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Abstract 

Background The advances in deep learning‑based pathological image analysis have invoked tremendous insights 
into cancer prognostication. Still, lack of interpretability remains a significant barrier to clinical application.

Methods We established an integrative prognostic neural network for intrahepatic cholangiocarcinoma (iCCA), 
towards a comprehensive evaluation of both architectural and fine‑grained information from whole‑slide images. 
Then, leveraging on multi‑modal data, we conducted extensive interrogative approaches to the models, to extract 
and visualize the morphological features that most correlated with clinical outcome and underlying molecular 
alterations.

Results The models were developed and optimized on 373 iCCA patients from our center and demonstrated 
consistent accuracy and robustness on both internal (n = 213) and external (n = 168) cohorts. The occlusion sensitiv‑
ity map revealed that the distribution of tertiary lymphoid structures, the geometric traits of the invasive margin, 
the relative composition of tumor parenchyma and stroma, the extent of necrosis, the presence of the disseminated 
foci, and the tumor‑adjacent micro‑vessels were the determining architectural features that impacted on prognosis. 
Quantifiable morphological vector extracted by CellProfiler demonstrated that tumor nuclei from high‑risk patients 
exhibited significant larger size, more distorted shape, with less prominent nuclear envelope and textural contrast. 
The multi‑omics data (n = 187) further revealed key molecular alterations left morphological imprints that could be 
attended by the network, including glycolysis, hypoxia, apical junction, mTORC1 signaling, and immune infiltration.

Conclusions We proposed an interpretable deep‑learning framework to gain insights into the biological behav‑
ior of iCCA. Most of the significant morphological prognosticators perceived by the network are comprehensible 
to human minds.
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Background
Deep learning has invoked tremendous insights into 
cancer prognostication and treatment efficacy predic-
tion based on whole-slide images (WSIs) [1–3]. The 
performance of deep learning-based prognostic model 
triumphed over almost all other conventional methods 
when applying to a wide range of malignancies, showing 
the enormous potential in using it for more personalized 
clinical care [4–6]. These pioneering studies also showed 
that deep learning approaches could extract essential 
pathological features that were morphological determi-
nants of prognosis. However, despite the promising pros-
pects, several major obstacles must be addressed before 
practical application.

Current limitations of deep learning approaches 
include the tendency of shortcut learning, poor general-
izability, and limited interpretability [7], all derived from 
the “black box” nature of the neural network. Effective 
networks commonly used consist of extremely com-
plex layers connected via many nonlinear intertwined 
relations, thus making it very difficult to comprehend 
the transformation from inputs to outputs. Therefore, 
“understanding the model” is a critical issue, in order to 
(i) exclude data artifacts and non-universal features to 
avoid shortcut learning, (ii) gain the required confidence 
in deep learning models’ outputs, and (iii) exploit key fea-
tures and novel biological behavior of tumor that have 
been overlooked [1]. In principle, there are two main 
strategies for model interpretation: model-based explana-
tion and post hoc explanation [8]. The model-based one 
refers to models with predetermined confinements which 

mostly relied on prior knowledge of certain disease, while 
post hoc explanation refers to analyzing a trained model 
to achieve insight into learned relationships. The com-
bination of the two strategies should be complementary 
to each other and might benefit the decipherment of 
the black box. With this in mind, we designated intrahe-
patic cholangiocarcinoma (iCCA) to establish a practical 
deep learning model for prognostication and in-depth 
interpretation.

iCCA is a desmoplastic cancer with complex tissue 
composition, varied prognosis among patients, and dis-
tinct molecular background, making it ideal for deep 
learning modeling [9–11]. The morphological informa-
tion hidden in pathological sections of iCCA reflects the 
overall effect of the microenvironment on the behav-
ior of tumor cells. Herein, using pathological images of 
4 independent iCCA cohorts from 2 cancer centers, we 
developed and validated a stepwise prognostic model for 
this malignancy with excellent accuracy, generalizability, 
and robustness. Next, the established model was inten-
sively interrogated by multiple approaches, generating a 
human-interpretable feature library of unprecedented 
resolution and detail. Lastly, we explored the footprints 
of molecular alterations in morphological changes lever-
aging the multi-omics data of the studied cohort.

Methods
Study populations and pathological sections
Four independent iCCA cohorts were included in this 
study (cohorts T, V1, V2, and FU-iCCA) with a total of 
941 patients [12, 13]. Cohorts T and V1 totally comprised 
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586 iCCA patients who underwent surgical resection 
between 2004 and 2015 at Zhongshan Hospital of Fudan 
University. Cohort T (as the training cohort) comprised 
373 iCCA patients, and the remaining 213 patients were 
included in cohort V1 as the internal validation. Cohort 
V2 (as the external validation cohort) comprised 168 
iCCA patients from the Sun Yat-sen University Cancer 
Center resected between 1999 and 2013. The FU-iCCA 
cohort was established previously by us with multi-omics 
data which included 187 patients resected between 2014 
and 2018 at Zhongshan Hospital [13]. All patients had 
pathologically proven iCCAs and underwent curative 
resection. Patients with hilar or extrahepatic cholangio-
carcinoma and a mixed type of primary liver cancer were 
excluded. None of the patients received any molecular 
targeted or immune therapy before surgery or during the 
follow-up period. The study protocol was conducted in 
accordance with ethical guidelines (Declaration of Hel-
sinki and Istanbul) and approved by the Institutional Eth-
ics Committee of Zhongshan Hospital. Written informed 
consent was obtained from all subjects prior to partici-
pating in the study for the use of surgical specimens and 
related clinical data.

The pathological H&E sections of each patient were 
scanned for WSIs. In total, 1782 WSIs from all four 
cohorts were collected. After initial screening, 321 were 
excluded due to poor quality (including contamination, 
depigmentation, and overlapping), and the remaining 
were 673 WSIs of 373 patients in cohort T, 433 WSIs of 
213 patients in cohort V1, 168 WSIs of 168 patients in 
cohort V2, and 187 WSIs of 187 patients in the FU-iCCA 
cohort (multiple WSIs were available for some cases 
in cohorts T and V1). Detailed information is shown in 
Table  1 and Additional file  1: Supplementary methods, 
and the study population and overall frameworks of the 
neural networks used in this study are shown in Addi-
tional file 2: Fig. S1.

Classification networks and global segmentation map
Raw image data were preprocessed to remove mean-
ingless background (Otsu method) [6]. To classify and 
segment distinct anatomical subregions, 89 WSIs of 74 
patients from cohort T were randomly selected for man-
ual annotation. First, principle anatomical subregions, 
such as tumor tissue (TT), peri-tumor liver tissue (LT), 
hemorrhage and necrosis region (HN), and tertiary lym-
phoid structures (TLSs), were directly delineated by sen-
ior pathologists using QuPath [14]. Subsequently, these 
images were divided into non-overlapping small patches 
(256 × 256 pixels), referred to as labeled tiles. Given the 
difficulty of directly delineating the demarcation between 
tumor parenchyma and stroma, we alternatively dichoto-
mized tiles derived from tumor tissues into parenchyma 

(TT-p) and stroma (TT-s). These labeled tiles established 
the ground-truth for the classification networks. The 
detailed framework for the classification networks could 
be found in Additional file  1: Supplementary methods. 
Then, the global segmentation map (GSM) activated by 
class could be generated for each WSI.

Prognostic models
We established and compared several prognostic mod-
els according to inputs from different dimensions. For 
prognostic model 1, we took each patient as a sample, 
with the survival time as the label and GSM as the input. 
After training, each patient’s risk score could be gener-
ated by this model, as a relative value to assess progno-
sis. For prognostic model 2, we also took each patient as 
an example, but the input was changed to tiles sampled 
within the WSIs. The tiles for prognostic model 2 were 
256 × 256 pixels in size. The sampling strategies included 
random sampling and category-based sampling, and the 
effect of different tile counts and magnification scales 
on network performance was also tested. The optimal 
and most efficient sampling strategy (sampling for 32 tile 
counts at 4 × magnification scale in the region of tumor 
parenchyma) was then determined in the final model, 
and the risk score for each patient could be generated. 
For the integrated prognostic model, both GSM and sam-
pled tiles were utilized as inputs to the network, and a 
consensus risk score could be generated for each patient.

In cohorts T and V1, multiple WSIs were available for 
some cases, and inter-section discrepancies of risk scores 
were observed. For multiple WSIs, the minimal, maxi-
mal, and mean risk scores were compared for their pre-
dictive accuracy, and the variation of risk scores within 
one case was also evaluated in the form of standard devi-
ation. Details of the prognostic networks could be found 
in Additional file 1: Supplementary methods.

Identification of prognosis‑related architectural features
To unveil the “black box” of the prognostic model, we 
first applied the occlusion sensitivity map (OSM) [15] to 
visualize the prognosis-related features of GSM. By cal-
culating the resulting difference in risk score using GSM 
occlusion, we generated coarse sensitivity heatmaps 
where different colors indicated higher and lower risks of 
death. Detailed methodology was provided in Additional 
file 1: Supplementary methods.

Second, we deconstructed the GSM by extracting 
predefined architectural parameters. These archi-
tectural parameters included area ratios of HN/TLS/
TT-p/TT-s to TT/LT, distribution variance of TLS 
and HN, smoothness of invasive margin, and distances 
between TLS and invasive margin. In implementa-
tion, area ratios were based on amounts of pixels, 
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Table 1 Demographics and clinicopathologic characteristics of patients with iCCA 

Characteristic Cohort T Cohort V1 Cohort V2 FU‑iCCA P value P value P value
(n = 373) (n = 213) (n = 168) (n = 187) T vs V1 T vs V2 T vs FU‑iCCA 

Age, years

 Mean (SD) 60.3 (9.9) 59.9 (11.2) 53.1 (12.6) 61.2 (10.7) 0.821* < 0.001* 0.232*

 Range (28.0–85.0) (27.0–88.0) (20.0–86.0) (28.0–86.0)

Sex

 Male (%) 222 (59.5%) 122 (57.3%) 113 (67.3%) 108 (57.8%) 0.596 0.079 0.616

 Female (%) 151 (40.5%) 91 (42.7%) 55 (32.7%) 79 (42.2%)

History of hepatitis

 Yes (%) 151 (40.5%) 82 (38.5%) 91 (54.2%) 49 (26.2%) 0.637 0.003 0.001

 No (%) 222 (59.5%) 131 (61.5%) 77 (45.8%) 136 (72.7%)

History of hepatolithiasis

 Yes (%) 66 (17.7%) 42 (19.7%) 18 (10.7%) 12 (6.4%) 0.543 0.027 < 0.001

 No (%) 307 (82.3%) 171 (80.3%) 150 (89.3%) 175 (93.6%)

History of parasite infection

 Yes (%) 21 (5.6%) 14 (6.6%) 5 (3.0%) 7 (3.7%) 0.643 0.101 0.347

 No (%) 352 (94.4%) 199 (93.4%) 163 (97.0%) 180 (96.3%)

HBsAg

 Positive (%) 116 (31.1%) 61 (28.6%) 88 (52.3%) 45 (24.1%) 0.533  < 0.001 0.261

 Negative (%) 257 (68.9%) 152 (71.4%) 79 (47.7%) 142 (75.9%)

Anti‑HCV

 Positive (%) 8 (2.1%) 6 (2.8%) 1 (0.6%) 0 (0.0%) 0.608 0.114† 0.056†

 Negative (%) 365 (97.9%) 207 (97.2%) 167 (99.4%) 187 (100.0%)

γ‑GT, U/L

 Mean (SD) 120.1 (172.6) 115.9 (166.9) 137.2 (242.5) 118.9 (149.3) 0.627* 0.046* 0.886*

 Range (14.0–1753.0) (12.0–1337.0) (16.7–1945.4) (2.0–1003.0)

CA19‑9, U/ml

 Mean (SD) 898.7 (2358.7) 1039.1 (2550.7) 653.3 (2128.8) 788.1 (2120.9) 0.503* 0.787* 0.368*

 Range (0.0–10000.0) (0.0–10000.0) (0.6–19,671.0) (0.6–10,000)

Size, cm

 Mean (SD) 6.2 (2.9) 6.1 (2.8) 6.0 (2.9) 6.3 (2.6) 0.748* 0.520* 0.441*

 Range (1.0–20.0) (1.0–15.0) (1.0–17.0) (1.0–15.0)

Tumor number

 Single (%) 320 (85.8%) 175 (82.2%) 146 (86.9%) 147 (78.6%) 0.243 0.482 0.034

 Multiple (%) 53 (14.2%) 38 (17.8%) 22 (13.1%) 40 (21.4%)

Liver background

 Cirrhosis (%) 65 (17.4%) 36 (16.9%) 20 (12.0%) 19 (10.2%) 0.871 0.114 0.026

 Fibrosis (%) 64 (17.2%) 33 (15.5%) 49 (29.2%) 67 (35.8%) 0.602 0.020 < 0.001

 Steatosis (%) 21 (5.6%) 7 (3.3%) 18 (10.8%) 38 (20.3%) 0.201 0.031 < 0.001

 Cholestasis (%) 30 (8.0%) 10 (4.7%) 20 (12.0%) 13 (6.9%) 0.122 0.001 0.220

AJCC/UICC 8th TNM stage

 I (%) 249 (66.8%) 134 (62.9%) 79 (47.0%) 50 (26.7%) 0.336 < 0.001 < 0.001

 II (%) 49 (13.1%) 40 (18.8%) 27 (16.1%) 63 (33.7%)

 III (%) 59 (15.8%) 31 (14.6%) 33 (19.6%) 66 (35.3%)

 IV(%) 16 (4.3%) 8 (3.8%) 29 (17.3%) 8 (4.3%)

Lymph node metastasis

 Yes (%) 68 (18.3%) 33 (15.9%) 37 (22.0%) 42 (22.5%) 0.454 0.363 0.223

 No (%) 303 (81.7%) 175 (84.1%) 131 (78.0%) 145 (77.5%)
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smoothness of invasive margin was calculated by Sobel 
operator, and distances were defined as minimum dis-
tances between centers of TLS clusters and invasive 
margin.

Extraction of prognosis‑related tile‑level features
To interpret the prognosis-related tile-level features per-
ceived by the network, we applied CellProfiler® to auto-
matically extract quantified image vector from tiles of 
high risk and low risk. The workflow for image process-
ing and vector extraction has been described previously 
[16], and we adjusted the pipeline parameters to better 
apply the scenarios of pathological sections. Briefly, after 
exclusion of low-quality images and correction for une-
ven illumination, tumor cell nuclei were identified and 
segmented for each tile using CellProfiler version 2.1.0. 
Then, the nuclear area shape, intensity, texture, and radial 
distribution were measured for each nucleus. In total, a 
feature vector of 732 measurements was extracted and 
normalized to describe the summarized morphology of 
tumor cell nuclei in a tile. Each feature vector contained 
nuclei information of the mean, median, and standard 
deviation of nucleus size, contour line length, orientation, 
ellipticity, texture entropy, central moment, etc. Dimen-
sionality reduction was conducted using truncated SVD 
[17]. The detailed methodology and CellProfiler pipeline 
used to process the images were provided in the Addi-
tional file 1: Supplementary methods.

WES, RNA‑seq, and proteomic analysis
WES, RNA-seq, and proteomic data were downloaded 
from Dong et  al. [13]. The estimation for immune sub-
groups was performed using the method described by 
Danaher et al. based on RNA-Seq data [18]. To compute 
the scores of 50 hallmarks from MSigDB (http:// www. 
gsea- msigdb. org/ gsea/ msigdb), we used GVSA in R pack-
age with parameter: method = “ssgsea”, kcdf = “Gaussian”, 
min.sz = 1, max.sz = 500.

Statistical analysis
Statistical tests were performed using the SPSS (version 
20.0; IBM, Armonk, NY, USA) and R software. Categori-
cal variables were compared using Fisher’s exact test 
when more than 20% of cells had expected frequencies 
less than 5; otherwise, the chi-square test was used. Con-
tinuous variables were compared using the Mann–Whit-
ney U test. The performance of the prognostic model 
was assessed by Harrell’s concordance index (C-index) 
and compared with the rcorrp.cens package in Hmisc in 
R. Survival analysis was performed using Kaplan–Meier 
and compared with the log-rank test to estimate the sur-
vival probability according to risk scores. Multivariate 
Cox regression analyses were performed to identify inde-
pendent variables associated with overall survival. Lasso 
regression model was used to identify image vectors 
associated with tile risk score. A two-sided P < 0.05 was 
considered statistically significant.

Chi-square test was used for other tests

Abbreviations: iCCA , intrahepatic cholangiocarcinoma; HBsAg, hepatitis B surface antigen; HCV, hepatitis C virus; γ-GT, γ-glutamyltransferase
* Mann–Whitney U test
† Fisher’s exact test

Table 1 (continued)

Characteristic Cohort T Cohort V1 Cohort V2 FU‑iCCA P value P value P value
(n = 373) (n = 213) (n = 168) (n = 187) T vs V1 T vs V2 T vs FU‑iCCA 

Subtype for iCCA 

 Small duct type (%) 183 (49.7%) 102 (48.3%) 118 (70.2%) 109 (58.3%) 0.748  < 0.001 0.049

 Large duct type (%) 185 (50.3%) 109 (51.7%) 50 (29.8%) 78 (41.7%)

Differentiation

 Well (%) 24 (6.4%) 23 (10.8%) 18 (10.7%) 1 (0.1%) 0.038 0.113 < 0.001

 Moderate (%) 234 (62.7%) 113 (53.1%) 91 (54.2%) 147 (78.6%)

 Poor (%) 115 (30.8%) 77 (36.2%) 59 (35.1%) 39 (20.9%)

Microvascular invasion

 Yes (%) 60 (16.5%) 44 (21.5%) 50 (30.1%) 87 (46.5%) 0.144 0.021 < 0.001

 No (%) 303 (83.5%) 161 (78.5%) 116 (69.9%) 100 (53.5%)

Macrovascular invasion

 Yes (%) 26 (7.0%) 16 (7.5%) 18 (10.7%) 3 (1.6%) 0.807 0.196 0.008

 No (%) 347 (93.0%) 197 (92.5%) 150 (89.3%) 184 (98.4%)

http://www.gsea-msigdb.org/gsea/msigdb
http://www.gsea-msigdb.org/gsea/msigdb
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Results
Classification networks precisely distinguish anatomical 
subregions
Generally, pathological sections of iCCA comprised 4 
major anatomical subregions, including TT, LT, HN, and 
TLSs, which could be manually outlined relatively easy. 

Two experienced experts delineated the contours of the 
four types of tissue on 89 WSIs and checked by another 
pathologist independently (Fig.  1A). These WSIs were 
divided into tiles as mentioned in the methods (Fig. 1B). 
In total, 1,059,923 annotated tiles were sampled for train-
ing the classification networks. For 32,762 tiles annotated 

Fig. 1 Classification networks and global segmentation map. A Representation of annotated WSIs. B Representation of labeled tiles for training 
the classification networks. C Normalized confusion matrices of the classification results. D Area under the curve (AUC) of each tissue category 
of the classification networks. E Two examples of the global segmentation map (GSM) activated by class for WSI. TT‑p was masked in yellow, TT‑s 
was masked in blue, HN was masked in brown, and TLS was highlighted in green. WSI, whole slide image; LT, peri‑tumor liver tissue; TT, tumor tissue; 
TT‑p, tumor parenchyma; TT‑s, tumor stroma; TLS, tertiary lymphoid structure; HN, hemorrhage and necrosis
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as TT, we further labeled them into parenchyma (TT-p) 
and stroma (TT-s) for subclassification, considering that 
iCCA is a highly desmoplastic cancer. After full training, 
the remaining 6552 labeled tiles were applied to test the 
performance of the classification networks using con-
fusion matrices and area under the curve (AUC), all of 
which revealed excellent accuracy and distinguishability 
(Fig. 1C, D).

Next, we applied the classification networks to other 
WSIs in cohorts T, V1, and V2, and typical GSMs were 
shown in Fig. 1E. To further validate the authenticity of 
the outputs, we randomly selected 2000 tiles (400 tiles 
for each of the five regions) for each cohort (6000 tiles 
in total), and the classification results were checked by 
two experienced pathologists. The recognition accura-
cies of classification results were 0.986 in cohort T, 0.983 
in cohort V1, and 0.983 in cohort V2, respectively. As 
shown in Additional file  3: Fig. S2, similar colors and 
contours were the main causes of misclassification. Over-
all, our classification networks performed well in distin-
guishing major subregions both internally and externally.

Initial feature extraction from separate dimensions 
of pathological images
Based on prior knowledge, both architectural features 
(indicating the spatial organization of distinct anatomi-
cal subregions) and fine-grained features (indicating the 
morphology and texture of tumor cells) contain essential 
information related to patient outcomes [19]. To verify 
this knowledge and for better interpretability of the final 
model, we first established 2 preliminary prognostic 
models.

For prognostic model 1, the global segmentation map 
was the input to train the network. The output of model 1 
that we termed “GSM score (GS)” was a relative value to 
assess the prognostic risk of each WSI. For patients with 
multiple WSIs, the mean GS of all sections was adopted 
to be the representative risk score of this patient, based 
on the predictive performance (Fig.  2A). Overall, the 
C-indices via GS reached 0.672 for cohort T and validated 
by cohorts V1 and V2 without any tuning of the network 
(0.654 and 0.612 for cohorts V1 and V2, respectively).

For prognostic model 2, the inputs were sampled tiles, 
and the outputs were termed as “tile risk score (TiRS).” 
To saturate the network performance, sampling meth-
ods, tile counts, and magnification scales were iteratively 
optimized. We first compared the performances of the 
global random sampling method (irrespective of tissue 
category), tumor-tissue-only sampling method (irrespec-
tive of parenchyma or stroma), and tumor parenchyma-
only sampling method, in which 32 tiles were sampled 
for each WSI as input. As shown in Fig. 2B, the perfor-
mance of tumor parenchyma-only sampling method was 

significantly higher than that of the other 2 sampling 
methods (P < 0.05). This result endorsed the prior knowl-
edge that prognosis-related fine-grained features were 
mostly derived from tumor cells [6]. Hence, we adopted 
the tumor parenchyma-only sampling method in the sub-
sequent modeling. Next, we tested the effect of different 
magnification scales and tile counts on network perfor-
mance. In respect of intra-tumor heterogeneity of iCCA, 
only with sufficient counts of tiles can the network com-
prehend the overall landscape of one tumor. As the tile 
counts increased, the C-index gradually increased until 
a platform appeared. Although increased magnification 
scale allows the network to capture more detailed fea-
tures, the computing power required also increased expo-
nentially. To achieve the maximal prognostication at the 
cost of minimal computing power, we determined 32 tile 
counts at 4 × magnification scale as the optimal combina-
tion (Fig. 2C). Similar with GS, for patients with multiple 
WSIs in cohorts T and V1, the mean TiRS was the better 
predictor of outcome (Additional file 4: Fig. S3). With the 
parameters determined, prognostic model 2 obtained a 
C-index of 0.715 in cohort T and validated by cohorts V1 
and V2 without any re-training of the network (0.674 and 
0.641 for cohorts V1 and V2, respectively).

Notably, GS and TiRS were independent of each other 
as prognosticators for iCCA (all P < 0.01 in cohorts T, V1, 
and V2), and the variations of GS and TiRS among mul-
tiple sections derived from one patient also significantly 
influenced prognosis (Fig.  2A and Additional file  4: Fig. 
S3A), showing the impact of intra-tumor heterogeneity 
in iCCA.

The integrated prognostic model robustly predicts patient 
outcome
We have demonstrated that both GSM and sampled 
tiles were indispensable inputs for the prognostication 
of iCCA. In the integrated model, features from both 
dimensions were fed into the network synergistically, and 
the output was termed as “consensus risk score (CRS).” 
After optimization, the C-index of CRS reached 0.745 
in the training cohort T, significantly better than either 
GS or TiRS (Fig.  2D, all P < 0.05). A major advantage of 
CRS was the generalizability proved by both internal 
and external validation cohorts. Without any modifica-
tion or re-training, this model was directly applied in the 
remaining cohorts, and the C-indices retained 0.701 and 
0.677 in cohorts V1 and V2, respectively. As expected, 
CRS was a superior prognostic predictor than Clinical 
index that derived from Cox model combing conven-
tional clinicopathologic characteristics (Fig. 2D).

We further performed survival analysis using CRS 
by equally stratifying the patients into high- and low-
risk groups. The survival curves showed that patients 
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with high CRS showed significantly worse survival than 
those with low CRS (Fig.  2E). Multivariate analysis 
revealed that the prognostic power of CRS was inde-
pendent of conventional clinicopathological character-
istics (Additional file  5: Table  S1), and CRS remained 
a predictor of survival in most clinicopathological sub-
groups, such as early or late TNM stages, small or large 

tumor size, and single or multiple tumors (Additional 
file 4: Fig. S3B).

Deconstruction of prognostic model 1 reveals important 
architectural features
The direct combination of GS and TiRS (by using haz-
ard linear combination) demonstrated slightly inferior 

Fig. 2 Evaluation of the predictive performance under various conditions. A C‑indices via the minimal (GSmin), maximal (GSmax), mean (GSmean), 
and standard deviation (GSsd) of the GSs among patients with multiple WSIs in cohorts T and V1. B C‑indices via TiRS according to different 
sampling methods. C C‑indices via TiRS according to different tile counts under different magnification scales. D C‑indices via GS, TiRS, CRS, 
and clinical index in cohorts T, V1, and V2. E Kaplan–Meier curves of survival for high and low CRS. The bars represent the 95% confidence intervals. 
*P < 0.05; **P < 0.01; ***P < 0.001; GS, GSM score; WSI, whole slide image; TiRS, tile risk score; CRS, consensus risk score; GSM, global segmentation 
map
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yet comparable predictive performance with CRS 
(0.733 vs. 0.745 for cohort T, 0.695 vs. 0.701 for cohort 
V1, and 0.665 vs. 0.677 for cohort V2. Additional file 4: 
Fig. S3C) and therefore rationalized the stepwise inter-
pretation of the final model by interrogating the pre-
liminary models separately.

To interrogate prognostic model 1 explanations, we 
first used OSM to visualize prognostic relevance of 
different image regions. For visualization, the GSMs 
were masked in different colors, where redder and 
bluer indicated higher and lower risks of death. Several 
distinctive features were identified by our pathologists 
from these heatmaps (Fig.  3A). As shown in Fig.  3A, 
intra-tumor TLSs were specifically highlighted in dark 
blue, indicating a protective role against tumor. How-
ever, peri-tumor TLSs were masked in red, implying 
opposite prognostic impacts of TLSs located in and 
around the tumor [12]. The prognostic implications 
of invasive margin were determined by its smoothness 
or irregularity, with protrusions and depressions indi-
cating the presence of tumor budding and suggesting 
high risks (Additional file 6: Fig. S4) [20]. Intriguingly, 
compared to tumor stroma which was notorious for 
its active tumor-promoting role [21] and frequently 
recognized as high-risk region by our network, tumor 
parenchyma was consistently linked with relatively 
low risk. Other risk-related features, including necro-
sis, disseminated foci, and micro-vessels adjacent to 
tumor, were all consistently displayed in red, which 
were comprehensible to human eyes [22, 23].

To quantify the findings above, we calculated sev-
eral predefined architectural parameters, including 
the area ratios of different subregions, the distribution 
variance of TLS and HN, the smoothness of invasive 
margin, and the distances between TLS and invasive 
margin. Generally consistent with the observational 
findings, the area ratio of peri-tumor TLS to LT, the 
area ratios of HN and TT-s to TT, the distribution var-
iance of HN, and the unsmoothness of invasive mar-
gin showed potential positive associations with dismal 
outcome, whereas the area ratios of intra-tumor TLS 
and TT-p to TT, and the distribution variance of 
intra-tumor TLS demonstrated positive correlations 
with favorable outcome (Fig.  3B). Nevertheless, these 
parameters did not fully represent the geographical 
complexity and topological patterns of distinct tumor 
regions and therefore could not fulfill the predictive 
power of the network (Additional file 7: Fig. S5).

Together, these findings proved the in-depth percep-
tion of essential prognosticators from GSM by prog-
nostic model 1.

Prognostic model 2 captures intrinsic morphological 
features from parenchyma tiles
Prognostic model 2 focused on microscopic features, as 
determined by its inputs. We first tested if the model rec-
ognized pathologist-interpretable prognosticators such as 
iCCA subtype or tumor grade. According to the World 
Health Organization and European Network for the Study 
of Cholangiocarcinoma, iCCA can be classified into peri-
hilar large duct subtype and peripheral small duct subtype, 
with significant differences in mucin production, the shape 
of tumor cells, and patient prognosis [24]. Compared to 
large duct subtype with inferior outcome, tiles from small 
duct subtype of iCCAs had significantly lower TiRS, which 
mutually corroborated with their favorable prognosis 
(Fig. 4A). The same association was also observed between 
differentiation grades and TiRS (Fig.  4B). These results 
reflected that prognostic model 2 had captured morpho-
logical features that defined conventional pathological 
characteristics.

Second, we focused on tumor cell nuclei and extracted 
quantifiable morphological vector using CellProfiler [16] 
to aid our understanding of the “black box.” To filter out 
potential features that were attended by the network, 
we randomly selected tiles from patients with high (top 
20%) and low (bottom 20%) TiRS. In total, 2128 tiles were 
processed to segment tumor cell nuclei automatically by 
CellProfiler (Fig. 4C). The raw profiles containing all 732 
measurements for each tile and the significant features 
emerged after dimensionality reduction were schemati-
cally showed in Fig. 4D. Area shape, intensity, and texture 
of the nuclei provided the most informative features that 
significantly associated with TiRS and prognosis. Lasso 
regression revealed that the most relevant measurements 
included the mean of nucleus size, the third-order cen-
tral moment of nucleus shape, the integrated intensity of 
the nucleus edge, and the contrast of the nucleus texture 
(Fig. 4E). In translation, tumor nuclei from high TiRS tiles 
exhibited significant larger size, more distorted shape, 
while their nuclear envelope and textural contrast were 
less prominent (Fig.  4C). Another set of measurements 
that reflected the heterogeneity of nuclear size and shape 
in one tile was also significantly correlated with high risk 
(Fig. 4E).

Together, these results showed that fine-grained fea-
tures with prognostic significance were captured by prog-
nostic model 2.

The prognostic model reflects tumor biological processes 
at multi‑omics scale
Logically, morphological patterns observable in histo-
pathological sections and patient prognosis are deter-
mined by the underlying molecular phenotype [25, 
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Fig. 3 Deconstruction and visualization of architectural features. A Visualization of high‑risk (masked in red) and low‑risk (masked in blue) 
features attended by prognostic model 1 using occlusion sensitivity map (OSM). Each WSI was demonstrated in three forms: the original global 
segmentation map (left), the OSM (middle), and the merged image (right). The first panel showed the risk differences according to the presence 
and distribution of TLS (tTLS and pTLS were indicated by green circle and black circled curve respectively). The second panel highlighted 
the prognostic significance of the smoothness of invasive margin (blue circled curve). The third panel revealed the opposite prognostic impacts 
of TT‑p (yellow) and TT‑s (dark blue). The fourth, fifth, and sixth panels demonstrated other significant architectural features, including the presence 
of necrosis (brown circled curve), disseminated foci (orange circle), and adjacent micro‑vessels (red circled curve). B The prognostic impacts 
of predefined architectural parameters in cohorts T, V1, and V2. Red circles indicate hazard ratios greater than 1, while blue circles indicate hazard 
ratios less than 1. The size of the circles indicates the P value. The area ratio of pTLS to LT, the area ratios of HN and TT‑s to TT, the distribution 
variance of HN, and the smoothness of invasive margin showed potential associations with high risk, while the area ratios of tTLS and TT‑p to TT 
and the distribution variance of tTLS were associated with low risk. WSI, whole slide image; TLS, tertiary lymphoid structure; tTLS, intra‑tumor TLS; 
pTLS, peri‑tumor TLS; TT, tumor tissue; LT, peri‑tumor liver tissue; HN, hemorrhage and necrosis region; TT‑p, tumor parenchyma; TT‑s, tumor stroma
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Fig. 4 Quantified morphological analysis revealed fine‑grained features. A Significant associations were found between TiRS and iCCA subtypes. 
B Poorly differentiated iCCAs had significantly higher TiRS than well/moderately differentiated tumors. The bars represent the 95% confidence 
intervals. C Representations of tiles from WSIs with high or low TiRS, tumor cell nuclei were automatically segmented by CellProfiler (masked in dark 
green and demonstrated on the right of each original tile). Tumor nuclei from high TiRS tiles exhibited larger size, more distorted shape, while their 
nuclear envelope and textural contrast were less prominent. D The raw profiles containing all 732 measurements of tumor cell nuclei were 
processed by dimensionality reduction. E The names and coefficients of the most significant measurements that correlated with TiRS after lasso 
regression. Red color indicated positive correlation and blue color indicated negative correlation. *P < 0.05; **P < 0.01; ***P < 0.001; TiRS, tile risk score; 
iCCA, intrahepatic cholangiocarcinoma; WSI, whole slide image
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26]. Leveraging the multi-omics data from FU-iCCA 
cohort [13], we identified several molecular alterations 
that were significantly associated with TiRS. The most 
relevant pathways revealed by transcriptomics data 
included glycolysis, hypoxia, P53 pathway, estrogen 
response, apical junction, mTORC1 signaling, TNFα 
signaling via NFKB, TGF-β signaling, and bile acid 
metabolism (Fig. 5A, Additional file 8: Fig. S6). Except 
for bile acid metabolism and fatty acid metabolism, all 
other pathways were positively correlated with TiRS, 
consistent with their adverse roles in cancer biology 
[27–32]. A similar correlation was also found between 
TiRS and proteomics data, which further confirmed 
the robust linkage between these hallmark molecular 

alterations and tumor cell morphology (Fig. 5A, Addi-
tional file 8: Fig. S6A).

We also analyzed the relevance of TiRS to immune cells 
based on RNA-seq data. In comparing immune milieu 
between low- and high-risk patients, we found that most 
T cell subsets, B cells, and NK cells had a statistically 
significant decrease in patients with high TiRS, while 
neutrophils demonstrated an opposite trend (Fig.  5B). 
These results complied with the complex functionality of 
immune phenotypes in cancer biology [33] and revealed 
that immunological status was also attended by the 
network.

Several morphological cues were recognized through 
pathologists’ vision by comparing tiles from samples with 

Fig. 5 Relevance of TiRS to molecular alterations. A Correlation of TiRS with hallmark gene sets of cancer. The upper panel was based 
on transcriptomics data, and the lower panel was based on proteomics data. B Relevance of TiRS to tumor immune infiltration. C Comparison 
of tiles with opposing gene set scores that were morphologically discernible. Infiltrating immune cells were marked in green. TiRS, tile risk score
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top or bottom pathway scores. As shown in Fig. 5C, tiles 
with top apical junction scores exhibited typical polar-
ized tumor cell alignments, in contrast to the disorgan-
ized cell arrangements in comparing tiles. Tumor cells 
in tiles tagged as glycolysis appeared higher levels of 
cell spreading, comparing to the stacking appearance of 
the counterpart tiles. We also noted the swelling of the 
tumor cell under hypoxia and the distortion of tumor 
nuclei with high mTORC1 signaling scores. The basis of 
these observable morphological changes could be traced 
to the impact of their underlying molecular alterations on 
cellular interaction, cytoskeleton contractility, membrane 
permeability, and aberrant biogenesis of nuclear matter 
[27, 34–36].

However, most recurrent genomic alterations (such as 
TP53, FGFR2, and IDH1/2) did not correlate with TiRS, 
except for KRAS mutation (Additional file  8: Fig. S6B), 
which implied that most single mutations might not leave 
a strong enough footprint in morphology.

Discussion
Despite recent progress, current deep learning-based 
prognostic models still struggled with poor consistency 
and generalizability [1]. Under canonical framework, it 
is almost impossible to discern if the model has attended 
the intrinsic prognostic features from histology or been 
misguided by confounders due to limitation and lopsid-
edness of the training datasets. In this study, we focused 
on interpretability of the deep learning model for iCCA, 
to explore the most relevant features that contribute to 
patient prognosis. To make the network more “transpar-
ent,” we first adopted a stepwise modeling strategy, by 
incorporating features derived from tissue- or cell-level 
dimensions into separate preliminary models. Then, 
we conducted extensive interrogative approaches to the 
final model, and potential prognostic features that were 
attended by the neural networks were extracted from the 
tremendous image information.

The architectural features that reflected the geographi-
cal organization and spatial interaction of essential tissue 
components were the determining parameters of prog-
nostic model 1. We found that the distribution of TLSs 
provided a major cue for the prognostic prediction by 
this model. The distinct functional orientations and cel-
lular compositions of TLSs located within or around the 
tumor were recently reported by our group, where intra-
tumor TLSs suggested favorable prognosis while their 
peri-tumor counterparts were associated with dismal 
outcomes [12]. However, without this prior knowledge, 
the neural network could spontaneously comprehend 
the complex role of this immune feature. Another promi-
nent feature was the protrusions and depressions along 
the invasive margin, which conformed to the presence of 

tumor budding (Additional file  6: Fig. S4). Tumor bud-
ding is an emerging prognostic biomarker that defined 
as cancer cell clusters protruded at the invasive front, 
suggesting the invasiveness and epithelial-mesenchymal 
transition of the tumor [20]. Despite that the prognostic 
value of tumor budding is well established in colorectal 
cancer [37], its potential application in iCCA warrants 
further investigation. Other visualized prognostic fea-
tures, including tumor parenchyma/stroma ratio, dis-
seminated foci, and tumor-adjacent micro-vessels, were 
all comprehensible to pathologists [21–23], yet the trans-
lation of these features into quantified risk scores was 
impossible by conventional pathological procedures.

Cell-level information was captured by prognostic 
model 2 from sampled tiles. We identified tumor paren-
chyma to be the most informative region, in line with 
a prior study [6]. Despite the known role of non-tumor 
cells in tumor microenvironment [21], our results and 
others [6, 12] implied that the functional states of them 
might be reflected by their distribution or density rather 
than cell morphology (such as TLS) and thus could not 
be attended by prognostic model 2. Tumor cell morphol-
ogy, on the other hand, contained abundant biological 
imprints that could be perceived by both pathologists 
and neural networks. Tumor nuclei from high-risk tiles 
tended to exhibit increased size, more distorted shapes, 
and anomalous textures. Ploidy as an important deter-
minant of nuclear size might be a plausible mechanism 
underlying the nuclear enlargement in iCCA tiles with 
high TiRS [38], given that aggressive iCCAs tend to dis-
play higher aneuploidy [39]. Likewise, the association of 
nuclear shape irregularities and specific molecular altera-
tions that contributed to increased malignancy have been 
established in some other cancers, such as papillary thy-
roid carcinoma with RET fusion [40] and EGFR mutated 
lung adenocarcinomas [41]. The textural features of 
nuclei were mostly determined by chromatin pattern, 
with resultant changes in chromatin stability and gene 
expression states [42]. Heterochromatin, which is densely 
packed, transcriptionally silent, and located at the nuclear 
periphery, might explain the prominent nuclear envelope 
and texture in tiles with low TiRS. In contrast, nuclei in 
tiles with high TiRS exhibited more dispersed textures, 
which morphologically and functionally complied with 
the transcriptionally active euchromatin [42].

We also demonstrated that the neural network cap-
tured the footprints left by major molecular alterations 
that correlated with outcome. The significant gene sets 
that positively associated with TiRS reflected the prolif-
eration (mTORC1 signaling and P53 pathway) [27, 29], 
cell skeleton and junction (apical junction) [28], and 
metabolism (glycolysis and hypoxia) of tumor cells, while 
bile acid metabolism and immune infiltration (except 
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neutrophils) were negatively associated. Interestingly, a 
previous reported iCCA molecular subtypes shared simi-
lar patterns with us [39]. Subtype C1 from this study was 
enriched with P53 mutations, microtubule cytoskeleton, 
and increased aneuploidy, and associated with dismal 
outcome. In contrast, subtype C2 with significantly bet-
ter survival was linked with bile acid metabolism and 
increased leukocyte infiltrates (except myeloid cells) [39]. 
Indeed, some of the molecular alterations left discernible 
imprints in morphology [43]. For instance, tumor cells 
characterized by glycolysis exhibited more rigid shapes 
and higher levels of cell spreading, coinciding with the 
mechanical regulation of glycolysis via cytoskeleton 
stress [35]. The swelling of the tumor cells under hypoxia 
might correlate with the resultant cell membrane per-
meability change [36]. The hyperactivation of mTORC1 
pathway in tumor cells continuously promoted the syn-
thesis of nucleotides and the biogenesis of ribosome, 
which might induce tumor nuclei irregularities [27].

Our deep learning-based prognostic model for iCCA 
was deconstructed at unprecedented resolution and 
detail, and most of the features were comprehensible to 
pathologists with prior knowledge. This interpretability 
attributed to the proactive exclusion of irrelevant arti-
facts by the confinement of model inputs, and the accu-
rate perception of determining prognosticators by the 
attention mechanism. Our model would not pursue the 
highest accuracy in the training cohort but demonstrated 
excellent robustness and generalizability when applying 
to the validation cohorts without any tuning. Another 
advantage of our model is the concise framework leaning 
on the resources of a personal computer, making it prom-
ising for wide range application.

Conclusions
In conclusion, we proposed an interpretable deep learn-
ing framework to gain insights into the biological behav-
ior and clinical outcome of iCCA. The final predictive 
model provides a comprehensive histopathological rep-
resentation by extracting topological and fine-grained 
information simultaneously. We have demonstrated that 
most of the significant prognosticators perceived by the 
networks are comprehensible to human minds, thus 
helping to build up the trust needed to convince clinical 
users to rely on these computer-aided devices.
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