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Abstract 

Background Immune checkpoint inhibitor rechallenge has emerged as a prominent study area in non-small 
cell lung cancer (NSCLC). β-glucan was reported to reverse resistance to anti-PD-1/PD-L1 inhibitors by regulating 
the tumor microenvironment. In this self-initiated clinical trial (ChiCTR2100054796), NSCLC participants who have 
previously failed anti-PD-1 therapy received β-glucan (500 mg, bid, d1-21), Envafolimab (300 mg, d1) and Endostar 
(210 mg, civ72h) every 3 weeks until disease progression or unacceptable toxicity. The clinical efficacy and adverse 
events were observed, while serum samples were collected for proteomic analysis.

Results Twenty Three patients were enrolled from January 2022 to March 2023 (median age, 65 years; male, n = 18 
[78.3%]; squamous NSCLC, n = 9 [39.1%]; mutant type, n = 13 [56.5%]). The overall response rate (ORR) was 21.7% 
and disease control rate (DCR) was 73.9%. Median progression-free survival (mPFS) and median overall survival (mOS) 
was 4.3 months [95% CI: 2.0–6.6] and 9.8 months [95% CI: 7.2–12.4], respectively. The mPFS between PD-L1 positive 
and negative subgroup has significant difference (6.3 months vs. 2.3 months, p = 0.002). Treatment-related adverse 
events (TRAEs) occurred in 52.2% of patients. The most common TRAEs were hypothyroidism (26.1%) and fatigue 
(26.1%). 2 (8.7%) grade 3 adverse events were reported. No adverse reaction related deaths have been observed. 
Proteomic analysis revealed that the levels of CASP-8, ARG1, MMP12, CD28 and CXCL5 correlated with resistance 
to the treatment while the levels of CD40-L and EGF related to the favorable response.

Conclusion β-glucan combined with Envafolimab and Endostar has considerable efficacy and safety for immune 
rechallenge in metastatic NSCLC patients who failed of anti-PD-1 treatment previously, especially for PD-L1 positive 
patients.
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Introduction
Non-small cell lung cancer (NSCLC) is the most com-
mon type of lung cancer [1]. With the development of 
immunotherapy, immune checkpoint inhibitors (ICIs) 
typified by anti-programmed cell death-1 (PD-1) /anti-
programmed cell death ligand-1 (PD-L1) inhibitors 
have become the main treatment option for advanced 
NSCLC due to their sustaining anti-tumor efficacy and 
tolerable safety profile [2]. However, ICIs only benefits 
a small number of patients and a significant propor-
tion of patients could develop primary or acquired drug 
resistance to ICIs [3], which has become an important 
issue that cannot be ignored. At present, there is a lack 
of consistent guidelines or consensus on the evaluation 
criteria for immunotherapy resistance and the choice of 
intensive treatment after immune resistance. To solve 
this dilemma, multiple combination therapies have been 
explored, including ICIs combined with chemotherapy or 
targeted drugs, dual immunotherapy, systemic immuno-
therapy in conjunction with local radiotherapy, explora-
tion of other immune checkpoints and tumor vaccines 
[4–6]. However, the outcomes of current clinical trials 
regarding immune rechallenge were less than satisfactory. 
The reason was most likely that they ignored the impor-
tant role played by the regulation of the tumor immune 
microenvironment (TME) in anti-tumor treatment.

β-glucan, the main component of microbial cell walls, 
is a linear polysaccharide linked by β-glucoside bond 
of D-glucose monomeris [7]. As an immune adjuvant, 
β-glucan has been used in clinical practice alongside 
other anti-tumor medications for tumor treatment [8]. 
Following oral administration of β-glucan, there was 
an increase in dendritic cells (DCs) within the TME of 
wild-type mice with colitis-associated colorectal cancer 
(CAC), resulting in enhanced production of  CD8+T cells 
and related cytokines, ultimately leading to a delay in 
CAC development [9]. β-glucan could also enhance the 
efficacy of immunotherapy by regulating the composi-
tion of intestinal microbiota and adjusting the intestinal 
microenvironment [10]. Furthermore, for patients with 
advanced tumors resistant to anti-PD-1 inhibitors, 69.2% 
obtained stable disease (SD) when added with β-glucan 
on the basis of maintaining the original treatmennt regi-
men in our previous study, suggesting that β-glucan had 
the potential to reverse immune resistance [11].

Envafolimab is a single domain anti-PD-L1 inhibi-
tor administered subcutaneously, which can block the 
PD-1/PD-L1 pathway, reactivate the suppressed T cells 
to induce anti-tumor immune response and recover 
the antigen presentation function of DCs [12–14]. 
Envafolimab monotherapy has been proved the anti-
tumor activity and safety in the second and above line 

treatment for a variety of MSI-H/dMMR advanced 
solid tumors in phase II clinical studies [15, 16]. Nowa-
days, the conversion of anti-PD-1 /PD-L1 antibodies as 
immune rechallenge is also a treatment option for some 
patients with NSCLC [17, 18].

Anti-angiogenic drugs play a very important role in 
the treatment of advanced NSCLC, especially in lung 
adenocarcinoma [19]. Previous studies have shown 
that the abnormal blood vessels in the TME were asso-
ciated with drug resistance [20]. As a novel recombi-
nant human endostatin, Endostar can strongly inhibit 
VEGF expression and angiogenesis while also induc-
ing vascular normalization [21]. By inducing vascular 
normalization of tumor blood vessels, it can promote 
the infiltration of T cells into the tumor, thereby trans-
forming the tumor microenvironment into "hot tumor". 
The combination of anti-PD-1 inhibitors and Endostar 
exhibited a significant synergistic effect in suppressing 
tumor growth in preclinical lung tumor models as well 
as NSCLC patients [22–24].

Totally, our study aims to evaluate the efficacy and 
safety of β-glucan combined with Envafolimab (an anti-
PD-L1 antibody) and Endostar (an angiogenesis inhibi-
tor) in the treatment of metastatic NSCLC patients 
who have previously failed anti-PD-1 therapy, while 
also investigating potential biomarkers associated with 
treatment response and resistance.

Materials and methods
Study design and ethics
This is a single-arm, Phase II clincal trial 
(ChiCTR2100054796, Registration Date: 2021–12-27) 
performed at the Affiliated Changzhou No.2 People’s 
Hospital of Nanjing Medical University, Changzhou 
city, to evaluate the efficacy and safety of β-glucan com-
bined with Envafolimab and Endostar in mNSCLC 
patients failed of anti-PD-1 therapy previously. Partici-
pants received β-glucan (500  mg, bid, d1-21), Envafoli-
mab (300 mg, d1) and Endostar (210 mg, civ72h) every 
3 weeks until disease progression or unacceptable toxic-
ity. Tumor imaging and objective response assessment 
were performed every 2 cycles according to the Response 
Evaluation Criteria in Solid Tumors (RECIST) version 
1.1. Patients were followed up for safety 30  days after 
the last cycle and followed for survival every 12  weeks 
after disease progression or the last cycle. The study was 
approved by the Ethics Committee of Changzhou No.2 
People’s Hospital (Approval number: [2021YLJSD002]) 
and conducted in accordance with the principles of the 
Declaration of Helsinki. All registered patients have 
signed informed consent forms to participate.
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Inclusion and exclusion criteria for participants
All enrolled patients were in line with the follow-
ing conditions: (1) aged from 18 to 80  years old; (2) 
confirmed as stage IV NSCLC histologically or cyto-
logically; (3) Eastern Cooperative Oncology Group Per-
formance Status (ECOG PS) 0 or 1; (4) with at least one 
measurable target lesion; (5) failed of anti-PD-1 therapy 
and never treated with PD-L1 inhibitors; (6) with suf-
ficient organ and bone marrow function; (7) with an 
expected survival of at least 3 months or the ability to 
tolerate a minimum of 2 treatment cycles.

Patients with any of the following conditions were 
excluded: (1) participating in other clinical studies; 
(2) with invasion of large blood vessels confirmed by 
imaging; (3) with symptoms of central nervous sys-
tem metastases; (4) with grade III-IV (New York Heart 
Association classification) congestive heart failure; (5) 
allergic to the drugs used in this trial; (6) requiring 
long-term systemic application of corticosteroids.

Characteristics of all enrolled patients were collected 
at baseline, including age, sex, pathology, driver gene 
mutation, ECOG PS score, number of treatment lines 
and expression of PD-L1. Clinical data were collected 
from patients receiving treatment until disease progres-
sion or death. Enrolled patients provided serum sam-
ples at baseline, when achieved best response and after 
disease progression. The samples were centrifuged at 
2000 rpm for 10 min and stored at -80 °C for proteomic 
analysis.

Clinical outcomes
The primary endpoints were objective response rate 
(ORR) and safety. The secondary endpoints included dis-
ease control rate (DCR), progression-free survival (PFS) 
and overall survival (OS). The best response (BOR) is 
evaluated by RECIST version 1.1, classified as complete 
response (CR), partial response (PR), stable disease (SD), 
and progressive disease (PD). ORR is defined as the per-
centage of all patients who achieved CR and PR. DCR is 
defined as the percentage of all patients who achieved 
CR, PR and SD. The NCI Common Terminology Crite-
ria for Adverse Events (CTCAE) version 5.0 was used 
to evaluate the rating of adverse events. SPSS 25.0 and 
Graphpad Prism 9.0.0 were used for statistical analysis 
and image drawing of the data. Chi-square test, Fisher’s 
exact test and rank sum test were used to compare the 
differences in efficacy and survival outcomes between 
subgroups. Kaplan–Meier curves were drawn. The log-
rank test was used to for the significance of survival 
curves in subgroups. p < 0.05 indicated that the difference 
was statistically significant. The safety-related results 
were summarized by descriptive statistics.

Proteomic analysis
Each protein was quantified by using multiple proxim-
ity extension assays. A double-recognition immunoassay 
mechanism was applied in which two pairs of antibodies 
(each with a unique DNA oligonucleotide marker) simul-
taneously bind to a target protein in a liquid medium, 
bringing the two antibodies in close proximity, allowing 
hybridization and serving as a template for DNA pol-
ymerase-dependent extension steps. Double-stranded 
DNA was unique to a particular antigen and was ampli-
fied using primers in quantities proportional to the sam-
ple concentration of the target protein. The target of 
amplification was quantified by RT-PCR. Protein abun-
dance was reported as normalized protein expression 
(NPX), which was on the Log2 scale. In order to convert 
several correlated proteins into a number of uncorrelated 
variables and visualize the dataset, PCA for K-means 
clustering was performed. Double-tailed Welcht-test was 
performed to identify proteins which were significantly 
enriched or consumed in serum samples. The immune 
cytokines of different response groups were compared by 
Mann–Whitney U test and evaluated by log-rank test. R 
statistical program (version 3.6.3) was used for data anal-
ysis. Graphpad Prism 9.0.0 was used for further data visu-
alization. p < 0.05 was considered statistically significant.

Results
Clinical baseline characteristics of patients
From January 2022 to March 2023, 23 patients were 
enrolled in this study with median age of 65  years. 
Among the recruited patients, 18 (78.3%) were male, 14 
(60.9%) patients were adenocarcinoma, 5 (21.7%) were 
with ECOG PS 0. PD-L1 expression was found to be 
positive in 15 (65.2%) patients. Patients received β-glucan 
combined with Envafolimab and Endostar as 2 (10/23, 
43.5%), 3 (6/23, 26.1%) or > 3 (7/23, 30.4%) lines of ther-
apy (Table 1).

Efficacy evaluation
As of the data cutoff date (April 1, 2024), 5 patients 
achieved PR, 12 patients achieved SD and 6 patients were 
evaluated as PD (Fig.  1). No patients achieved CR. The 
overall ORR was 21.7% and DCR was 73.9% (Table  2). 
The median PFS was 4.3  months [95% CI: 2.0–6.6] 
(Fig.  2A) and the median OS was 9.8  months [95% CI: 
7.2–12.4] (Fig. 2D).

According to pathology and expression of PD-L1, 23 
patients were categorized into different subgroups for anal-
ysis. The results showed that the ORR of patients in adeno-
carcinoma group and squamous cell carcinoma group were 
35.7% and 0% (p = 0.116). The DCR of adenocarcinoma 
group was significantly higher than that of squamous cell 
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carcinoma group (85.7% vs. 55.6%, p = 0.162). Addition-
ally, the ORR of PD-L1 positive and negative groups were 
26.7% and 12.5% (p = 0.621) and the DCR were 86.7% and 
50.0%, respectively (p = 0.131) (Table 2).

Patients with adenocarcinoma tended to have bet-
ter mPFS compared to those with squamous cell carci-
noma, but the difference was not statistically significant 
(5.8 months [95% CI: 2.9–7.7] vs. 3.0 months [95% CI: 
0.4–5.6], p = 0.223) (Fig.  2B). However, there was no 
significant difference in mOS between the two sub-
groups (8.2  months [95% CI: 7.0–9.0] vs. 12.3  months 
[95% CI: 1.6–23.0], p = 0.724) (Fig. 2E). Apart from this, 
the mPFS was significantly improved in PD-L1 positive 
patients than PD-L1 negative patients (6.3 months [95% 
CI: 4.7–7.9] vs. 2.3 months [95% CI: 0.3–2.9], p = 0.002) 
(Fig.  2C). The mOS had the same trend (9.9  months 
[95% CI: 3.8–16.0] vs. 8.1  months [95% CI: 5.0–10.6], 
p = 0.398) (Fig. 2F) between the two subgroups, though 
the difference was not statistically significant.

Safety
In safety analysis, 12/23 (52.2%) patients experienced 
treatment-related adverse events (TRAEs) during treat-
ment. The most common TRAEs were hypothyroid-
ism (26.1%) and fatigue (26.1%), followed with anemia 
(13.0%), rash (13.0%) and fever (9.7%). 2/23 (8.7%) 
grade 3 adverse events were reported. Up to April 2024, 
no immune-associated pneumonia or adverse reaction 
related deaths have been observed (Table 3).

Table 1 Baseline clinical characteristics of patients

ECOG PS Eastern Cooperative Oncology Group performance status, PD-L1 
Programmed cell death ligand-1

Characteristics n = 23

Age, median (range) 65 (55, 80)

Gender, n (%)

 Male 18 (78.3)

 Female 5 (21.7)

Histopathology, n (%)

 Adenocarcinoma 14 (60.9)

 Squamous cell carcinoma 9 (39.1)

Gene mutation status, n (%)

 Mutant-type 13 (56.5)

 Wild-type 10 (43.5)

ECOG PS, n (%)

 0 5 (21.7)

 1 18 (78.3)

Lines of therapy, n (%)

 2 10 (43.5)

 3 6 (26.1)

 > 3 7 (30.4)

PD-L1 expression, n (%)

 Positive 15 (65.2)

 Negative 8 (34.8)

Fig. 1 Waterfall plot of all patients (n = 23). As of the data cutoff date (April 1, 2024), 5 patients achieved PR, 12 achieved SD and 6 patients were 
evaluated as PD. PR, partial response; SD, stable disease; PD, progressive disease



Page 5 of 10Geng et al. BMC Immunology           (2024) 25:60  

Protemic expression and analysis
Serum samples were collected at baseline, when 
achieved response and/or disease progression. Pro-
teomic tests were performed on serum samples of 9 

patients ultimately (Fig.  3A, B). A total of 5 cytokines 
were found to be significantly different before and after 
tumor progression, including CASP-8, ARG1, MMP12, 
CD28 and CXCL5 (Fig. 3C, D, Figure S2A).

Nine patients were divided into a response group 
(n = 6, PR + SD) and a non-response group (n = 3, PD) 
according to the best response. The results showed that 
IL-6, CD83 and ICOSLG had significant differences at 
baseline between response group and non-response 
group (Fig. 3E, F, Figure S1A, Figure S2B).

In response group, 2 patients achieved PR and 4 
patients achieved SD. We then compared the cytokines of 
patients in response group at baseline and after response 
to the treatment and found that the levels of CD40-L and 
EGF relate to the favorable response (Fig.  3G, H, Fig-
ure S1B, Figure S2C). Univariate and multivariate cox 

Table 2 Best response of all patients and subgroups

BOR Best overall response, CR Complete response, PR Partial response, SD Stable disease, PD Progression of disease, ORR Objective response rate, DCR Disease control 
rate, PD-L1 Programmed cell death-ligand 1, LUAD Lung adenocarcinoma, LUSC Lung squamous cell carcinoma

Response All patients
(n = 23)

LUAD
(n = 14)

LUSC
(n = 9)

χ2

value
P
value

PD-L1 positive
(n = 15)

PD-L1 negative
(n = 8)

χ2

value
P
value

BOR, n (%)

  CR 0 0 0 0 0

  PR 5 (21.7) 5 (35.7) 0 4 (26.7) 1 (12.5)

  SD 12 (52.2) 7 (50.0) 5 (55.6) 9 (60.0) 3 (37.5)

  PD 6 (26.1) 2 (21.3) 4 (44.4) 2 (13.3) 4 (50.0)

ORR (%) 21.7 35.7 0 - 0.116 26.7 12.5 - 0.621

DCR (%) 73.9 85.7 55.6 - 0.162 86.7 50.0 - 0.131

Fig. 2 Kaplan–Meier curves of progression-free survival (PFS) and overall survival (OS). A PFS of all patients (n = 23). B PFS of LUAD (n = 14) and LUSC 
(n = 9) subgroups. C PFS of PD-L1 positive (n = 15) and PD-L1negative (n = 8) subgroups. D OS of all patients (n = 23). E OS of LUAD (n = 14) and LUSC 
(n = 9) subgroups. F OS of PD-L1 positive (n = 15) and PD-L1 negative (n = 8) subgroups. Use log-rank test to compare survival curves of subgroups. 
p < 0.05 is considered to be statistically significant. LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; PD-L1, programmed cell 
death ligand-1

Table 3 Profiles of adverse events

TRAE Treatment-related adverse events

TRAEs, n (%) Grade

1 2 3 4

Fatigue 4 (17.4) 1 (4.3) 1 (4.3) 0

Hypothyroidism 6 (26.1) 0 0 0

Rash 3 (13.0) 0 0 0

Anemia 1 (4.3) 1 (4.3) 1 (4.3) 0

Fever 2 (8.7) 0 0 0
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regression analysis was used to explore the correlation 
between cytokines with PFS or OS at baseline in the two 
groups, but the results showed no significant differences.

Discussion
Recently, there has been a growing body of research 
dedicated to the investigation of immune rechallenge 
[25]. For NSCLC, several studies with small samples of 
immune rechallenge were reported while the efficacy 
varied widely. The ORR ranged from 5.9% to 14.3%, and 
DCR ranged from 45.8% to 85.7% for single immunother-
apy [17, 18, 26]. Dual immunotherapy achieved an ORR 
of 47.3% and a DCR of up to 81.5% [27]. A comprehensive 
meta-analysis encompassing 49 studies was conducted 
to access the efficacy and safety of immune rechallenge 
in patients with solid tumors. The findings revealed an 
ORR rate of 21.8%, a mPFS of 4.9 months and a mOS of 
15.6  months while the incidence of adverse events was 
52.2%, including 21.5% for grade 3 and above [28]. For 
our study, the ORR rate, mPFS was 21.7%, 4.3  months, 
which is similar to the above study. However, the mOS 
was 9.8  months, which is significantly lower than the 
above study. This may be attributed to the preponderance 
of patients with 3 lines or above in our study. Meanwhile, 
the incidence of adverse events in our study was 52.2%, 
with no grade 4 adverse events or new specific immune-
related adverse events occurred, indicating that this 
treatment regimen (β-glucan combined with Envafoli-
mab and Endostar) is feasible and safe as immune rechal-
lenge for mNSCLC patients.

Modulating TME from an immunosuppressive envi-
ronment to an inflammatory environment holds great 
promise for achieving immune rechallenge [29]. In 
this process, β-glucan offers a new treatment perspec-
tive. Previous studies have demonstrated that β-glucan 
can activate DCs and macrophages, inhibit MDSCs and 
TEDCs, thereby eliminating tumor-induced immuno-
suppression [30, 31]. It also regulates nature killer (NK) 
cell function by altering macrophage phenotype, enhanc-
ing antigen presentation, promoting initiation and dif-
ferentiation of cytotoxic T lymphocytes [32–35]. The 
addition of β-glucan is of great value in improving the 
immunosuppressive TME, especially in combination 

with ICIs. For example, Hu et al. discovered that β-glucan 
can enhance the antitumor effects of anti-PD-L1 inhibi-
tors in melanoma models [36]. Wang et al. developed an 
antibody-β-glucan conjugate (AGC) by linking β-glucan 
with anti-PD-L1 inhibitors, the AGC-mediated bridging 
effect enhanced the interaction between tumor cells and 
DCs. Compared to anti-PD-L1 inhibitors monotherapy, 
AGC induced the infiltration of DCs and the activation of 
T cells in TME, resulting in an earlier immune response 
[37].

Anti-PD-1 inhibitors and anti-PD-L1 inhibitors have 
been regarded as the same drug for a long time. Typically, 
anti-PD-L1 inhibitors are usually not applied after resist-
ance to anti-PD-1 inhibitors. As research progresses, 
many studies indicated mechanistic differences between 
anti-PD-L1 and anti-PD-1 inhibitors. In addition to 
inhibiting the PD-1/PD-L1 pathway, anti-PD-L1 inhibi-
tors can also inhibit the overexpression of PD-L1 on the 
surface of DCs in the TME, thus activating the antigen 
presentation function of DCs and recruiting T cells for 
the unique killing of tumor cells [38–40]. In the past 
few years, many studies found that after the progress of 
anti-PD-1 treatment, the usage of anti-PD-L1 antibody 
could also obtain a fairly controllable therapeutic efficacy 
[41–43]. Therefore, conversion of anti-PD-1/PD-L1 anti-
body is also an emerging therapeutic regimen as immune 
rechallenge strategy.

In the subgroup analysis, there were no significant dif-
ferences observed in ORR between adenocarcinoma and 
squamous cell carcinoma subgroups or between PD-L1 
positive and negative subgroups. Patients with adenocar-
cinoma tended to have better mPFS compared to those 
with squamous cell carcinoma, but the difference was 
not statistically significant. This may be attributed to the 
limited sample size. At the same time, there was no dif-
ference in mOS. It is important to note that PFS reflects 
short-term treatment effects, whereas OS can be influ-
enced by various factors such as ECOG PS status, site of 
metastasis, lines of treatment, etc. Therefore, it was not 
uncommon to see differences in PFS but often no dif-
ferences in OS in clinical studies. The high expression 
of PD-L1 at baseline has been associated with enhanced 
efficacy of anti-PD-1/PD-L1 therapy in advanced NSCLC 

(See figure on next page.)
Fig. 3 Data preprocessing for DEGs and protemic analysis results of 9 patients. A A Boxplot of data preprocessing for different expressed 
proteins (DEPs). B Heat map of DEPs in all patients (n = 9). Red or blue represents high or low expression. C Volcano plot of DEPs before and after 
progression in all patients (n = 9). Red dots represent significantly associated proteins at FDR ≤ 5%. D Boxplot of significantly different DEPs 
in plasma of all patients (n = 9) before and after progression. E Volcano plot of DEPs of RG (n = 6) and NRG (n = 3) at baseline. Red dots represent 
significantly associated proteins at FDR ≤ 5%. F Boxplot of significantly different DEPs in RG and NRG at baseline. G Volcano plot of DEPs in RG (n = 6) 
before and after response. Red dots represent significantly associated proteins at FDR ≤ 5%. H Boxplot of significantly different DEPs in plasma of RG 
before and after response. The DEPs were compared by Mann–Whitney U test and evaluated by Log-rank test. *p < 0.05, **p < 0.01. RG, response 
group. NRG, non-response group. DEPs, different expressed proteins. NPX, normalized protein expression
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[44, 45]. However, it is not clear whether PD-L1 levels 
change during the previous immunotherapy. At present, 
the redetection of PD-L1 expression before immune 

rechallenge is still rare. Whether PD-L1 can be used as 
a therapeutic marker for immune rechallenge is contro-
versial [46, 47]. In our study, the PFS of PD-L1 positive 

Fig. 3 (See legend on previous page.)
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subgroup was significantly better than that of PD-L1 
negative subgroup. The OS data showed the same trend 
with no significant difference, which we thought was also 
related to the small sample size. These results indicated 
that the expression of PD-L1 at baseline might also serve 
as a prognostic biomarker for immune rechallenge.

Admittedly, effective biomarkers for immune rechal-
lenge are currently lacking. Therefore, we collected 
peripheral blood samples from patients at different treat-
ment time points and conducted proteomic analysis in 
an attempt to identify potential markers for therapeutic 
efficacy and prognosis. A total of 5 cytokines, including 
CASP-8, ARG1, MMP12, CD28 and CXCL5, were found 
to be significantly different before and after tumor pro-
gression and we considered this might be related to the 
treatment resistance. Among the cytokines, previous 
studies have shown that MMP12 and ARG1 were asso-
ciated with poor prognosis in various tumors [48, 49] 
and CASP-8 promoted melanoma progression [50]. The 
increase of  CD8+CD28+ T cells in advanced NSCLC 
patients who received chemo (radio) therapy predicted 
treatment efficacy and prognosis [51, 52]. However, the 
results of CXCL5 in our study could not be confirmed by 
current studies, as CXCL5 tended to be associated with 
poor prognosis in many solid tumors [53].

Comparing between response and non-response 
groups, mNSCLC patients with lower ICOSLG and 
CD83 at baseline responded better to the treatment, but 
the specific thresholds remains unknown [54, 55]. How-
ever, high expression of IL-6 associated with poor efficacy 
with immunosuppression in many tumors [56], which 
differed from our results. Furthermore, CD40-L can acti-
vate NK cells,  CD4+ and  CD8+ T cells and inhibit tumor 
progression [57]. EGF signaling is the core in regulating 
tumor cell proliferation [58]. The levels of CD40-L and 
EGF might relate to the favorable response. However, 
due to the limited number of patients enrolled in prot-
eomic analysis, the results should be interpreted with cau-
tion. Further investigation is required in a larger cohort 
to validate these proteins’ association with resistance or 
response to immune rechallenge, thus providing more 
reliable predictive biomarkers for guiding clinical work.

The main limitation of this study was that the patients 
enrolled in the study were not enough, leading to insuffi-
cient statistical power in the analysis. Enrollment should 
be expanded or a multi-center clinical study could be con-
ducted in the follow-up studies. Secondly, as a single-arm 
study, it was difficult to accurately compare the efficacy 
and side effects with other treatment regimens in immune 
rechallenge studies. Despite these limitations, this study 
was the first attempt to demonstrate that β-glucan com-
bined with Envafolimab and Endostar has considerable 
efficacy in patients who have failed previous anti-PD-1 

treatment. As a “chemo-free” treatment regimen, attempt-
ing to regulate the TME for the purpose of immune rechal-
lenge, this is more acceptable for cancer patients.

Conclusion
In summary, β-glucan combined with Envafolimab and 
Endostar has considerable efficacy and safety for immune 
rechallenge in metastatic NSCLC patients who failed of 
anti-PD-1 treatment previously. Especially, PD-L1 posi-
tive patients can benefit more from immune rechallenge 
than PD-L1 negative patients.
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