping, 
quality control, and interpolation procedures for the UK 
Biobank data have been described elsewhere [27].

The GWAS summary data for PD were obtained from 
GWAS Catalog (https:// www. ebi. ac. uk/ gwas/ home) and 
included 42,792 PD patients and 568,693 controls (Study 
ID: GCST90275127) [28].

Valid instrumental variables (IVs) had to satisfy the fol-
lowing three assumptions: (1) association with the risk 
exposure of interest (relevance), (2) no common cause 
with the outcome (independence), (3) affect the outcome 
only through the risk exposure (exclusion restriction). To 
ensure the reliability of the findings, the PLINK clumping 
method with a stringent clumping threshold (r2 < 0.001, 
LD distance = 10,000  kb) was applied. This ensured that 

https://biobank.ndph.ox.ac.uk/ukb/ukb/docs/haematology.pdf
https://biobank.ndph.ox.ac.uk/ukb/ukb/docs/haematology.pdf
https://www.ebi.ac.uk/gwas/home


Page 4 of 12Lin et al. BMC Medicine          (2024) 22:326 

SNPs in the residual linkage-disequilibrium (LD) within 
a particular window were pruned to evaluate the bias 
caused by the residual LD of genetic variants. For har-
monization, the strand for non-palindromic SNPs was 
corrected. For palindromic SNPs, rather than excluding 
them from the analysis, an attempt was made to infer 
the alleles on the positive strand using effect allele fre-
quencies. Additionally, we estimated the F-statistic for 
instrumental variables, and the mean of F > 10 is gener-
ally sufficient for the MR analysis [29, 30]. The Mendelian 
randomization study followed the STROBE-MR guide-
lines [31, 32]. The STROBE-MR checklist can be found in 
Additional File 1.

Statistical analyses
Hazard ratios (HRs) and 95% confidence intervals (CIs) 
for the UK Biobank-based observational analysis were 
estimated using the Cox proportional hazards model. 
The group of participants who never napped was used as 
a reference for this estimation. We reported the results 
based on three models: (1) unadjusted; (2) adjusted for 
age and sex; (3) adjusted for age, sex, ethnicity, body 
mass index (BMI), household income, education, smok-
ing status, alcohol intake frequency, total hours of phys-
ical activity per week, family history of PD, and other 
sleep-related covariates (Additional File 2: Text. S1). The 
association between daytime napping and the PD risk in 
various genetic risk groups was determined using a cut-
off point stratified by PRS tertiles for PD. The interac-
tion between PRS and daytime napping in their effect on 
PD development was investigated using likelihood ratio 
tests. A series of sensitivity analyses were conducted: 
(1) excluding PD events in the previous 2 or 4 years; (2) 
excluding self-reported PD outcomes; (3) excluding par-
ticipants who reported working at night; (4) excluding 
participants who reported having sleep disorders; (5) 
including death as a competing risk through a compet-
ing risk model; (6) further correcting for difficulty in 
waking up at morning, chronotype, sleeplessness, snor-
ing, and daytime dozing as sleep-related conditions. 
Using a regression-based approach, mediation analyses 
were performed to decompose the direct, indirect, and 
total effects between daytime napping and PD and to 
estimate the proportion of this SII-mediated associa-
tion. In the mediation analyses, the effect of the expo-
sure variable on the mediator variable was defined as 
“a,” the effect of the mediator variable on the outcome 
was defined as “b,” and the total effect of the exposure 
variable on the outcome was defined as “c.” According 
to previous studies [33], the effect of the exposure vari-
able on the outcome through the mediating variable was 
“a*b.” Thus, the proportion of mediation was (a*b)/c. 
The number of boots applied for the mediation analyses 

was 200. The mediation analysis was conducted after 
adjustment for the confounding factors of age, gender, 
smoking status, alcohol consumption, BMI, and physi-
cal activity.

To completely examine the causal association between 
daytime naps and PD, a bidirectional two-sample MR was 
conducted. Two-sample MR methods, wherein exposure 
and outcome are measured in non-overlapping datasets, 
allow for minimal false-positive rates and increased sam-
ple sizes [34]. In the MR analysis, random-effects inverse 
variance weighting (IVW) was used as the primary 
method, and MR-Egger regression [35], weighted median 
models [36], simple mode, and weighted mode were used 
as secondary methods [37]. The Wald ratio test was used 
when < 3 SNPs were available for the analysis. To prevent 
any potential violations of MR assumptions, we tested for 
pleiotropy (through MR-Egger regression intercepts, and 
MR Pleiotropy Residual Sum and Outlier [MR-PRESSO] 
global test) and heterogeneity (based on Cochran’s Q val-
ues [38]).

In two-sample MR, we first performed preliminary 
analyses based on IVW and four other secondary analy-
ses. In the sensitivity analysis, to avoid reverse causa-
tion, the Steiger test was conducted for each SNP so as 
to determine whether the exposure R2 (the variance of 
the disease/trait explained by the selected SNP) was 
greater than the outcome R2, excluding SNPs that tested 
“False” (outcome R2 > exposure R2) [39]. When pleiot-
ropy or heterogeneity was identified (P < 0.05), then we 
applied MRPRESSO to identify and eliminate outli-
ers until no more outliers were identified [40]. We then 
performed Radial-MR to determine whether outliers 
were present (the threshold was set at 0.05) [41], and, if 
outliers were present, they were eliminated and Radial-
MR was repeated until no outliers were detected. After 
excluding the abovementioned SNPs, the analyses were 
reconducted.

Statistical analysis was conducted in R, Version 4.2.3. 
The MR analysis was conducted using the “TwoSa-
mpleMR” (Version 0.5.6) and “RadialMR” software 
package.

Results
Descriptive characteristics of the prospective cohort
This prospective cohort study involved 393,302 partici-
pants [mean age: 56.27 years; 186,812 males (47.5%)] and 
a median follow-up period of 12.18 (SD = 1.83) years. Of 
them, 224,646 (57.1%) participants reported they never/
rarely took a daytime nap, 148,094 (37.7%) participants 
napped sometimes, and 20,562 (5.2%) participants usually 
napped during the day. Compared with those reporting 
to never/rarely take a daytime nap, the participants who 
napped sometimes or usually were more likely to be older, 



Page 5 of 12Lin et al. BMC Medicine          (2024) 22:326  

male, poorer, and current smokers; have a higher BMI; be 
non-drinkers; and have received lower levels of education 
(Table 1). Furthermore, the participants who found wak-
ing up in the morning difficult, who found being a “morn-
ing” person difficult, who had insomnia, who snored, and 
who had the habit of daytime dozing had a higher day-
time napping frequency (Additional File 2: Table S1). The 
study investigated the daytime napping duration of 83,151 
participants. Table  S2 in Additional File 2 presents their 
baseline characteristics. The baseline characteristics of the 
16,535, 54,769, and 4581 participants in the first, second, 
and third follow-up visits, respectively, are presented in 
Tables S3–S5 in Additional File 2.

Association between daytime napping and PD risk
After a range of covariates were adjusted, a significantly 
increased PD risk was noted among the participants 
who reported taking a daytime nap sometimes or usu-
ally compared with among those who never/rarely took 
a daytime nap. The participants who reported napping 
sometimes had a 13% higher PD risk (HR, 1.13; 95% 
CI, 1.03–1.23; P = 0.009) compared with those reported 
never. The participants who reported frequent day-
time napping had a 33% increased PD risk (HR, 1.33; 
95% CI, 1.14–1.55; P = 0.001) compared with those 
reported never (Table 2). Similar results were observed 
when the three follow-up visits were assessed separately 

Table 1 Baseline characteristics of participants for nap frequency

Abbreviation: BMI body mass index, PD Parkinson’s disease, SD standard deviation

Data are presented as mean (standard deviation) or n (%). The one-way ANOVA tests were used for continuous variables and χ2 tests were used for categorical 
variables

Characteristics Daytime napping P-value

Overall Never/rarely Sometimes Usually

Participants, n 393302 224646 148094 20562

Age, Mean(SD) 56.27 (8.11) 55.20 (8.11) 57.47 (7.92) 59.38 (7.53) <0.001

Sex, n (%) Female 206490 (52.5) 128615 (57.3) 71261 (48.1) 6614 (32.2) <0.001

Male 186812 (47.5) 96031 (42.7) 76833 (51.9) 13948 (67.8)

Ethnicity, n (%) White 360803 (91.7) 206781 (92.0) 135275 (91.3) 18747 (91.2) <0.001

Black 2413 (0.6) 948 (0.4) 1294 (0.9) 171 (0.8)

Asia 6632 (1.7) 3345 (1.5) 2794 (1.9) 493 (2.4)

Other 23454 (6.0) 13572 (6.0) 8731 (5.9) 1151 (5.6)

BMI (kg/m2), Mean(SD)) 27.30 (4.70) 26.83 (4.48) 27.85 (4.86) 28.52 (5.23) <0.001

Household income, n (%) Greater than 100,000 £ 20800 (5.3) 14535 (6.5) 5804 (3.9) 461 (2.2) <0.001

18,000 £ to 100,000 £ 256381 (65.2) 152000 (67.7) 92582 (62.5) 11799 (57.4)

Less than 18,000 £ 73558 (18.7) 34639 (15.4) 32820 (22.2) 6099 (29.7)

Unknow 42563 (10.8) 23472 (10.4) 16888 (11.4) 2203 (10.7)

Education, n (%) Any school degree 46249 (11.8) 27809 (12.4) 16365 (11.1) 2075 (10.1) <0.001

College or University degree 138859 (35.3) 84795 (37.7) 47784 (32.3) 6280 (30.5)

Vocational 20452 (5.2) 11763 (5.2) 7799 (5.3) 890 (4.3)

Other 187742 (47.7) 100279 (44.6) 76146 (51.4) 11317 (55.0)

Current tobacco smoking, n (%) No 353469 (89.9) 204166 (90.9) 131604 (88.9) 17699 (86.1) <0.001

Only occasionally 10873 (2.8) 6068 (2.7) 4200 (2.8) 605 (2.9)

Yes, on most or all days 28960 (7.4) 14412 (6.4) 12290 (8.3) 2258 (11.0)

Alcohol, n (%) Never 15388 (3.9) 8101 (3.6) 6223 (4.2) 1064 (5.2) <0.001

Previous 13316 (3.4) 6350 (2.8) 5739 (3.9) 1227 (6.0)

Current 364598 (92.7) 210195 (93.6) 136132 (91.9) 18271 (88.9)

Physical activity (minutes/week), 
Mean(SD)

2651.30 (2708.29) 2647.33 (2668.25) 2654.96 (2733.00) 2668.35 (2952.70) 0.457

Sleep duration (hours/day), 
Mean(SD)

7.16 (1.08) 7.07 (0.99) 7.23 (1.12) 7.69 (1.54) <0.001

Family history of PD, n (%) No 377120 (95.9) 215524 (95.9) 141917 (95.8) 19679 (95.7) 0.103

Yes 16182 (4.1) 9122 (4.1) 6177 (4.2) 883 (4.3)



Page 6 of 12Lin et al. BMC Medicine          (2024) 22:326 

(Additional File 2: Table  S6). The participants who 
napped less than an hour a day exhibited an increased 
PD risk, whereas those who napped over an hour a day 
displayed an 54% increased PD risk (HR, 1.54; 95% CI, 
1.11–2.16; P = 0.01; Table 3). Afternoon naps were asso-
ciated with an increased PD risk [13:00  pm–15:00  pm: 
1.02 (1.01–1.03), P < 0.001, 16:00  pm–18:00  pm: 1.01 
(1.00–1.02), P = 0.001], whereas morning naps are not 
associated with the PD risk (9:00 am–12:00 am: 1.00 
(1.00–1.01), P = 0.107) (Additional File 2: Table S7). The 
dose–response analysis revealed a positive linear rela-
tionship between the daytime napping duration and the 
PD risk (Fig.  1). The results remained robust through 
the sensitivity analysis (Additional File 2: Table S8-S13).

Joint association between the PRS, daytime napping, 
and PD
No significant interaction was observed between the 
daytime napping duration and PRS in their effect on PD 
development (P for interaction = 0.178; Table  4). Simi-
larly, no interaction was observed between the daytime 
napping frequency and PRS in their effect on PD occur-
rence (P for interaction = 0.225).

MR analysis
Table  S14 in the Additional File 2 presents the two-
sample MR results before excluding the outliers identi-
fied by MRPRESSO or Radial-MR. The F-statistics for 
individual SNPs were presented in Table  S15 in Addi-
tional File 2. Regarding the impact of daytime napping 

Table 2 Association between daytime napping frequency and incidence of Parkinson’s disease (N=393302)

Abbreviation: HR hazard ratio, BMI body mass index

Model 1: unadjusted

Model 2: age, sex

Model 3: age, sex, race, household income, education, BMI, current tobacco smoking, physical activity, alcohol, Sleep duration, and family history of Parkinson’s 
disease

Characteristic Daytime napping

Never/rarely Sometimes Usually

Participants, n (%) 224646 (57.1%) 148094 (37.7%) 20562 (5.2%)

person-years 2753818 1792200 243552

Cases 972 1010 223

Incident cases per 100 000 person-years 35.3 56.36 91.56

Models HR (95%CI) P-value HR (95%CI) P-value

Model 1 1.00 (Reference) 1.61 (1.47‑1.75) <0.001 2.63 (2.28‑3.04) <0.001
Model 2 1.00 (Reference) 1.16 (1.06‑1.26) 0.001 1.40 (1.21‑1.63) <0.001
Model 3 1.00 (Reference) 1.13 (1.03‑1.23) 0.009 1.33 (1.14‑1.55) <0.001

Table 3 Association between daytime napping during and incidence of Parkinson’s disease (N=78141)

Abbreviation: HR hazard ratio, BMI body mass index

Model 1: unadjusted

Model 2: age, sex

Model 3: age, sex, race, household income, education, BMI, current tobacco smoking, physical activity, alcohol, sleep duration, and family history of Parkinson’s disease

Characteristic Daytime napping

0 hour <1 hour ≥1 hour Continues

Participants, n (%) 20837 (26.7%) 43914 (56.2%) 13390 (17.1%)

person-years 258844 560511 165227

Cases 70 131 75

Incident cases per 100 000 
person-years

27 23 45

Models HR (95%CI) P-value HR (95%CI) P-value HR (95%CI) P-value

Model 1 1.00 (Reference) 0.89 (0.67-1.19) 0.430 1.69 (1.22‑2.34) <0.001 1.01 (1.00‑1.01) <0.001
Model 2 1.00 (Reference) 0.87(0.65-1.17) 0.350 1.48 (1.07‑2.05) 0.020 1.01 (1.00‑1.01) <0.001
Model 3 1.00 (Reference) 0.89 (0.66-1.19) 0.431 1.54 (1.11‑2.16) 0.01 1.01 (1.00‑1.01) <0.001
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on the incidence of PD, the random-effects IVW model 
showed no significant association between them (OR, 
0.816, 95% CI, 0.510 to 1.304). This result remained 
consistent in other models. No heterogeneity or hori-
zontal pleiotropy was detected (P > 0.05). With PD as 
exposure, the random-effects IVW model displayed 
no significant association between genetic liability 
to PD and daytime napping (β, 0.008, 95% CI, − 0.006 

to 0.022). However, IVW and MR-Egger revealed 
the presence of heterogeneity and the MRPRESSO 
global test displayed the presence of horizontal plei-
otropy (P < 0.05). In the sensitivity analysis, SNPs that 
did not pass the Steiger test, and outliers identified 
by MRPRESSO or Radial-MR have been displayed in 
Table  S16 in Additional File 2. After the outliers were 
removed, no significant heterogeneity or horizontal 

Fig. 1 Multivariable adjusted dose–response associations between daytime napping duration and risk of incident Parkinson’s disease. Adjusted 
for age, sex, race, household income, education, BMI, current tobacco smoking, physical activity, alcohol, sleep duration, and family history 
of Parkinson’s disease

Table 4 Risk of incident Parkinson’s disease according to daytime napping status stratified by  PRSa (N=384242 and 78141)

Abbreviation: HR hazard ratio, BMI body mass index
a Model adjusted for age, sex, race, household income, education, BMI, current tobacco smoking, physical activity, alcohol, sleep duration, and family history of 
Parkinson’s disease
b P value for the interaction between daytime napping and polygenic risk score

Daytime napping PRS P value for 
 interactionb

Low Intermediate High

HR (95%CI) P‑value HR (95%CI) P‑value HR (95%CI) P‑value

Frequency (N=384242) Never/rarely 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 0.225

Sometimes 1.2 (0.99-1.46, p=0.065) 1.05 (0.89-1.23, p=0.594) 1.15(1.01‑1.31, p=0.041)
Usually 1.28 (0.92-1.77, p=0.143) 1.51(1.17‑1.96, p=0.002) 1.2 (0.95-1.52, p=0.125)

Duration (N= 78141) 0 hour 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 0.178

1 hour 1.17 (0.61-2.23) 0.63 0.73(0.42-1.26) 0.25 0.89 (0.59-1.34) 0.59

≥1 hour 1.96 (0.96-4.03) 0.07 1.00 (0.51-1.96) 0.99 1.76(1.11‑2.80) 0.02
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pleiotropy was observed (Additional File 2: Table S17). 
The random-effects IVW indicated that no significant 
association between genetic liability to PD and day-
time napping (β, − 0.003; 95% CI, − 0.008 to 0.002). This 
result was consistent across other models. Moreover, 
the leave-one-out method was employed to test the sta-
bility of the results (Additional File 3: Fig. S2 and Addi-
tional File 4: Fig. S3).

Mediating role of SII in the association 
between the daytime napping frequency and PD incidence
Fig. S4 in Additional File 2 presents the results of media-
tion analyses for the association between SII and PD 
occurrence. Each unit increase in SII (Ln-transformed) 
was associated with a 19.1% increase in the PD risk (HR, 
1.191; 95% CI, 1.098–1.291). For the association between 
the daytime napping frequency and SII, the participants 
who reported napping sometimes (β, 0.015; 95% CI, 
0.012–0.019) or usually (β, 0.033; 95% CI, 0.025–0.040) 
had significantly higher SII levels compared with those 
who reported never napping. The mediation analyses 
revealed that SII mediated 1.75% (95% CI, 0.83–4.12%) 
and 2.05% (95% CI, 1.02–4.81%) of the association in the 
effect of sometimes and usually napping, respectively, on 
PD development.

Discussion
This large prospective cohort study found that the higher 
frequency and longer duration of daytime napping were 
associated with an increased PD risk. The MR analysis 
revealed no reciprocal causal relationship between the 
daytime napping frequency and the PD risk. Additionally, 
the higher frequency of daytime napping was associated 
with an increase in the immune inflammatory response, 
which elevated the PD risk. Moreover, no significant 
interaction was observed between the frequency and 
duration of daytime napping and PRS in their effect on 
the PD risk.

The observational study results align with those of 
numerous epidemiologic studies, indicating that the 
increased daytime napping frequency and longer nap 
duration are linked to a higher PD risk. In a multicenter 
prospective study, 2920 men without a history of PD 
were followed for 11 years. The study ultimately revealed 
106 PD events and demonstrated a correlation between 
objectively prolonged napping and a higher PD risk in 
older men [6]. A multicenter cohort study of 2675 com-
munity-dwelling older women reported that both subjec-
tive and objective naps were associated with PD [7]. In 
a United States-based cohort study with 213,885 volun-
teers having no history of PD, subjective daytime nap-
ping was associated with a higher PD risk [8]. A previous 

study based on the Honolulu-Asia Aging Study revealed 
that subjective daytime napping is associated with the PD 
risk in men [5].

The MR analysis revealed no causal relationship 
between the daytime napping frequency and the PD risk. 
Nevertheless, caution is warranted in interpreting these 
findings because of the small sample size and low preci-
sion of our study. The analyses were also constrained 
by a rudimentary assessment of the daytime napping 
frequency through a questionnaire, which resulted 
in the lack of details on duration or timing [26]. Our 
attempts to partially validate the specificity of identified 
loci, transitioning from self-reporting of data to objec-
tive determination through accelerometers, may have 
faced limitations because of the phenotypic differences 
between self-report and accelerometer data. Addition-
ally, the relatively small sample size in the accelerometer 
subsample and the time lag between measurements, with 
accelerometers worn between 2 and 10  years after the 
study baseline constrained the assessment. Moreover, 
additional larger studies using GWAS-based cohorts and 
MR approaches are necessary for thoroughly investigat-
ing the relationship between the daytime napping fre-
quency and the PD risk.

A definitive physiological mechanism directly explain-
ing the association between daytime napping and an 
elevated PD risk is lacking and remains a challenge. In 
a study, sleep was objectively measured in older adults 
from the community, not clinically diagnosed with PD, 
by using an activity recorder [42]. The study revealed that 
the degree of sleep fragmentation was associated with 
Lewy body pathological burden as well as nigrostriatal 
neuronal loss. The increased odds of developing PD were 
correlated with greater sleep fragmentation, which, in 
turn, was associated with Lewy body pathology burden 
and nigrostriatal neuron loss [43]. Sleep fragmentation 
can possibly contribute to PD pathology, with poten-
tial mechanisms involving oxidative stress promotion or 
impairment in toxic protein clearance. In model organ-
isms, both sleep fragmentation and sleep deprivation are 
associated with brain oxidative stress, a factor linked to 
PD pathogenesis [44–46]. Moreover, napping might be 
an integral component of the PD pathological process. 
The suprachiasmatic nucleus (SCN), which plays a cru-
cial role in regulating the sleep–wake cycle, may con-
tribute to reduced melatonin secretion and sleep–wake 
disruption, particularly in elderly healthy individuals with 
decreased SCN activity [47, 48]. Animal model studies 
have revealed abnormal electrical activity in the SCN of 
α-synuclein-overexpressing mouse models of PD [49]. 
Subsequent research should delve deeper into the under-
lying mechanisms.
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The examination of the interaction between the day-
time napping frequency or duration and the PRS on the 
PD risk yielded no significant results. This lack of signif-
icance suggests that genetic factors does not influence 
the association between daytime napping and the PD 
risk. These findings align with those of prior research. 
Benjamin et  al. analyzed the interaction between PRS 
and a precursor symptom of PD, “sleepiness” [50]. The 
results of this analysis unveiled no significant interac-
tion, further confirming that genetic factors are not 
substantially involved in the relationship between day-
time napping and the PD risk.

Higher daytime napping frequency and longer 
daytime napping duration increased the PD risk by 
increasing the immune inflammatory response. Con-
sidering that daytime napping may be associated with 
an increase in the levels of inflammatory markers, the 
effect of napping on PD was hypothesized to be related 
to the inflammatory response [51]. A series of cross-
sectional studies were conducted in a community-based 
population in China. Longer daytime naps were corre-
lated to higher IL-6 levels. Inflammatory cytokines may 
be served as a crucial link between daytime napping 
and nonalcoholic fatty liver disease. While inflamma-
tion and immune dysfunction impair neuronal health 
and survival and are associated with PD, including both 
the motor and non-motor components of PD [52]. A 
meta-analysis included 152 studies and extracted stud-
ies reporting concentrations of blood or cerebrospinal 
fluid (CSF) markers in PD patients and controls. Sig-
nificant alterations in the levels of inflammatory mark-
ers were observed between the PD group and controls. 
Increased IL-6, TNF-α, IL-1β, STNFR1, CRP, CCL2, 
CX3CL1, and CXCL12 levels and decreased INF-γ and 
IL-4 levels were observed in the PD group. In addition, 
increased CSF levels of IL-6, TNF-α, IL-1β, CRP, and 
CCL2 were observed in the PD group compared with 
the control group [53].

The direction of the relationship is a key issue in the 
study of sleep and PD. Thus, benefiting from the long 
follow-up of the UK Biobank study, we found similar 
results when PD cases were excluded at risk 2 years and 
4 years after the baseline, a method reported in previous 
studies [6].

Limitations
This study has some limitations. First, although we 
adjusted for most known PD-associated confounding 
variables, some unknown confounders may have exerted 
their effects. Second, the latency period for the rapid eye 
movement sleep behavior disorder as a pre-Parkinsonian 
symptom can be up to 10 years. Although our sensitivity 

analysis excluded patients with sleep disorders, bias may 
have been introduced by the occult population. Third, 
a fundamental assumption of MR is that SNPs are not 
linked to any confounders of the exposure or the out-
come. Even when pleiotropic bias is taken into account, 
no MR study can entirely eliminate the possibility of plei-
otropic bias. Finally, the UK Biobank participants were 
predominantly Europeans. Further studies are warranted 
to investigate the extent to which these findings can be 
applied to other populations.

Conclusions
The results of this large UK Biobank-based cohort study 
suggested that the increased frequency of self-reported 
daytime naps and duration of accelerometer measure-
ments are associated with an increased PD risk. The 
MR analysis provided no evidence that the frequency of 
daytime naps was associated with PD outcomes. Further 
larger GWAS-based cohort and MR studies are war-
ranted to validate the findings.

Abbreviations
BMI  Body mass index
CIs  Confidence intervals
CSF  Cerebrospinal fluid
GWAS  Genome-wide association study
HMM  Hidden Markov model
HRs  Hazard ratios
IVW  Inverse variance weighting
LD  Linkage disequilibrium
MR  Mendelian randomization
MRPRESSO  MR pleiotropy residual sum and outlier
PD  Parkinson’s disease
PRS  Polygenic risk score
RFs  Random forests
SCN  Suprachiasmatic nucleus
SII  Systemic immune-inflammation index
SNPs  Single nucleotide polymorphisms
STROBE  Strengthening the Reporting of Observational Studies in 

Epidemiology

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12916- 024- 03497-7.

 Additional file 1. STROBE-MR checklist.

 Additional file 2: Text S1, Table S1-S15, and Figures S1, S3. Text S1- [Assess-
ment of covariates]. Table S1- [Baseline sleep characteristics of participants 
based on frequency of daytime naps]. Table S2- [Baseline characteristics 
of participants based on daytime napping during]. Table S3- [Baseline 
characteristics of participants based on daytime napping frequency 
(First repeat assessment visit (2012–2013))]. Table S4- [Baseline charac-
teristics of participants based on daytime napping frequency (Imaging 
visit (2014 +))]. Table S5- [Baseline characteristics of participants based 
on daytime napping frequency (First repeat imaging visit (2019 +))]. 
Table S6- [Daytime nap frequency and Parkinson’s disease prevalence 
when using different time points as a baseline]. Table S7- [Relationship 
between daytime napping duration and onset of Parkinson’s disease 
when napping was taking place at different times (N = 78,141)]. Table S8- 
[Association between daytime napping and incident Parkinson’s disease 
after excluding participants who experienced an outcome event within 
the first two years of follow-up]. Table S9- [Association between daytime 

https://doi.org/10.1186/s12916-024-03497-7
https://doi.org/10.1186/s12916-024-03497-7


Page 10 of 12Lin et al. BMC Medicine          (2024) 22:326 

napping and incident Parkinson’s disease after excluding participants who 
experienced an outcome event within the first four years of follow-up]. 
Table S10- [Association between daytime napping and incident Parkin-
son’s disease after excluding participants who self-reported Parkinson’s 
disease]. Table S11- [Association between daytime napping and incident 
Parkinson’s disease after excluding participants who worked night shifts]. 
Table S12- [Association between daytime napping and incident Parkin-
son’s disease after excluding participants with sleep disorders]. Table S13- 
[Associations between daytime napping and incident Parkinson’s disease 
by treating all-cause death as a competing risk]. Table S14- [Analysis of 
the association between daytime napping and PD with bidirectional 
two-sample Mendelian randomization]. Table S15- [Outliers identified in 
MR-PRESSO and Radial-MR]. Fig S1- [Flow chart of the screening process 
for this study]. Fig S4- [Mediation analysis of the role of systemic immune-
inflammation index (SII) in the association between nap frequency and 
the development of PD].

 Additional file 3: Fig S2- [(A) Scatter plots of genetic associations with 
daytime napping against the incidence of PD. (B) Funnel plot to assess 
heterogeneity. The blue line represents the inverse-variance weighted 
estimate, and the dark blue line represents the Mendelian randomization-
Egger estimate. (C) Forest plot of the causal effects of single nucleotide 
polymorphisms associated with daytime napping on PD. The red lines 
are MR results of MR-Egger test and IVW method. (D) MR leave-one-out 
sensitivity analysis for daytime napping frequency on PD. Each black point 
represents the IVW-MR method applied to estimate the causal effect of 
daytime napping frequency on PD excluding that particular variant from 
the analysis].

 Additional file 4: Fig S3- [(A) Scatter plots of genetic associations with 
genetic liability to PD on daytime napping. (B) Funnel plot to assess 
heterogeneity. The blue line represents the inverse-variance weighted 
estimate, and the dark blue line represents the Mendelian randomization-
Egger estimate. (C) Forest plot of the causal effects of single nucleotide 
polymorphisms associated with genetic liability to PD on daytime nap-
ping. The red lines are MR results of MR-Egger test and IVW method. (D) 
MR leave-one-out sensitivity analysis for genetic liability to PD on daytime 
napping. Each black point represents the IVW-MR method applied to 
estimate the causal effect of genetic liability to PD on daytime napping 
excluding that particular variant from the analysis].

Acknowledgements
This research was conducted under application number 94166 from the 
UK Biobank resource. We would like to express our sincere thanks to all the 
researchers involved in the UK Biobank.

Authors’ contributions
F.B.L., Y.S.S., W.J.S., Q.Y.Y., X.L.W., and G.E.C contributed to the concept and 
design of the study. F.B.L. and Y.S.S. were involved in the acquisition of data, 
data generation, and data cleaning. F.B.L. and W.J.S. did the analysis and inter-
pretation of data. F.B.L., Y.H.W., X.Y.Z., K.C., X.J.C., J.Y.Z., and Q.Y.Y. contributed 
to the drafting of the article and revising it critically. Q.Y.Y., X.L.W. and G.E.C 
provided academic guidance for this study. All authors read and approved the 
final manuscript.

Funding
This work was funded by grants from the Fujian Provincial Financial Special 
Project (2023CZ002), Excellent Young Scholars Cultivation Project of Fujian 
Medical University Union Hospital (2022XH030), National Key Clinical Specialty 
(21281003), the Fujian Province Key Clinical Specialty (2128100537), and 
Clinical Research Center for Precision Diagnosis and Treatment of Neurologi-
cal Diseases of Fujian Province (2022Y2005). The funders played no role in the 
study design or implementation; data collection, management, analysis or 
interpretation; manuscript preparation, review or approval; or the decision to 
submit the manuscript for publication.

Availability of data and materials
All data used for Mendelian randomization analyses are publicly available from 
the respective GWAS. Cohort data from UK Biobank are available after the 
application (https:// www. ukbio bank. ac. uk/).

Declarations

Ethics approval and consent to participate
All participants gave written informed consent prior to data collection. UK 
Biobank has full ethical approval from the NHS National Research Ethics 
Service (16/NW/0274).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Neurology, Center for Cognitive Neurology, Institute of Clini-
cal Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, 
Fuzhou 350001, China. 2 Fujian Institute of Geriatrics, Fujian Medical University 
Union Hospital, 29 Xinquan Road, Fuzhou 350001, China. 3 Fujian Key Labora-
tory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, 
Fuzhou 350001, China. 4 Fujian Medical University, Fuzhou 350001, China. 
5 Department of Neurosurgery, Fujian Medical University Union Hospital, 29 
Xinquan Road, Fuzhou 350001, China. 

Received: 12 December 2023   Accepted: 21 June 2024

References
 1. Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, 

Kieburtz K, Marshall FJ, Ravina BM, Schifitto G, Siderowf A, et al. Projected 
number of people with Parkinson disease in the most populous nations, 
2005 through 2030. Neurology. 2007;68(5):384–6. https:// doi. org/ 10. 
1212/ 01. wnl. 00002 47740. 47667. 03.

 2. Global, regional, and national burden of Parkinson’s disease, 1990–2016: 
a systematic analysis for the Global Burden of Disease Study 2016. Lancet 
Neurol. 2018;17(11):939–953. https:// doi. org/ 10. 1016/ s1474- 4422(18) 
30295-3.

 3. Rothman SM, Mattson MP. Sleep disturbances in Alzheimer’s and Parkin-
son’s diseases. Neuromolecular Med. 2012;14(3):194–204. https:// doi. org/ 
10. 1007/ s12017- 012- 8181-2.

 4. Wang C, Bangdiwala SI, Rangarajan S, Lear SA, AlHabib KF, Mohan V, Teo K, 
Poirier P, Tse LA, Liu Z, et al. Association of estimated sleep duration and 
naps with mortality and cardiovascular events: a study of 116 632 people 
from 21 countries. Eur Heart J. 2019;40(20):1620–9. https:// doi. org/ 10. 
1093/ eurhe artj/ ehy695.

 5. Abbott RD, Ross GW, White LR, Tanner CM, Masaki KH, Nelson JS, Curb JD, 
Petrovitch H. Excessive daytime sleepiness and subsequent development 
of Parkinson disease. Neurology. 2005;65(9):1442–6. https:// doi. org/ 10. 
1212/ 01. wnl. 00001 83056. 89590. 0d.

 6. Leng Y, Goldman SM, Cawthon PM, Stone KL, Ancoli-Israel S, Yaffe K. 
Excessive daytime sleepiness, objective napping and 11-year risk of 
Parkinson’s disease in older men. Int J Epidemiol. 2018;47(5):1679–86. 
https:// doi. org/ 10. 1093/ ije/ dyy098.

 7. Leng Y, Stone K, Ancoli-Israel S, Covinsky K, Yaffe K. Who take naps? 
Self-reported and objectively measured napping in very old women. J 
Gerontol A Biol Sci Med Sci. 2018;73(3):374–9. https:// doi. org/ 10. 1093/ 
gerona/ glx014.

 8. Gao J, Huang X, Park Y, Hollenbeck A, Blair A, Schatzkin A, Chen H. 
Daytime napping, nighttime sleeping, and Parkinson disease. Am J Epide-
miol. 2011;173(9):1032–8. https:// doi. org/ 10. 1093/ aje/ kwq478.

 9. Boef AGC, Dekkers OM, le Cessie S. Mendelian randomization studies: a 
review of the approaches used and the quality of reporting. Int J Epide-
miol. 2015;44(2):496–511. https:// doi. org/ 10. 1093/ ije/ dyv071.

 10. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elli-
ott P, Green J, Landray M, et al. UK biobank: an open access resource for 
identifying the causes of a wide range of complex diseases of middle and 
old age. PLoS Med. 2015;12(3):e1001779. https:// doi. org/ 10. 1371/ journ al. 
pmed. 10017 79.

https://www.ukbiobank.ac.uk/
https://doi.org/10.1212/01.wnl.0000247740.47667.03
https://doi.org/10.1212/01.wnl.0000247740.47667.03
https://doi.org/10.1016/s1474-4422(18)30295-3
https://doi.org/10.1016/s1474-4422(18)30295-3
https://doi.org/10.1007/s12017-012-8181-2
https://doi.org/10.1007/s12017-012-8181-2
https://doi.org/10.1093/eurheartj/ehy695
https://doi.org/10.1093/eurheartj/ehy695
https://doi.org/10.1212/01.wnl.0000183056.89590.0d
https://doi.org/10.1212/01.wnl.0000183056.89590.0d
https://doi.org/10.1093/ije/dyy098
https://doi.org/10.1093/gerona/glx014
https://doi.org/10.1093/gerona/glx014
https://doi.org/10.1093/aje/kwq478
https://doi.org/10.1093/ije/dyv071
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1371/journal.pmed.1001779


Page 11 of 12Lin et al. BMC Medicine          (2024) 22:326  

 11. Yang MJ, Zhang Z, Wang YJ, Li JC, Guo QL, Chen X, Wang E. Association 
of nap frequency with hypertension or ischemic stroke supported by 
prospective cohort data and Mendelian randomization in predominantly 
middle-aged European subjects. Hypertension. 2022;79(9):1962–70. 
https:// doi. org/ 10. 1161/ hyper tensi onaha. 122. 19120.

 12. Willetts M, Hollowell S, Aslett L, Holmes C, Doherty A. Statistical machine 
learning of sleep and physical activity phenotypes from sensor data in 
96,220 UK Biobank participants. Sci Rep. 2018;8(1):7961. https:// doi. org/ 
10. 1038/ s41598- 018- 26174-1.

 13. Esliger DW, Rowlands AV, Hurst TL, Catt M, Murray P, Eston RG. Validation 
of the GENEA accelerometer. Med Sci Sports Exerc. 2011;43(6):1085–93. 
https:// doi. org/ 10. 1249/ MSS. 0b013 e3182 0513be.

 14. White T, Westgate K, Wareham NJ, Brage S. Estimation of physical activity 
energy expenditure during free-living from wrist accelerometry in UK 
adults. PLoS One. 2016;11(12):e0167472. https:// doi. org/ 10. 1371/ journ al. 
pone. 01674 72.

 15. Ladha C, Jackson D, Ladha K, Nappey T, Olivier P. Shaker table validation of 
OpenMovement accelerometer. 2013.

 16. Kelly P, Doherty AR, Mizdrak A, Marshall SJ, Kerr J, Legge A, Godbole S, 
Badland HM, Oliver M, Foster C. High group level validity but high ran-
dom error of a self-report travel diary, as assessed by wearable cameras. J 
Transp Health. 2014;1:190–201.

 17. Doherty A, Jackson D, Hammerla N, Plötz T, Olivier P, Granat MH, White 
T, van Hees VT, Trenell MI, Owen CG, et al. Large scale population 
assessment of physical activity using wrist worn accelerometers: the UK 
Biobank study. PLoS One. 2017;12(2):e0169649. https:// doi. org/ 10. 1371/ 
journ al. pone. 01696 49.

 18. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. https:// doi. org/ 
10. 1023/A: 10109 33404 324.

 19. Rabiner L, Juang B. An introduction to hidden Markov models. IEEE ASSP 
Mag. 1986;3(1):4–16. https:// doi. org/ 10. 1109/ MASSP. 1986. 11653 42.

 20. Carrier J, Paquet J, Morettini J, Touchette E. Phase advance of sleep and 
temperature circadian rhythms in the middle years of life in humans. 
Neurosci Lett. 2002;320(1–2):1–4. https:// doi. org/ 10. 1016/ s0304- 3940(02) 
00038-1.

 21. Li P, Gao L, Yu L, Zheng X, Ulsa MC, Yang H-W, Gaba A, Yaffe K, Bennett DA, 
Buchman AS, et al. Daytime napping and Alzheimer’s dementia: a poten-
tial bidirectional relationship. Alzheimers Dementia. 2023;19(1):158–
68. https:// doi. org/ 10. 1002/ alz. 12636.

 22. Cao W, Cao Z, Tian Y, Zhang L, Wang W, Tang L, Xu C, Fan D. Neutrophils 
are associated with higher risk of incident amyotrophic lateral sclerosis 
in a BMI- and age-dependent manner. Ann Neurol. 2023;94(5):942–54. 
https:// doi. org/ 10. 1002/ ana. 26760.

 23. UK Biobank: algorithmically-defined outcomes (ADOs) Version 
2.0.  https:// bioba nk. ndph. ox. ac. uk/ ukb/ ukb/ docs/ alg_ outco me_ main. 
pdf. Accessed 22 Mar 2023.

 24. Zheng Z, Lv Y, Rong S, Sun T, Chen L. Physical frailty, genetic predisposi-
tion, and incident Parkinson disease. JAMA Neurol. 2023;80(5):455–61. 
https:// doi. org/ 10. 1001/ jaman eurol. 2023. 0183.

 25. Thompson DJ, Wells D, Selzam S, Peneva I, Moore R, Sharp K, Tarran WA, 
Beard EJ, Riveros-Mckay F, Giner-Delgado C et al. UK Biobank release and 
systematic evaluation of optimised polygenic risk scores for 53 diseases 
and quantitative traits. medRxiv. 2022:2022.2006.2016.22276246. https:// 
doi. org/ 10. 1101/ 2022. 06. 16. 22276 246.

 26. Dashti HS, Daghlas I, Lane JM, Huang Y, Udler MS, Wang H, Ollila HM, 
Jones SE, Kim J, Wood AR, et al. Genetic determinants of daytime napping 
and effects on cardiometabolic health. Nat Commun. 2021;12(1):900. 
https:// doi. org/ 10. 1038/ s41467- 020- 20585-3.

 27. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, 
Vukcevic D, Delaneau O, O’Connell J, et al. The UK Biobank resource with 
deep phenotyping and genomic data. Nature. 2018;562(7726):203–9. 
https:// doi. org/ 10. 1038/ s41586- 018- 0579-z.

 28. Kim JJ, Vitale D, Otani DV, Lian MM, Heilbron K, Iwaki H, Lake J, Solsberg 
CW, Leonard H, Makarious MB, et al. Multi-ancestry genome-wide asso-
ciation meta-analysis of Parkinson’s disease. Nat Genet. 2024;56(1):27–36. 
https:// doi. org/ 10. 1038/ s41588- 023- 01584-8.

 29. Sekula P, Del Greco MF, Pattaro C, Köttgen A. Mendelian randomization 
as an approach to assess causality using observational data. J Am Soc 
Nephrol. 2016;27(11):3253–65. https:// doi. org/ 10. 1681/ asn. 20160 10098.

 30. Shi X, Yuan W, Cao Q, Cui W. Education plays a crucial role in the pathway 
from poverty to smoking: a Mendelian randomization study. Addiction. 
2023;118(1):128–39. https:// doi. org/ 10. 1111/ add. 16019.

 31. Au Yeung SL, Gill D. Standardizing the reporting of Mendelian rand-
omization studies. BMC Med. 2023;21(1):187. https:// doi. org/ 10. 1186/ 
s12916- 023- 02894-8.

 32. Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, 
Swanson SA, VanderWeele TJ, Higgins JPT, Timpson NJ, Dimou N, et al. 
Strengthening the reporting of observational studies in epidemiology 
using Mendelian randomization: the STROBE-MR statement. JAMA. 
2021;326(16):1614–21. https:// doi. org/ 10. 1001/ jama. 2021. 18236.

 33. Gerrits MM, van Oppen P, Leone SS, van Marwijk HW, van der Horst HE, 
Penninx BW. Pain, not chronic disease, is associated with the recurrence 
of depressive and anxiety disorders. BMC Psychiatry. 2014;14:187. https:// 
doi. org/ 10. 1186/ 1471- 244x- 14- 187.

 34. Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisa-
tion studies: a guide, glossary, and checklist for clinicians. BMJ. 2018;362: 
k601. https:// doi. org/ 10. 1136/ bmj. k601.

 35. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with 
invalid instruments: effect estimation and bias detection through Egger 
regression. Int J Epidemiol. 2015;44(2):512–25. https:// doi. org/ 10. 1093/ 
ije/ dyv080.

 36. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estima-
tion in Mendelian randomization with some invalid instruments using a 
weighted median estimator. Genet Epidemiol. 2016;40(4):304–14. https:// 
doi. org/ 10. 1002/ gepi. 21965.

 37. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data 
Mendelian randomization via the zero modal pleiotropy assumption. Int J 
Epidemiol. 2017;46(6):1985–98. https:// doi. org/ 10. 1093/ ije/ dyx102.

 38. Greco MF, Minelli C, Sheehan NA, Thompson JR. Detecting pleiotropy in 
Mendelian randomisation studies with summary data and a continuous 
outcome. Stat Med. 2015;34(21):2926–40. https:// doi. org/ 10. 1002/ sim. 
6522.

 39. Wu Q, Liu S, Huang X, Liu J, Wang Y, Xiang Y, Tang X, Xu Q, Yan X, Tang 
B, et al. Bidirectional Mendelian randomization study of psychiatric 
disorders and Parkinson’s disease. Front Aging Neurosci. 2023;15:1120615. 
https:// doi. org/ 10. 3389/ fnagi. 2023. 11206 15.

 40. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal 
pleiotropy in causal relationships inferred from Mendelian randomiza-
tion between complex traits and diseases. Nat Genet. 2018;50(5):693–8. 
https:// doi. org/ 10. 1038/ s41588- 018- 0099-7.

 41. Bowden J, Spiller W, Del Greco MF, Sheehan N, Thompson J, Minelli C, 
Davey Smith G. Improving the visualization, interpretation and analysis of 
two-sample summary data Mendelian randomization via the Radial plot 
and Radial regression. Int J Epidemiol. 2018;47(4):1264–78. https:// doi. 
org/ 10. 1093/ ije/ dyy101.

 42. Sohail S, Yu L, Schneider JA, Bennett DA, Buchman AS, Lim ASP. Sleep 
fragmentation and Parkinson’s disease pathology in older adults without 
Parkinson’s disease. Mov Disord. 2017;32(12):1729–37. https:// doi. org/ 10. 
1002/ mds. 27200.

 43. Nassan M, Videnovic A. Circadian rhythms in neurodegenerative 
disorders. Nat Rev Neurol. 2022;18(1):7–24. https:// doi. org/ 10. 1038/ 
s41582- 021- 00577-7.

 44. Villafuerte G, Miguel-Puga A, Rodríguez EM, Machado S, Manjarrez E, 
Arias-Carrión O. Sleep deprivation and oxidative stress in animal models: 
a systematic review. Oxid Med Cell Longev. 2015;2015:234952. https:// 
doi. org/ 10. 1155/ 2015/ 234952.

 45. Nair D, Zhang SX, Ramesh V, Hakim F, Kaushal N, Wang Y, Gozal D. Sleep 
fragmentation induces cognitive deficits via nicotinamide adenine 
dinucleotide phosphate oxidase-dependent pathways in mouse. Am 
J Respir Crit Care Med. 2011;184(11):1305–12. https:// doi. org/ 10. 1164/ 
rccm. 201107- 1173OC.

 46. Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol. 2003;53 
Suppl 3:S26–36. discussion S36–28. https:// doi. org/ 10. 1002/ ana. 10483.

 47. Aston-Jones G, Chen S, Zhu Y, Oshinsky ML. A neural circuit for circadian 
regulation of arousal. Nat Neurosci. 2001;4(7):732–8. https:// doi. org/ 10. 
1038/ 89522.

 48. Park JS, Davis RL, Sue CM. Mitochondrial dysfunction in Parkinson’s dis-
ease: new mechanistic insights and therapeutic perspectives. Curr Neurol 
Neurosci Rep. 2018;18(5):21. https:// doi. org/ 10. 1007/ s11910- 018- 0829-3.

https://doi.org/10.1161/hypertensionaha.122.19120
https://doi.org/10.1038/s41598-018-26174-1
https://doi.org/10.1038/s41598-018-26174-1
https://doi.org/10.1249/MSS.0b013e31820513be
https://doi.org/10.1371/journal.pone.0167472
https://doi.org/10.1371/journal.pone.0167472
https://doi.org/10.1371/journal.pone.0169649
https://doi.org/10.1371/journal.pone.0169649
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/MASSP.1986.1165342
https://doi.org/10.1016/s0304-3940(02)00038-1
https://doi.org/10.1016/s0304-3940(02)00038-1
https://doi.org/10.1002/alz.12636
https://doi.org/10.1002/ana.26760
https://biobank.ndph.ox.ac.uk/ukb/ukb/docs/alg_outcome_main.pdf
https://biobank.ndph.ox.ac.uk/ukb/ukb/docs/alg_outcome_main.pdf
https://doi.org/10.1001/jamaneurol.2023.0183
https://doi.org/10.1101/2022.06.16.22276246
https://doi.org/10.1101/2022.06.16.22276246
https://doi.org/10.1038/s41467-020-20585-3
https://doi.org/10.1038/s41586-018-0579-z
https://doi.org/10.1038/s41588-023-01584-8
https://doi.org/10.1681/asn.2016010098
https://doi.org/10.1111/add.16019
https://doi.org/10.1186/s12916-023-02894-8
https://doi.org/10.1186/s12916-023-02894-8
https://doi.org/10.1001/jama.2021.18236
https://doi.org/10.1186/1471-244x-14-187
https://doi.org/10.1186/1471-244x-14-187
https://doi.org/10.1136/bmj.k601
https://doi.org/10.1093/ije/dyv080
https://doi.org/10.1093/ije/dyv080
https://doi.org/10.1002/gepi.21965
https://doi.org/10.1002/gepi.21965
https://doi.org/10.1093/ije/dyx102
https://doi.org/10.1002/sim.6522
https://doi.org/10.1002/sim.6522
https://doi.org/10.3389/fnagi.2023.1120615
https://doi.org/10.1038/s41588-018-0099-7
https://doi.org/10.1093/ije/dyy101
https://doi.org/10.1093/ije/dyy101
https://doi.org/10.1002/mds.27200
https://doi.org/10.1002/mds.27200
https://doi.org/10.1038/s41582-021-00577-7
https://doi.org/10.1038/s41582-021-00577-7
https://doi.org/10.1155/2015/234952
https://doi.org/10.1155/2015/234952
https://doi.org/10.1164/rccm.201107-1173OC
https://doi.org/10.1164/rccm.201107-1173OC
https://doi.org/10.1002/ana.10483
https://doi.org/10.1038/89522
https://doi.org/10.1038/89522
https://doi.org/10.1007/s11910-018-0829-3


Page 12 of 12Lin et al. BMC Medicine          (2024) 22:326 

 49. Kudo T, Loh DH, Truong D, Wu Y, Colwell CS. Circadian dysfunction in 
a mouse model of Parkinson’s disease. Exp Neurol. 2011;232(1):66–75. 
https:// doi. org/ 10. 1016/j. expne urol. 2011. 08. 003.

 50. Jacobs BM, Belete D, Bestwick J, Blauwendraat C, Bandres-Ciga S, Heilbron 
K, Dobson R, Nalls MA, Singleton A, Hardy J, et al. Parkinson’s disease 
determinants, prediction and gene-environment interactions in the UK 
Biobank. J Neurol Neurosurg Psychiatry. 2020;91(10):1046–54. https:// doi. 
org/ 10. 1136/ jnnp- 2020- 323646.

 51. Qu H, Wang H, Deng M, Wei H, Deng H. Associations between longer 
habitual day napping and non-alcoholic fatty liver disease in an elderly 
Chinese population. PLoS One. 2014;9(8):e105583. https:// doi. org/ 10. 
1371/ journ al. pone. 01055 83.

 52. Gopinath A, Mackie PM, Phan LT, Tansey MG, Khoshbouei H. The complex 
role of inflammation and gliotransmitters in Parkinson’s disease. Neuro-
biol Dis. 2023;176: 105940. https:// doi. org/ 10. 1016/j. nbd. 2022. 105940.

 53. Qu Y, Li J, Qin Q, Wang D, Zhao J, An K, Mao Z, Min Z, Xiong Y, Li J, et al. 
A systematic review and meta-analysis of inflammatory biomarkers in 
Parkinson’s disease. NPJ Parkinsons Dis. 2023;9(1):18. https:// doi. org/ 10. 
1038/ s41531- 023- 00449-5.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.expneurol.2011.08.003
https://doi.org/10.1136/jnnp-2020-323646
https://doi.org/10.1136/jnnp-2020-323646
https://doi.org/10.1371/journal.pone.0105583
https://doi.org/10.1371/journal.pone.0105583
https://doi.org/10.1016/j.nbd.2022.105940
https://doi.org/10.1038/s41531-023-00449-5
https://doi.org/10.1038/s41531-023-00449-5

	Daytime napping and the incidence of Parkinson’s disease: a prospective cohort study with Mendelian randomization
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Study population
	Assessment of exposure
	Systemic immune-inflammation index
	Assessment of outcomes
	Polygenic risk score
	Two-sample MR
	Statistical analyses

	Results
	Descriptive characteristics of the prospective cohort
	Association between daytime napping and PD risk
	Joint association between the PRS, daytime napping, and PD
	MR analysis
	Mediating role of SII in the association between the daytime napping frequency and PD incidence

	Discussion
	Limitations
	Conclusions
	Acknowledgements
	References


