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Abstract
Background Glioblastoma is characterized by high aggressiveness, frequent recurrence, and poor prognosis. Histone 
acetylation-associated genes have been implicated in its occurrence and development, yet their predictive ability in 
glioblastoma prognosis remains unclear.

Results This study constructs a histone acetylation risk model using Cox and LASSO regression analyses to evaluate 
glioblastoma prognosis. We assessed the model’s prognostic ability with univariate and multivariate Cox regression 
analyses. Additionally, immune infiltration was evaluated using ESTIMATE and TIMER algorithms, and the SubMAP 
algorithm was utilized to predict responses to CTLA4 inhibitor. Multiple drug databases were applied to assess drug 
sensitivity in high- and low-risk groups. Our results indicate that the histone acetylation risk model is independent and 
reliable in predicting prognosis.

Conclusions Low-risk patients showed higher immune activity and longer overall survival, suggesting anti-CTLA4 
immunotherapy suitability, while high-risk patients might benefit more from chemotherapy. This model could guide 
personalized therapy selection for glioblastoma patients.
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Background
Glioblastoma is the most common and aggressive pri-
mary malignant brain tumor, accounting for a significant 
percentage of all such tumors [1]. According to the lat-
est World Health Organization (WHO) classification 
of brain tumors, glioblastoma is characterized by its 
highly aggressive nature and poor prognosis [2]. Despite 
advances in medical research, the prognosis for glio-
blastoma remains grim, with only about 30% of patients 
surviving for one year and fewer than 5% surviving for 
five years [3]. This dire situation underscores the urgent 
need for improved prognostic models and therapeutic 
strategies.

Histone acetylation, a critical epigenetic modification, 
has been increasingly recognized for its role in gene reg-
ulation and cancer progression [4]. Previous studies have 
established a link between histone acetylation-associated 
genes and the development, prognosis, and recurrence 
of glioblastoma [5, 6]. However, the predictive capacity 
of histone acetylation regulators in glioblastoma has not 
been fully elucidated.

In this study, we aim to develop a novel histone acety-
lation risk model to better predict the prognosis of glio-
blastoma patients. Using univariate Cox and LASSO 
regression analyses, we identified key histone acetyla-
tion regulators that contribute to patient outcomes. We 
then evaluated the prognostic performance of this model 
through univariate and multivariate Cox regression anal-
yses. Additionally, we assessed the immune landscape 
of glioblastoma patients’ tumor microenvironments 
using ESTIMATE and TIMER algorithms. Understand-
ing the immune contexture is crucial, as it influences 
tumor behavior and patient response to therapies. To fur-
ther explore therapeutic implications, we predicted the 
response of high- and low-risk patient groups to immune 
checkpoint inhibitors targeting PD-1 and CTLA4 using 
the SubMAP algorithm. We also examined drug sensi-
tivity across these groups using data from multiple drug 
datasets. Our findings demonstrate that the histone 
acetylation risk model is robust, independent, and reli-
able, offering accurate prognostic predictions. The model 
suggests that high-risk patients may benefit from chemo-
therapy, while low-risk patients might be more suitable 
candidates for anti-CTLA4 immunotherapy. Collectively, 
our research provides valuable insights into glioblastoma 
prognosis and potential therapeutic strategies, guiding 
personalized treatment approaches.

Methods
Data acquisition
To construct our training set, we meticulously collected 
glioblastoma data from the TCGA database. We excluded 
samples lacking complete survival data to ensure the 
integrity and reliability of our analysis. For validation 

purposes, we incorporated additional datasets from the 
CGGA and GlioVis databases. These databases are rec-
ognized for their extensive glioma research data, and we 
adhered to strict criteria for data completeness and reli-
ability to maintain consistency [7, 8].

Single-cell data processing and analysis
We acquired single-cell RNA sequencing data for glio-
blastoma from the GEO database, specifically dataset 
GSE182109. The GEO database is a valuable repository 
for high-throughput gene expression data, providing 
crucial insights into cellular functions. To preprocess the 
data, we excluded genes with zero expression across all 
samples, as their lack of variability would not contribute 
to meaningful analysis. The gene expression matrix was 
normalized using the “SCTransform” function from the 
Seurat R package, a method known for its efficacy in sin-
gle-cell data normalization.

Subsequently, we performed Principal Component 
Analysis (PCA) and Uniform Manifold Approxima-
tion and Projection (UMAP) to reduce dimensionality 
and visualize the data structure. Cell classification was 
conducted using the FindNeighbors and FindClusters 
functions, which are integral to the Seurat workflow for 
identifying cell populations. Doublets, which can con-
found single-cell data analysis, were filtered out using the 
DoubletFinder R package.

Further quality control steps included the removal of 
cells with more than 15% mitochondrial gene content or 
fewer than 500 detected genes, as these could indicate 
low-quality or dying cells. After stringent quality control, 
approximately 48,827 cells remained. These cells under-
went cell-type annotation using the Celltypist package in 
Python, which leverages reference datasets to accurately 
assign cell identities, enhancing the biological relevance 
of our findings.

Establishment of HA-score
To explore the role of histone acetylation in glioblas-
toma, we performed a differential gene expression anal-
ysis comparing glioblastoma and normal tissues using 
data from the GTEx-TCGA dataset. The GTEx database, 
known for its extensive collection of normal tissue gene 
expression data, combined with the cancer-specific data 
from TCGA, provided a comprehensive basis for our 
analysis.

We identified differentially expressed genes (DEGs) 
and visualized these results using a heatmap, which 
allowed us to clearly distinguish patterns of gene expres-
sion between glioblastoma and normal tissues. To under-
stand the interactions and relationships between these 
genes, we conducted a correlation analysis using the 
igraph package. This package is widely recognized for its 
robust tools for network analysis and visualization, which 
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facilitated the identification of key gene interactions 
and potential regulatory networks influenced by histone 
acetylation.

To quantify histone acetylation levels, we developed 
a histone acetylation score (HA-score) based on the 
expression levels of differentially expressed histone acety-
lation regulators. For bulk tissue data, the HA-score was 
calculated using the single-sample Gene Set Enrichment 
Analysis (ssGSEA) algorithm, which allows for the assess-
ment of specific gene set activity within a sample. For 
single-cell RNA sequencing data, we utilized the Ucell 
algorithm, an efficient method for calculating enrichment 
scores at the single-cell level [9, 10].

This multifaceted approach enabled us to dissect the 
complex role of histone acetylation in glioblastoma, pro-
viding insights into how these epigenetic modifications 
may contribute to tumorigenesis and progression.

Development and validation of HA-model
To pinpoint histone acetylation regulators predictive of 
glioblastoma outcomes, we conducted a univariate Cox 
regression analysis on the differentially expressed his-
tone acetylation regulators in our training set. This analy-
sis identified 13 regulators significantly associated with 
glioblastoma prognosis, highlighting their potential as 
biomarkers.

For the prognostic analysis, we focused on overall sur-
vival (OS) metrics. We applied lasso regression to refine 
the selection of histone acetylation regulators and con-
structed a predictive model. Lasso regression is par-
ticularly useful for enhancing model performance by 
penalizing overfitting, thereby selecting only the most 
informative variables.

The mathematical formula for calculating the risk score 
is as follows:

 
riskscore =

∑n

i=1
(βiExpi)

where 𝑛 represents the number of selected histone acety-
lation regulators, Exp denotes the gene expression levels, 
and 𝛽 is the multi-Cox coefficient. This risk score allows 
for the stratification of patients into distinct risk sub-
groups based on their calculated scores.

To validate the robustness and generalizability of our 
risk model, we utilized external datasets. The validity 
of the risk stratification was further confirmed through 
Kaplan–Meier (KM) survival analysis, conducted using 
R v4.2. This analysis demonstrated that the differences 
in survival outcomes between the high-risk and low-risk 
subgroups were statistically significant (P < 0.05), under-
scoring the model’s predictive power.

Assessing risk model reliability and generating nomogram
The prognosis analysis aimed to compare the predictive 
power of the histone acetylation model against common 
clinical characteristics such as age, gender, and tumor 
grades. Using forest plots, we displayed the P-values and 
hazard ratios (HR) to illustrate the relative impact of each 
factor.

To further assess OS at three specific time points, 
we created a nomogram using the rms R package. This 
nomogram incorporated the HA model along with 
selected demographic and clinical characteristics to pro-
vide a visual tool for predicting patient outcomes.

For the validation of our HA-model’s reliability, we 
integrated it with demographic and clinical factors 
through multivariable Cox regression analyses. This inte-
gration enabled the development of a comprehensive 
nomogram, projecting 1-, 3-, and 5-year survival proba-
bilities for glioblastoma patients. To ensure the predictive 
accuracy of the nomogram, we utilized calibration plots, 
which compare predicted and observed survival proba-
bilities, and Area Under the Curve (AUC) curves to eval-
uate the model’s performance. These combined methods 
confirm the HA model’s robustness and its utility in pro-
viding accurate prognostic predictions for glioblastoma 
patients, making it a valuable tool in clinical settings.

Analysis of immune infiltration
To elucidate critical pathways involved in glioblastoma, 
we applied the ssGSEA algorithm, implemented through 
the gsva R package. This analysis enabled the calculation 
of 20 key pathways, providing insights into the biological 
processes underlying glioblastoma pathogenesis [11].

Furthermore, to identify the various cell types within 
the tumor microenvironment (TME), we used CIBER-
SORT. This method allowed us to deconvolute the com-
plex cell populations present in the TME, highlighting 
the immune and stromal components [12].

In addition to cell identification, we quantified the stro-
mal score, immunological score, and tumor purity using 
the ESTIMATE algorithm. These metrics are crucial for 
understanding the composition and potential immune 
evasion strategies of the tumor, offering a comprehensive 
view of the TME [13].

Estimation of drug target
To identify therapeutic targets for high-risk glioblastoma 
patients, we acquired comprehensive data on 6,125 com-
pounds from the Drug Repurposing Hub. After eliminat-
ing duplicates, we identified 2,249 unique drug targets 
[14].

To isolate genes with therapeutic potential, we first 
conducted a Spearman correlation analysis. This analy-
sis correlated the expression levels of targetable genes 
with the risk scores of glioblastoma patients. Genes 
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exhibiting a correlation coefficient greater than 0.3 with 
a P-value less than 0.05 were considered candidate drug 
targets associated with poor prognosis. This threshold 
ensures that identified genes are significantly correlated 
with high-risk profiles. We then calculated risk scores for 
brain cell lines from the Cancer Cell Line Encyclopedia 
project and performed a correlation analysis between 
the CERES score and the risk score using these cell lines. 
The CERES score estimates gene dependency, accounting 
for the effects of copy-number variations, where lower 
CERES scores indicate higher dependency of cancer cell 
lines on a given gene [15]. Genes with a correlation coef-
ficient below − 0.3 and a P-value less than 0.05 were cat-
egorized as drug targets associated with poor prognosis 
dependence. This analysis identifies genes that glioblas-
toma cells are highly dependent on, thus serving as criti-
cal points for therapeutic intervention.

Therapeutic drug targets for high-risk glioblastoma 
were those identified through both the Spearman corre-
lation analysis and the CERES score correlation analysis. 
This dual approach ensures that the selected targets are 
both correlated with high-risk patient profiles and essen-
tial for glioblastoma cell survival, making them promising 
candidates for drug repurposing efforts.

Chemotherapeutic response prediction
To predict chemotherapeutic responses, we leveraged 
two extensive pharmacogenomic datasets: CTRP (Cancer 
Therapeutics Response Portal) and PRISM. These datas-
ets provide comprehensive drug screening and molecular 
data across numerous cancer cell lines, enabling precise 
prediction of drug responses in clinical samples. We con-
ducted differential expression analyses to compare bulk 
samples with cell lines, as well as within the samples and 
cell lines themselves. This step was crucial for identify-
ing expression patterns that could inform drug response 
predictions.

This study utilized the ridge regression model from 
the pRRophetic package, chosen for its proven reliability 
across multiple studies. The model was employed to fore-
cast drug responses for clinical samples [16, 17]. Train-
ing of the predictive model involved using expression 
profiles and drug response data specifically from solid 
Cancer Cell Lines, while excluding those derived from 
hematopoietic and lymphoid tissues to ensure specificity. 
This approach aimed to enhance the accuracy and appli-
cability of drug response predictions in glioblastoma. 
The performance of the model was validated through a 
default 10-fold cross-validation process. This robust vali-
dation technique facilitated accurate estimation of drug 
responses for clinical samples based on their refined 
expression profiles.

This comprehensive approach integrates cutting-edge 
pharmacogenomic data with advanced machine learning 

techniques to enhance the precision of chemotherapeutic 
response predictions, potentially guiding more effective 
treatment strategies for glioblastoma patients.

Connectivity map analysis
To further identify potential therapeutic agents for glio-
blastoma, we utilized a Connectivity Map (CMap) analy-
sis. This approach investigates the therapeutic potential 
of candidate compounds by comparing gene expres-
sion profiles from glioblastoma tumor samples with 
those from normal tissues [18]. We started with a com-
parative analysis of gene expression between glioblas-
toma tumors and normal tissues. From this analysis, 
we selected the top 300 genes with the most significant 
fold changes, evenly split into 150 up-regulated and 150 
down-regulated genes. These genes were then submitted 
to the CMap platform for further investigation. The gene 
expression signatures employed by CMap are sourced 
from both CMap version 1 and the Library of Integrated 
Network-Based Cellular Signatures database. This com-
prehensive resource features a collection of 2,429 com-
pounds that have been tested across various cell lines, 
thus providing a robust foundation for identifying com-
pounds that may have therapeutic benefits for glioblas-
toma patients.

The CMap analysis yielded a distinct connectivity score 
for each compound, calibrated on a standardized scale 
ranging from − 100 to 100. A negative connectivity score 
indicates a gene expression pattern that opposes the 
disease-specific expression pattern observed in glioblas-
toma. Such a pattern suggests that the respective com-
pound may have therapeutic potential by counteracting 
the gene expression changes associated with the disease.

By leveraging this extensive dataset and analytical 
approach, we identified compounds that could poten-
tially be repurposed as therapeutic agents for glioblas-
toma, based on their ability to reverse disease-related 
gene expression signatures.

Clinical sample collection and patient stratification
Human specimens were collected from a group of 20 
glioblastoma patients undergoing surgical procedures at 
China-Japan Union Hospital. Histopathological examina-
tions were conducted on all samples, which were stained 
with Hematoxylin and Eosin (HE) following standard 
protocols. To ensure accuracy and reliability, diagnos-
tic assessments were independently performed by two 
pathologists.

Total RNA was isolated using the Trizol method (Invi-
trogen), a highly regarded technique for RNA extraction. 
For quantitative real-time PCR (qRT-PCR), we employed 
the One-Step qPCR Kit (Invitrogen) and the CFX Con-
nect™ Real-Time System (BIO-RAD), strictly adhering to 
the manufacturers’ instructions. Data analysis utilized 
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the 2−ΔΔCq method, normalizing gene expression levels to 
GAPDH, which is essential for ensuring consistency and 
comparability across different samples.

Patients were then stratified into low-risk and high-risk 
groups based on normalized gene expression levels. This 
stratification was guided by a threshold derived from the 
HA-model’s equation, improving the accuracy of patient 
outcome predictions. Such a stratified approach allows 
for a more personalized assessment of prognosis and 
potential therapeutic responses in glioblastoma patients.

Histological evaluation
To prepare glioma tissue sections for immunohistochem-
istry (IHC), the following steps were conducted: Tissue 
sections were deparaffinized and then rehydrated using a 
series of gradient ethanol solutions. This process is essen-
tial to remove paraffin wax and rehydrate the tissues, 
making them suitable for antibody binding. The sections 
underwent heat-induced epitope retrieval in citrate buf-
fer at 100  °C for 1 h. This step is crucial for unmasking 
antigenic sites, thereby enhancing antibody binding. The 
tissue slices were sequentially incubated with primary 
antibodies, followed by HRP-conjugated secondary anti-
bodies. This incubation allows for specific binding of 
antibodies to their target antigens within the tissue. The 
DAB Peroxidase Substrate Kit was utilized to visual-
ize the antigen-antibody complexes. The DAB substrate 
reacts with the HRP enzyme, producing a brown color 
that indicates the presence of the target antigen. The 
IHC images were captured using a microscope, allow-
ing for detailed examination and analysis of the stained 
tissue sections. Immunohistochemistry was performed 
using the following antibodies: CD3 (ab16669, Abcam), 
CD8 (ab82749, Abcam), CD163 (ab79056, Abcam), and 
FOXP3 (ab20034, Abcam).

Results
Potential role of histone acetylation regulators in 
glioblastoma
Among the 36 histone acetylation regulators, 15 genes 
exhibited abnormal expression in glioblastoma patients 
compared to normal tissues, signifying significant biolog-
ical process variations between these groups. The heat-
map displayed the distribution of these 15 differential 
genes, revealing that one gene was downregulated and 
14 genes were significantly upregulated in glioblastoma 
patients relative to normal cases (Fig. 1A). To systemati-
cally explore the relationships among these differential 
genes, they were categorized into two clusters, and a 
correlation network was constructed (Figure S1A). We 
identified strong associations among these genes, such as 
the synergistic relationship between HDAC4 and BRD3 
in cluster A and the antagonistic relationship between 
HDAC4 and HAT1 between cluster A and B.

To elucidate the interaction of histone acetylation with 
glioblastoma, we calculated the histone acetylation score 
(HA-score) for each glioblastoma patient using the ssG-
SEA algorithm based on the differential histone acetyla-
tion regulators. The HA-score was significantly higher 
in glioblastoma patients compared to normal individuals 
in the TCGA-GTEx dataset (Fig. 1B). The HA-score also 
varied significantly across different clinical stages (nor-
mal, G2, G3, G4) in the TCGA-GTEx dataset, showing 
an increasing trend with advanced stages (Fig.  1C). The 
elevated HA-score in glioblastoma patients compared to 
normal individuals was validated in the CGGA.mRNA-
seq_325 and Rembrandt datasets (Fig.  1D, F). Similarly, 
the HA-score showed significant variation across clini-
cal stages in the CGGA.mRNAseq_325 and Rembrandt 
datasets (Fig. 1E, G).

Given the involvement of TME in tumor formation, 
we assessed the relationship between the HA-score and 
immune infiltration (Figure S1B). There was a strong 
positive correlation between the HA-score and M2 mac-
rophages, and a negative correlation with CD8+ T cells 
(Figure S1C, D), indicating that the HA-score may antag-
onistically influence the hot TME in glioblastoma.

Assessment of HA-score using the single-cell
To further explore the relationship between the HA-score 
and the TME at the single-cell level, we analyzed 48,827 
cells following stringent quality control procedures. The 
cells were categorized into 24 distinct clusters using stan-
dard clustering algorithms (Fig. 2A). These clusters were 
annotated using the celltypist algorithm (Fig. 2B), which 
leverages reference datasets to accurately assign cell iden-
tities, providing a detailed map of the cell populations 
present in the glioblastoma samples. HA-scores were cal-
culated for each cell using the Ucell algorithm (Fig. 2C), 
an efficient method for assessing histone acetylation sta-
tus across different cell types. Representative markers for 
each cell type were labeled, distinguishing each cell type 
and elucidating their functional roles within the TME 
(Figure S2A). The top differentially expressed genes were 
highlighted, providing insights into the cellular hetero-
geneity and functional diversity within the TME (Fig-
ure S2B). Our analysis revealed a significant correlation 
between HA-scores and immune cell infiltration in glio-
blastoma samples (Fig. 2D), suggesting that histone acet-
ylation may influence immune responses within the TME 
and potentially impact tumor progression and patient 
outcomes. This comprehensive single-cell analysis under-
scores the interplay between histone acetylation and the 
immune microenvironment in glioblastoma, highlighting 
potential therapeutic targets and biomarkers for patient 
stratification.
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Development of a histone acetylation risk model
We used LASSO regression to identify significantly 
prognostic genes, leading to the selection of 13 histone 
acetylation regulators (DFF2, HDAC2, TAF1, PBRM1, 
KAT7, KAT6A, KAT2B, YEATS4, CREBBP, BRD3, HAT1, 
HDAC1, HDAC4) for further analysis (Fig. 3A).

To enhance the model’s reliability, we randomly divided 
the training set into equal halves for internal training and 
testing, subsequently assessing it across three external 
cohorts. Utilizing Cox regression analysis, we identified 
five critical genes to develop the histone acetylation risk 
model (HA-model). The formula is shown below:

 
riskscore = HDAC1× 0.089 +HDAC3× 0.266

−HDAC4× 0.581 +HDAC7× 0.377 +HAT 1× 0.395

Our model successfully stratified glioblastoma patients 
into two risk subgroups with significantly different sur-
vival probabilities (Fig.  3B). The model’s predictive 
capability was evaluated using time-dependent ROC 
analysis at 1, 3, and 5 years, all of which produced AUC 
values exceeding 0.5, indicating excellent predictive 

performance (Fig.  3C). Furthermore, the heatmap pres-
ents the expression profiles of the five histone acetylation 
regulators (Fig. 3D).

Clinical evaluation of the HA-model
To adapt the HA-model for clinical application, we 
assessed its prognostic value using univariate and multi-
variate Cox analyses with TCGA data (p < 0.05) (Fig. 4A, 
B). These analyses confirmed the model’s reliability in 
predicting glioblastoma outcomes. We created a nomo-
gram to estimate survival probabilities at 1, 3, and 5 
years, integrating both the HA-model and standard clini-
cal features (Fig.  4C). Calibration analysis showed that 
the nomogram accurately reflected actual survival times 
(Fig. 4D). The model’s performance was further validated 
using time-dependent ROC analysis, which yielded sur-
vival AUCs of 0.83 for 1-year, 0.89 for 3-year, and 0.85 
for 5-year predictions (Fig.  4E). The HA-model’s AUC 
of 0.89 significantly outperformed other factors such as 
age (AUC = 0.83), sex (AUC = 0.51), and clinical grade 
(AUC = 0.82) (Fig. 4F).

Fig. 1 Potential role of histone acetylation regulators in glioblastoma. (A) Heatmap displaying the expression profiles of 15 differential histone acetylation 
regulators in glioblastoma patients compared to normal tissues. (B, D, F) Violin plots comparing the histone acetylation score (HA-score) between normal 
and glioblastoma tissues across three datasets (TCGA-GTEx, CGGA.mRNAseq_325, and Rembrandt). (C, E, G) Violin plots depicting the HA-score across 
different clinical stages of glioblastoma in the same datasets, showing a significant correlation between higher HA-scores and advanced clinical stages

 



Page 7 of 16Jin et al. BMC Immunology           (2024) 25:51 

Furthermore, we compared our novel model with five 
existing glioblastoma risk models from the literature [19–
23]. Our model demonstrated significant advantages in 
both C-index and restricted mean survival time (RMST) 
analysis (Fig. 4G, H), highlighting its superior predictive 
power and potential for clinical use in stratifying glio-
blastoma patients and guiding therapeutic decisions.

Significance of HA-model to clinical indexes and functional 
variations
A heatmap was generated to illustrate the distribution 
patterns of five key histone acetylation regulators along-
side various clinicopathological factors (Figure S3A). 
Analysis revealed that the HA-model effectively predicts 
age, OS status, and clinicopathological grade (Figure 
S3B). Correlation analysis showed that four genes had 
positive correlations with the risk score, while one gene 
had a negative correlation (Figure S3C).

GSEA was performed to explore functional differ-
ences between high-risk and low-risk subgroups. Results 
indicated that the high-risk subgroup had significant 
enrichment in pathways related to leukocyte-mediated 
immunity, B cell-mediated immunity, humoral immune 
response, and Epstein-Barr virus infection. Conversely, 
pathways such as glucose import, neurotransmitter lev-
els, and AMPK signaling were inhibited in this subgroup 
(Figures S3D, E).

PCA was conducted on the entire gene set (Figure 
S3F), on histone acetylation regulators (Figure S3G), and 
specifically on the five selected histone acetylation regu-
lators from the HA-model (Figure S3H). The expression 
patterns of these five histone acetylation regulators suc-
cessfully distinguished between the high-risk and low-
risk subgroups.

This thorough investigation demonstrates the HA-
model’s robustness in predicting clinical outcomes and 
highlights the significant biological distinctions between 
the identified subgroups. These insights are instrumental 
for developing targeted therapies and improving patient 
stratification in glioblastoma.

HA-model correlates immune infiltration and predicts anti-
CTLA4 immunotherapy
To analyze the immune landscape of glioblastoma sub-
groups, we used CIBERSORT to determine the propor-
tions of 22 immune cell types and ssGSEA to validate 
the activity of 20 associated pathways (Fig. 5A, B). Low-
risk subtypes showed higher levels of specific TME cells, 
such as activated mast cells, monocytes, B cells, and 
T cells, but lower infiltration of M2 macrophages and 
regulatory T cells (Tregs). A notable correlation was 
observed between the risk score and the proportions 
of various immune cells (Fig.  5C). Immune cell mark-
ers confirmed that high-risk patients had more Tregs 

Fig. 2 Assessment of HA-score using the single-cell. (A) UMAP plot showing the distribution of 48,827 cells into 24 clusters after quality control pro-
cedures. (B) UMAP plot with annotated cell types using the celltypist algorithm. (C) UMAP plot displaying the HA-scores calculated using the Ucell 
algorithm. (D) Violin plots depicting the HA-scores across various immune cell types in glioblastoma samples, showing a significant correlation between 
HA-scores and immune cell infiltration
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and tumor-associated macrophages, but fewer T cells 
(Fig. 5D).

Using the ESTIMATE algorithm, we assessed stro-
mal scores, immune scores, and tumor purity. Higher 
risk scores correlated with significantly elevated stromal 

and immune scores, but lower tumor purity, suggesting 
potential challenges in immunotherapy effectiveness for 
these patients (Fig. 5E). Tumor dysfunction and exclusion 
were more common in the lower risk score subgroup, 
whereas TIDE scores did not show significant differences 

Fig. 3 Development of a histone acetylation risk model. (A) LASSO regression analysis identifying 13 significant histone acetylation regulators. The plot 
shows the coefficient paths for these genes as a function of the regularization parameter (Lambda). The right plot determines the optimal Lambda value 
through cross-validation. (B) Kaplan-Meier survival curves for glioblastoma patients stratified into high-risk and low-risk groups based on the histone 
acetylation risk model (HA-model) in various datasets. Log-rank tests indicate significant survival differences between the groups (p < 0.0001). (C) Time-
dependent ROC curves evaluating the predictive performance of the HA-model at 1, 3, and 5 years in the same datasets. The AUC values exceed 0.5 across 
all time points, indicating good model performance. (D) Risk score distribution and survival status of glioblastoma patients in different datasets, along 
with heatmaps displaying the expression profiles of the five critical histone acetylation regulators identified by Cox regression analysis. The patients are 
clearly stratified into high-risk and low-risk groups, with significant survival differences
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(Fig. 5F). Patients with higher TIDE scores and low-risk 
scores had the most favorable outcomes (Fig. 5G).

Evaluating the seven steps of the immune cycle revealed 
considerable differences between high-risk and low-risk 
subtypes (Fig. 6A). The SubMAP algorithm predicted the 
likelihood of a response to CTLA-4 inhibition between 
the subgroups (Fig.  6B). Validation with four immuno-
therapy agents indicated that CTLA-4 treatment could 
be more effective in low-risk patients (Fig. 6C). The risk 
score was inversely related to the expression of immune 

inhibitors such as PD-1, PD-L1, HAVCR2, LAG-3, and 
CTLA-4 (Fig.  6D). Additionally, the low-risk subgroup 
was more likely to benefit from combination therapies 
involving PD-1 and CTLA-4 inhibitors (Fig. 6E).

These findings highlight the distinct immune charac-
teristics between high-risk and low-risk glioblastoma 
subgroups, emphasizing the potential for personalized 
immunotherapeutic strategies based on risk stratification.

Fig. 4 Clinical evaluation of the HA-model. (A) Univariate Cox analysis using TCGA data demonstrating the association of age, grade, and risk with 
glioblastoma prognosis. (B) Multivariate Cox analysis using TCGA data confirming the independent prognostic significance of age, grade, and risk for 
glioblastoma. (C) Nomogram integrating the HA-model and standard clinical features (age, grade, gender) to estimate 1-, 3-, and 5-year survival prob-
abilities for glioblastoma patients. (D) Calibration plot for the nomogram, illustrating the agreement between predicted and observed 1-, 3-, and 5-year 
survival probabilities. (E) Time-dependent ROC curves evaluating the predictive performance of the HA-model for 1-year (AUC = 0.83), 3-year (AUC = 0.89), 
and 5-year (AUC = 0.85) survival predictions. (F) Comparison of the HA-model’s predictive performance (AUC = 0.89) with other clinical factors including 
age (AUC = 0.83), sex (AUC = 0.51), and grade (AUC = 0.82), demonstrating superior performance of the HA-model. (G) Bar chart comparing the C-index 
of the HA-model with five existing glioblastoma risk models, highlighting the HA-model’s superior predictive accuracy. (H) Restricted mean survival time 
(RMST) analysis comparing the HA-model with the five existing glioblastoma risk models, showing significant improvement in survival prediction by the 
HA-model
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Fig. 5 HA-model correlates immune infiltration and predicts anti-CTLA4 immunotherapy. (A) Box plots showing the scores of 22 immune cell types in 
low-risk and high-risk subgroups calculated using CIBERSORT. (B) Box plots displaying the scores of 20 associated pathways validated using ssGSEA in the 
two subgroups. (C) Correlation matrix between the risk score and the proportion of various immune cells. (D) Immunohistochemical staining for CD3, 
CD8, FOXP3, and CD163 markers in low-risk and high-risk glioma samples. (E) Violin plots showing the results of the ESTIMATE algorithm to evaluate the 
stromal score, immune score, and tumor purity in different risk subtypes. (F) Violin plots illustrating tumor dysfunction and exclusion scores. (G) Kaplan-
Meier survival curves stratified by risk score and TIDE, demonstrating that patients with higher TIDE and low-risk scores have the most favorable outcomes
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High-risk patients are sensitive to topotecan
Genes that exhibit a strong positive correlation with the 
risk score might have therapeutic potential for high-risk 
patients. To identify druggable therapeutic targets for 
glioblastoma with poor prognoses, we calculated the 
correlation coefficient between the gene profiles and the 
risk score. Simultaneously, a correlation study between 

the CERES score and the risk score was performed. This 
analysis revealed six genes—ARPC2, ARPC3, ARPC4, 
ACTR3, NCF4, and PDGFRB—as potential therapeutic 
targets (Fig. 7A).

Using the CTRP and PRISM datasets, we created 
a predictive model for drug response. To find agents 
with increased drug sensitivity in high-risk patients, we 

Fig. 6 Immune landscape of histone acetylation risk model. (A) Pathway activities between the two risk subgroups. (B) Differential immune infiltration of 
22 immune cell fractions between the two risk subgroups. (C) The correlation of 22 immune cell types with the risk score. (D) Representative IHC images 
of immune cell markers between the two risk subgroups. (E) Correlation of risk score with the tumor microenvironment. (F) TIDE, T cell dysfunction and 
exclusion between the two risk subgroups. (G) Survival analysis of patients with different combinations of risk scores and TIDE in TCGA cohort. (H) Correla-
tion of risk score with the intratumor heterogeneity, cell proliferation, leukocyte fraction and CTA score. *P < 0.05, **P < 0.01, ***P < 0.001, n.s, not significant
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conducted a comparative analysis of differential drug 
responses between high-risk and low-risk groups. This 
analysis identified compounds with lower estimated AUC 
values in the high-risk group. Additionally, a Spearman 
correlation analysis between AUC values and risk scores 
was performed, identifying compounds with a nega-
tive correlation coefficient (Spearman’s r < -0.30). This 

approach highlighted six compounds from the CTRP and 
eight from PRISM, all showing reduced AUC values and 
negative correlations with risk scores (Fig. 7B, C).

Despite these promising findings, increased drug sen-
sitivity alone does not confirm the therapeutic efficacy of 
the 14 identified compounds for glioblastoma. To further 
evaluate their potential, a CMap analysis was conducted, 

Fig. 7 High-risk Patients are Sensitive to Topotecan. (A) Scatter plots showing the correlation between the risk score and the expression levels of drug-
gable genes. (B) Bubble plot and box plots from the CTRP dataset, indicating the correlation coefficient and estimated AUC values for various compounds. 
(C) Bubble plot and box plots from the PRISM dataset, showing the correlation coefficient and estimated AUC values for compounds. (D) Comparative 
analysis from the CMap and PubMed literature review. CMap analysis identified topotecan as having gene expression patterns opposite to those in 
glioblastoma with a CMap score below − 95. Literature review provided experimental and clinical evidence supporting the efficacy of the identified 
compounds in glioblastoma treatment, with topotecan showing the most significant therapeutic potential
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identifying compounds with gene expression patterns 
opposite to those in glioblastoma. Topotecan emerged 
with a CMap score below − 95, indicating significant 
therapeutic potential. Additionally, a literature review on 
PubMed was performed to gather experimental and clin-
ical evidence supporting the efficacy of these compounds 
in glioblastoma treatment, with cumulative results pre-
sented in Fig. 7D.

These analyses suggest that the compounds identified 
have promising therapeutic potential for glioblastoma, 
particularly for patients with high-risk scores. However, 
further experimental validation and clinical trials are 
essential to confirm their efficacy.

Discussion
Glioblastoma is a malignant tumor characterized by 
high morbidity and mortality. Despite numerous stud-
ies aimed at improving the prognosis for glioblastoma 
patients, the median overall survival (OS) remains less 
than two years post-diagnosis. Currently, stage-based 
clinical approaches are limited in their ability to predict 
survival accurately. With the advent and advancement of 
precision medicine, there is an urgent need for a more 
accurate method to evaluate the prognosis of glioblas-
toma patients and guide treatment. Recent research on 
epigenetic biomarkers has significantly enhanced the pre-
cision of prognosis prediction and therapy measures for 
glioblastoma patients [24, 25]. Studies have shown that 
histone acetylation-related genes play a crucial role in 
tumor development and therapy. This study aims to con-
struct a histone acetylation risk model based on five his-
tone acetylation regulators, offering a novel strategy for 
identifying appropriate treatment methods for glioblas-
toma patients. While some researchers have developed 
models related to glioblastoma prognosis, no studies have 
established a histone acetylation model based on histone 
acetylation-related regulators to evaluate glioblastoma 
prognosis. According to our study, glioblastoma patients 
were divided into low- and high-risk groups. Low-risk 
patients had longer OS, increased immune infiltration, 
and were more sensitive to anti-CTLA4 immunotherapy, 
whereas the high-risk group responded better to chemo-
therapy, such as topotecan.

Furthermore, five histone acetylation regulators were 
selected to be considered as the significant glioblastoma 
prognosis genes, in which HDAC1, HDAC3, HDAC4 
and HDAC7 belong to histone deacetylases differently, 
HAT1 is a histone acetylase. In the study, we found that 
except for HDAC4, the other four regulators are posi-
tive with a risk score. It is indicated that HDAC4 has a 
better prognosis, while, accordingly, HAT1, HDAC1, 
HDAC3 and HDAC7 may have a poor prognosis for glio-
blastoma. HAT1, Histone acetyltransferase 1, protein 
is a conserved enzyme that produces a marked effect in 

modifying histones via acetylating lysine residues [24], 
which is involved in chromatin assembly. Still, its func-
tion has not been explicitly elucidated. Hat1 is the main 
H4K5 and H4K12 specific acetyltransferase in embryos, 
and its deletion results in changes in the transcription 
level of more than 2000 genes [26]. Based on genome-
wide analysis, relevant studies have determined that 
HAT1 is a type B histone acetyltransferase, a necessary 
gene upregulated in glioblastoma [27]. Under hypoxic 
conditions, the level of HIF2A protein in glioblastoma 
is regulated in a HAT1-dependent manner. The HAT1-
HIF2A axis is vital for maintaining and reprogramming 
hypoxic cancer stem cells. Several researchers have also 
penetrated that HDAC is essential for maintaining the 
characteristics related to cancer stem cells (CSC) in 
malignant tumors [28]. Studies have demonstrated a cor-
relation between histone deacetylase (HDAC) activity 
disorders and many oncological diseases [28–32]. For 
instance, Suberoylanilide Hydroxamic Acid (SAHA), an 
HDAC inhibitor (HDACI), causes checkpoint activation 
and induces tumor apoptosis in glioblastoma diseases 
[31]. HDAC1/2/6/Sp1 activation is bound up with poor 
prognosis in suffers with glioma [33]. HDAC3 is also a 
histone deacetylase that maintains chromatin structure 
and genomic stability as an epigenetic regulator of gene 
expression [32]. The abnormally high expression of this 
enzyme in breast cancer, gastric cancer and acute lym-
phoblastic leukemia cells is associated with poor progno-
sis of these patients [34–36].

Similarly, HDAC3 also takes effect in the chemoresis-
tance of hypoxic glioblastoma. For example, Li et al. have 
shown that HDAC3 inhibitor can prevent the presence 
of the drug resistance of glioblastoma to temozolomide 
[37]. Yixing Gao et al. demonstrate that HDAC3 can reg-
ulate the expression of MRP through MYCN, strength-
ening the drug resistance of glioblastoma [38]. Based 
on the function of HDAC3 in glioblastoma, it has been 
considered a potential therapy molecular to conquer 
the drug resistance of glioblastoma. HDAC7 is a class II 
histone deacetylase that works in the production of the 
vascular system. Related studies have found that silenc-
ing HDAC7 can inhibit the angiogenesis of endothelial 
cells [39–41]. Angiogenesis is a marker of tumor occur-
rence and development, including glioblastoma. Xiao et 
al. [25] found that HDAC7 is able to inhibit STAT3 activ-
ity via specific interplay with Tip60. Silencing of HDAC7 
can induce the activation of STAT3 in endothelial cells, 
preventing this cell migration and differentiation. Animal 
studies on orthotopic xenograft tumors have shown that 
causing inhibition of HDAC7 can lead to a 3-fold reduc-
tion in tumor volume [42]. Glioblastoma is addicted to 
angiogenesis. Inhibiting HDAC7 can inhibit angiogen-
esis and cut off oxygen and nutrients from cancer cells. 
Unfortunately, up to now, there are no specific inhibitors 
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of HDAC7, which makes its targeting extremely diffi-
cult. Overall, these results highlight HDAC7 may be as 
a promising target in glioblastoma. Based on the above 
results, it is indicated that five histone acetylation regu-
lators selected make a difference in glioblastoma devel-
opment and are all under consideration as a potential 
therapeutic factor for glioblastoma therapy.

Recent studies have identified several prognostic gene 
signatures in glioblastoma that highlight the complex 
interplay between immune evasion and cancer progno-
sis. Notably, genes such as CD276 (B7-H3), GATA3, and 
LGALS3 (galectin-3) have been shown to play significant 
roles in glioblastoma prognosis [43]. These genes are 
involved in various immune regulatory mechanisms that 
enable tumor cells to evade immune surveillance, con-
tributing to disease progression and poor clinical out-
comes. Additionally, there is evidence suggesting that the 
status of Th2 cells and the expression of PD-L1/PD-1 axis 
genes are closely linked to glioblastoma prognosis [44]. 
Specifically, a lower expression of PD-L1 and PD-1 axis 
genes, coupled with an altered Th2 cell status, has been 
associated with better prognostic outcomes. These find-
ings underscore the critical role of immune checkpoints 
and T cell polarization in shaping the tumor microen-
vironment and influencing patient survival. Our study 
builds on these insights by demonstrating that histone 
acetylation, a key epigenetic modification, significantly 
impacts immune cell infiltration and activity in glioblas-
toma. The positive correlation between the HA-score 
and M2 macrophages, along with the negative correla-
tion with CD8+ T cells, suggests that histone acetylation 
may contribute to an immunosuppressive microenviron-
ment. This, in turn, may facilitate immune evasion and 
adversely affect patient prognosis. By integrating our 
findings with these previous studies, we provide a com-
prehensive view of the molecular mechanisms under-
pinning immune evasion in glioblastoma. Our histone 
acetylation risk model not only offers prognostic value 
but also highlights potential therapeutic targets for mod-
ulating the immune landscape in glioblastoma.

In addition to immune evasion, the cancer microen-
vironment in glioblastoma is significantly influenced 
by processes such as epithelial-mesenchymal transition 
(EMT) and the properties of cancer stem cells (CSCs). 
EMT is a biological process where epithelial cells acquire 
mesenchymal characteristics, enhancing their migratory 
and invasive capabilities. This transition is crucial for 
tumor progression and metastasis, and it is also associ-
ated with resistance to apoptosis and therapy [45]. In 
glioblastoma, EMT contributes to the aggressive nature 
of the disease. Key EMT markers such as E-cadherin 
and N-cadherin are indicative of this transition. EMT 
not only promotes invasiveness but also modulates the 
immune microenvironment, facilitating immune escape. 

Tumor cells undergoing EMT can evade immune detec-
tion by altering the expression of immune checkpoint 
molecules and secreting immunosuppressive cytokines. 
Furthermore, CSCs play a pivotal role in glioblastoma 
progression and recurrence. CSCs possess the ability to 
self-renew and differentiate into various cell types within 
the tumor, contributing to tumor heterogeneity and ther-
apeutic resistance. CSCs are also known to interact with 
the immune microenvironment, creating a niche that 
supports their survival and proliferation. These inter-
actions involve the secretion of factors that suppress 
immune cell activity and promote an immunosuppres-
sive microenvironment. Our study highlights the role of 
histone acetylation in modulating the immune micro-
environment in glioblastoma. The positive correlation 
between the HA-score and M2 macrophages, along with 
the negative correlation with CD8+ T cells, suggests that 
histone acetylation may influence EMT and CSC proper-
ties indirectly by shaping an immunosuppressive niche. 
This comprehensive view underscores the multifac-
eted nature of glioblastoma’s microenvironment, where 
immune escape, EMT, and CSC properties converge to 
drive tumor progression and resistance.

While our model shows promising results, there are 
several limitations to consider. First, the study’s retro-
spective nature may introduce biases, and prospective 
validation in clinical trials is necessary to confirm these 
findings. Additionally, the model’s applicability across 
diverse populations and different glioblastoma subtypes 
needs further investigation. Future research should focus 
on integrating other epigenetic markers and molecular 
profiles to refine the model further. Exploring the mecha-
nistic pathways linking histone acetylation to immune 
modulation could also provide deeper insights into glio-
blastoma biology and uncover new therapeutic targets.

Conclusions
In summary, our histone acetylation risk model offers a 
novel and effective tool for predicting glioblastoma prog-
nosis and guiding therapy selection. By accurately iden-
tifying low-risk and high-risk patients, this model paves 
the way for personalized treatment strategies that could 
improve patient outcomes. The integration of immune 
profiling and drug sensitivity analysis further enhances 
the model’s clinical utility, highlighting its potential to 
revolutionize glioblastoma management.

Our findings underscore the critical role of histone 
acetylation in glioblastoma progression and treatment 
response. By advancing our understanding of these 
molecular mechanisms, we can develop more targeted 
and effective therapies, ultimately improving survival 
rates and quality of life for glioblastoma patients.
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