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Abstract
Objective HIV has been reported to interfere with protective vaccination against multiple pathogens, usually 
through the decreased effectiveness of the antibody responses. We aimed to assess neutralizing antibody responses 
induced by COVID-19 vaccination in PLWH in Brazzaville, Republique of the Congo.

Method The study was conducted at the Ambulatory Treatment Center of the National HIV Program, in charge of 
over 6000 PLWH, and the health center of FCRM in Brazzaville, Republic of the Congo. Participants were divided into 
two groups: PLWH with well-controlled HIV infection (CD4 counts no older than one week ≥ 800 / mm3, undetectable 
viral load of a period no older than one week and regularly taking Highly Active Antiretroviral Therapy for at least 6 
months) and PLWOH. These groups were subdivided by vaccination status: fully vaccinated with adenovirus-based 
vaccines (Janssen/Ad26.COV2.S and Sputnik/Gam-COVID-Vac) or inactivated virus vaccine (Sinopharm/BBIP-CorV) and 
a control group of unvaccinated healthy individuals. All participants were RT-PCR negative at inclusion and/or with no 
documented history of SARS-CoV-2 infection. ELISA method was used for detecting IgG and neutralizing Antibodies 
against SARS-CoV-2 antigens using a commercial neutralizing assay.

Results We collected oropharyngeal and blood samples from 1016 participants including 684 PLWH and 332 
PLWOH. Both PLWH and PLWOH elicited high levels of antibody responses after complete vaccination with 
inactivated virus vaccine (Sinopharm/BBIP-CorV) and adenovirus-based vaccines (Janssen/Ad26.COV2.S and Sputnik/
Gam-COVID-Vac). Overall, no difference was observed in neutralization capacity between PLWOH and PLWH with 
well-controlled HIV infection.

Conclusion The results from this study underline the importance of implementing integrated health systems that 
provide PLWH the opportunity to benefit HIV prevention and care, at the same time while monitoring their vaccine-
induced antibody kinetics for appropriate booster schedules.
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Introduction
The original strain of SARS-CoV-2, the causative agent of 
the COVID-19 pandemic was first identified, sequenced, 
and made known to the public by December 2019 [1, 2]. 
Since then, several mutations occurred in the spike pro-
tein of the virus which now appears to be more infec-
tious and continues to pose a grave threat to global public 
health [3–5]. In the absence of efficient treatment, mass 
vaccination campaigns have been considered a powerful 
tool to control the pandemic [6–9]. Despite innumerable 
deaths that have been prevented by vaccines, the gradual 
effort of governments and WHO to guarantee an equita-
ble distribution of vaccines is being challenged by vaccine 
hesitancy [10]. High coverage in COVID-19 vaccination 
is required to mitigate transmission [11], especially in 
fragile groups such as people living with HIV (PLWH) 
[10, 12].

Although vaccine hesitancy is multifactorial among 
PLWH, one major factor is the lack of complete data on 
their effectiveness including their immunogenicity in 
an immunocompromised condition. In fact, previous 
studies have already reported that HIV interferes with 
protective vaccination against multiple pathogens, usu-
ally through the decreased effectiveness of the antibody 
response [13–17]. In the case of COVID-19 vaccines, 
neutralizing antibodies are induced after vaccination to 
confer some protection from potential infection or rein-
fections [18]. However, data on COVID-19 vaccine effec-
tiveness in PLWH is poorly documented in part because 
some clinical trials have included relatively few numbers 
of PLWH, and many authors excluded this group of the 
population from their trials [19–23]. Likewise, real-world 
data on antibody responses in PLWH after a COVID-19 
vaccine are also limited in most studies which also have 
been conducted mainly in Europe, America, or Asia with 
different social determinants of health such as ethnic-
ity found in Africa [24–26]. Today, more than 38  mil-
lion people worldwide are living with HIV among which 
approximately 25 million are in sub-Saharan Africa [27]. 
This is alarming since recent studies still suggest that 
COVID-19 disease transmissibility, severity, and mor-
tality risks are increased in PLWH [28–31]. In such con-
text, despite laudable efforts of the government to reach 
a higher vaccine coverage, some concerns about the time 
to seroconversion post-vaccination, the persistence of 
neutralizing antibody responses, and eventual sociode-
mographic factors influencing vaccine-induced antibody 
kinetic in PLWH are still unclear, making it difficult for 
healthcare authorities to calibrate vaccination campaigns 
and design effective booster strategies for this particu-
larly vulnerable group.

Out of the estimated tens of millions of people living 
with HIV globally, around two-thirds of the projected 
38.4 million cases worldwide are concentrated in Africa, 
highlighting the region’s disproportionate burden of the 
HIV epidemic [32]. The HIV prevalence in the Repub-
lic of the Congo is 3.3% making it the 2nd highest rate 
in Central Africa and the 14th in the world (UNAIDS 
data 2021) with an estimated COVID-19 vaccine cov-
erage as low as 11.6% in the general population after 2 
years of vaccination campaigns [33–35]. Of the few stud-
ies on vaccine effectiveness conducted in Africa [32, 36], 
one has been conducted in Central Africa precisely in 
the Republic of the Congo and PLWOH population [37]. 
Plans for the COVID-19 vaccination boosters should 
therefore be based on more inclusive scientific data that 
show substantial and sustained increases and waning in 
antibody responses on PLWH to reduce vaccine misin-
formation among this fragile group. The present study 
aimed to characterize neutralizing antibody responses 
induced by vaccination in Congolese PLWH by com-
paring three of the most distributed vaccines in Africa 
including Sinopharm/BBIP-CorV, Janssen/Ad26.COV2.S, 
and Sputnik/Gam-COVID-Vac.

Methods
Study design, participants, and ethics
The study was conducted from January to September 
2022. The sample population was made of two main 
groups including PLWH and PLWOH.

The PLWH group was made up of HIV-positive vol-
unteers who were regularly followed up at the Ambula-
tory Treatment Center of the National HIV Program, in 
charge of about 6000 PLWH in Brazzaville (capital of the 
Republic of the Congo). Data on the viral loads and CD4 
counts of the participants involved in the current study 
were extracted from the National HIV Program database. 
Participants of this group were physically healthy HIV-
positive individuals with T CD4 counts (no older than 
one week), of at least 800 / mm3, undetectable viral load 
of a period no older than one week and regularly taking 
Highly Active Antiretroviral Therapy (HAART) for at 
least 6 months.

The PLWOH group was made up of healthy volunteers 
who tested HIV-negative and enrolled at the health cen-
ter of the Fondation Congolaise pour la Recherche in 
Brazzaville. These included travelers and healthy volun-
teers who came for a routine health checkup and con-
sented to participate in the study. As much as possible, 
enrolled PLWH patients were matched with PLWOH 
participants according to age, sex, and location.
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Demographic characteristics of participants including 
sex and age were collected in a questionnaire and blood 
samples and swabs were collected from each volunteer.

These two groups of PLWH and PLWOH were subdi-
vided into two subgroups of fully vaccinated and unvac-
cinated as follows: (i) Fully Vaccinated with Sinopharm/
BBIP-CorV (2 doses), Janssen/Ad26.COV2.S (1 dose) 
or Sputnik/Gam-COVID-Vac (2 doses) were included 
at least 2 months after a voluntary vaccination. To be 
included in this group, participants had to provide an offi-
cial COVID-19 vaccine certificate delivered by healthcare 
authorities showing the type of vaccine, date of vaccina-
tion, age, and sex. Characteristics of all vaccines investi-
gated during the study are listed in Supplemental Tables 
1 [3838–40]. (ii) Control group of unvaccinated healthy 
individuals. These were vaccine-hesitant volunteers 
who came for a routine health checkup and consented 
to participate in the study. At inclusion, all participants 
who were RT-PCR positive at inclusion and/or reported 
a documented history of SARS-CoV-2 infection were 
excluded from the study as well as those under immuno-
suppressive treatment, those with inflammatory diseases, 
cancer, cardiovascular diseases, and endocrine and meta-
bolic disorders.

SARS-CoV-2 detection
RNA was extracted from swabs by the QIAamp Viral 
RNA Mini Kit (Qiagen, Hilden, Germany) according to 
instructions and subjected to RealStar® SARS-CoV-2 
real-time PCR targeting the S gene of SARS-CoV-2 
(Altona Diagnostics, Hamburg, Germany), using a high-
performance, high-throughput PCR platform (96 well 
plates) LightCycler® 480 Instrument II (Roche Diagnos-
tics, Mannheim, Germany).

SARS-CoV-2 specific antibodies detection
Measurement of plasma IgG ab
SARS-CoV-2 anti-S IgG Ab was measured using GSD 
NovaLisa® SARSCoV-2 (COVID-19) quantitative IgG 
(NovaTec Immundiagnostica GmbH) according to the 
manufacturer’s protocol. Briefly, diluted plasma (1:101) 
and manufacturer-provided controls were incubated in 
corresponding wells of microplates coated with SARS-
CoV-2 antigens for 30 min at 37° C. After washing, each 
well was incubated with 100 µL of secondary Ab (per-
oxidase-conjugate F(Ab’)2 fragment, goat anti-human 
IgG Fc fragment specific), for 30 min at 37° C following 
by another step of washing. Finally, each well was incu-
bated with 100 µL of enzyme-substrate, tetramethyl ben-
zidine (TMB), and 50 µL of stop solution was added to 
the different well. The optical density (OD) for each well 
was immediately measured at 450  nm using an ELISA 
microplate reader. Quantitative results obtained in Arbi-
trary Unit/ml (AU/ml) was calculated for each plasma as 

[OD(from individual plasma)/OD (calibrator Control x 
correction factor) x 10. These results were converted to 
International Units (IU/ml) by multiplying 4.5 according 
to WHO specifications. A sample was considered posi-
tive if the ratio was above 49.5 IU/ml. Negative Control, 
Positive Control, and Calibrator Control (mix of Positive 
Control with Negative Control) were included in each 
assay for quality control.

Measurement of anti-SARS-CoV-2 neutralizing antibodies
A standardized commercial surrogate virus neutraliza-
tion test (sVNT) was used to assess the neutralizing 
capacity of plasma Ab. In fact, the cPass™ SARS-CoV-2 
Neutralization Antibody Detection Kit (Nanjing Gen-
Script Biotech, China) was used to detect neutralizing 
antibodies according to the manufacturer’s protocol [41]. 
The assay strikes a balance between targeting unmutated 
RBD-conserved regions for broad reactivity while also 
accounting for some of the more common RBD muta-
tions seen in circulating Variant Of Concern and their 
sublineages including, Omicron, Delta, Alpha and Beta. 
After dilution, plasma samples and manufacturer-pro-
vided controls were preincubated with peroxidase-conju-
gated Spike protein receptor-binding domain (HRP-RBD 
and 100 µL each mixture was then added to the corre-
sponding wells of the capture microplate pre-coated with 
the human receptor of angiotensin 2 converting enzyme 
(hACE2) protein and incubated at 37° C for 15 min. Fol-
lowing a wash cycle, 100 µL of enzyme-substrate, tetra-
methyl benzidine (TMB) was added to each well and the 
microplate was incubated in dark at 25° C for 15  min. 
Finally, 50µL of stop solution was added to each well, 
and the absorbance of the final solution was immediately 
measured at 450 nm using an ELISA microplate reader. 
Both negative and positive controls were included in each 
assay for quality control. A sample was positive for neu-
tralizing antibodies at the manufacturer-recommended 
of at least 30% of inhibition.

Statistical analysis
The data were analyzed using SPSS version 24 (SPSS Inc., 
Chicago, IL, USA). GraphPad (version 8.0.4) was used to 
generate the figures. Categorical variables were presented 
as proportions (%). Continuous variables were expressed 
as median (interquartile range, IQR) or mean (± standard 
deviation, SD). Mann-Whitney U-test or Kruskal-Wallis 
test was used to investigate the difference in distributions 
between two or more groups. For the comparison of cat-
egorical variables, Chi-square or Fisher’s exact test was 
used. Statistical significance was defined as P values of 
< 0.05. Spearman rank correlation test was used to assess 
the relationship between antibody level or activity and 
participant age or post-vaccination period. The sample 
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size was estimated based on the formula adapted to the 
case-control study,

 
n =

(r + 1)
r

(p) (1 − p) (Zβ + Zα
2
)2

(p1 − p2)2 .

Based on 90% expected vaccine-induced seroprevalence 
in the control group [37] and 84% vaccine-induced sero-
prevalence in the cases [42] with a threshold of α level 
of significance set at 0.05, a minimum of 523 cases was 
required to achieve a statistical power of 80%. The con-
trol group represented the pool of participants from 
whence the cases were drawn [43].

Results
A total of 1016 participants were recruited including 684 
PLWH and 332 PLWOH. The demographic characteris-
tics of the population are shown in Supplemental Table 
2. Overall, plasma from vaccinated PLWH (n = 143/684) 
and vaccinated PLWOH (n = 251/332) elicited signifi-
cantly higher IgG concentrations and inhibition activity 
than unvaccinated individuals in both groups of PLWH 
and PLWOH groups (p < 0.0001). In addition, over 90% 
of individuals elicited anti-S IgG and post-vaccination 
neutralizing antibodies in both groups of PLWH and 
PLWOH (Fig. 1).

Neutralizing capacity in PLWH and PLWOH according to 
time post-vaccination
We investigated inhibition activity induced by vac-
cination over time. Regarding the HIV status, PLWH 
and PLWOH elicited high levels of inhibition activity 
after vaccination from 2 to 6 months and 6–12 months 
(Table  1). When comparing each vaccine, one against 
the other, the results indicate that Janssen/Ad26.COV2.S 
(adenovector-based vaccine) induced significantly higher 
inhibition activity than Sputnik/Gam-COVID-Vac (ade-
novector-based vaccine), and Sinopharm/BBIP-CorV 
(inactivated virus vaccine) from 2 to 6 months post-vac-
cination period in both groups of PLWH (p = 0.002) and 
PLWOH (p = 0.012). After 6 months from the vaccina-
tion, the inhibition activity was significantly higher with 
Sinopharm/BBIP-CorV (inactivated virus vaccine) than 
Sputnik/Gam-COVID-Vac and Janssen/Ad26.COV2.S in 
both groups of PLWH (p = 0.003) and PLWOH (p = 0.005) 
(Table 1).

Anti-S IgG levels in PLWH and PLWOH according to the 
post-vaccination period
Overall, both groups of PLWH and PLWOH who were 
vaccinated elicited higher levels of anti-S IgG than 
those unvaccinated (p < 0.0001) (Table  2). Additionally, 

vaccination induced a significantly higher concentra-
tion of anti-S IgG in PLWOH than in PLWH (p = 0.017) 
(Table 2).

By comparing each vaccine against the others, the 
findings show that Janssen/Ad26.COV2.S (adenovector-
based vaccine) induced significantly higher inhibition 
activity than Sputnik/Gam-COVID-Vac (adenovector-
based vaccine), and Sinopharm/BBIP-CorV (inactivated 
virus vaccine) from 2 to 6 months after vaccination in 
both groups of PLWH (p = 0.005) and PLWOH (p = 0.009). 
After 6 months from the vaccination, the inhibition activ-
ity was significantly higher in Sinopharm/BBIP-CorV 
(inactivated virus vaccine) than in Sputnik/Gam-COVID-
Vac and Janssen/Ad26.COV2.S in both groups of PLWH 
(p = 0.003) and PLWOH (p = 0.005) (Table 2).

Correlation between age and antibody responses in 
vaccinated PLWH and PLWOH
In both groups of PLWH and PLWOH, there was no 
significant correlation between age and anti-S IgG con-
centrations induced by vaccination (Supplemental 
Fig.  1A-F). In the PLWOH group, there was a negative 
slight correlation between age and inhibition activity in 
all vaccines assessed in the study (Supplemental Fig. 2B, 
D, and F). No correlation was found between age and 
inhibition activity in PLWH for all vaccines except a 
slight negative correlation (r= -0.39) for Sputnik/Gam-
COVID-Vac (Supplemental Fig. 2E).

Correlation between post-vaccinal period and antibody 
responses in vaccinated PLWH and PLWOH individuals
In sera of people who received adenovirus-based vac-
cines, a negative slight correlation was found between 
anti-S IgG levels and post-vaccination period with 
Sputnik/Gam-COVID-Vac vaccinees in both groups 
of PLWH (r= -0.26) and PLWOH (r= -0.27), whereas in 
Janssen/Ad26.COV2.S, there was a slight positive corre-
lation between anti-S IgG and t post-vaccination period 
in PLWOH (r = 0.44) versus a negative trend in PLWH 
(r=-0.34) (FIG). No correlation was observed in the inac-
tivated virus vaccine (Sinopharm/BBIP-CorV) (Supple-
mental Fig. 3).

We next investigated the correlation between inhibi-
tion capacity and post-vaccination period. The findings 
indicate that there was no correlation in PLWH between 
inhibition capacity and the post-vaccination period 
regardless of the type of vaccine (Supplemental Fig. 4A, 
C, and E). In PLWOH, a weak correlation was found 
for Sinopharm/BBIP-CorV (r = 0.26) and Janssen/Ad26.
COV2.S (r = 0.20) (Supplemental Fig. 4B, D).
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Discussion
The study sought to match and compare 2 specific groups 
with closely similar immunological features and, in such 
cases, give insight into whether the average percentage of 
inhibition of neutralizing antibodies and the total anti-
spike IgG concentrations in both groups would signifi-
cantly vary depending solely on HIV status after exposure 
to COVID-19 vaccines.

This study conducted in the Republic of the Congo has 
provided the first real-world data on COVID-19 vaccine-
induced antibody responses in people living with HIV 
in the Central African region. These data will contribute 
to local health authorities working with communities to 
mitigate the growing amount, variety, and spread of mis-
information on COVID-19 vaccines which have altered 
how PLWHs trust preventive measures implemented by 

Fig. 1 Assessment of antibody responses in vaccinated and unvaccinated participants. Graph A shows the inhibition activity of neutralizing antibodies. 
Anti-S IgG concentrations are represented in graph B. Graph C shows the proportions of people with neutralizing antibodies and graph D represents the 
proportions of participants with anti-S IgG antibodies. Mann–Whitney Rank Sum test was used for the comparison of antibodies levels and inhibition 
activity, Fisher exact test for the comparison of the percentage of participants with anti-S IgG and neutralizing antibodies between two groups

 



Page 6 of 9Batchi-Bouyou et al. BMC Immunology           (2024) 25:43 

health authorities in Africa. This study also provides sci-
entific evidence for stakeholders to make more accessible 
COVID-19 vaccines for PLWH in low-income countries 
that are already in demand of better vaccine distribution. 
This can help for the design of integrated health systems, 
giving PLWH the opportunity to benefit HIV prevention 
and care and same time monitor their vaccine-induced 
antibody kinetics for appropriate booster schedules.

Although previous studies have shown that people 
with immunosuppression caused by HIV, as indicated by 
a low CD4 count, have weaker responses to COVID-19 
vaccines as a result of persisting immune dysfunction, 
exhaustion, and immune senescence [44], the current 
study adds to the growing body of evidence that COVID-
19 vaccines induce significant antibody responses in 
PLWH under a regular regimen of antiretroviral therapy 
(ART) [25, 26, 45, 46]. More importantly, the present data 
show no difference in antibody responses to COVID-
19 vaccinations between PLWOH and PLWH in certain 
conditions. This might be explained by the fact partici-
pants in the vaccinated PLWH group had a well-con-
trolled HIV infection, thus producing a relatively similar 
humoral response to PLWOH vaccinee [47, 48].

Participants enrolled within the first six months of vac-
cination elicited significantly higher IgG levels and inhi-
bition capacity with adenovirus-based vaccines (Janssen/
Ad26.COV2.S and Sputnik/Gam-COVID-Vac) than with 
the inactivated virus vaccine (Sinopharm/BBIP-CorV) in 
both groups of PLWH and PLWOH. This result is con-
sistent with previous studies indicating a weaker per-
formance of inactivated virus vaccines likely due to the 
inactivation processes with beta-propiolactone which has 
been described to be deleterious to the Spike protein and 

induce moderate antibody responses compared to adeno-
virus-based vaccines [49–51].

We also investigated vaccine-induced antibody levels 
among participants seven to twelve months after vaccina-
tion. Our results show significantly higher IgG levels and 
neutralizing activities in inactivated virus vaccine (Sino-
pharm/BBIP-CorV) than in adenovirus-based vaccines 
(Janssen/Ad26.COV2.S and Sputnik/Gam-COVID-Vac) 
in both groups of PLWH and PLWOH. Although cohort 
studies need to be conducted to clarify these results, it is 
worth mentioning that inactivated vaccination induces 
efficient memory B-cell responses in a similar mecha-
nism in response to natural SARS-CoV-2 infection [52–
54]. This may result in more persistent vaccine-antibody 
responses in sera of inactivated virus vaccinees.

There was no correlation between the Ab levels and age 
in both groups of PLWH or PLWOH. A lack of correla-
tion between age and antibody response post-vaccination 
has also been reported in several studies [55, 56] while 
others have reported a negative correlation between post-
vaccination antibody response and age [57, 58]. Other 
correlations, however, are conflicting with regard to vari-
ations in IgG levels and neutralizing activity in time for 
each vaccine. Methodological variations in sample size 
in each group of vaccinated individuals likely contribute 
to the variability of the correlation analysis conducted. In 
the current study, age matching, as well as a larger sample 
size among vaccinee, could bring out more conclusive 
results.

The results presented in the current study are sub-
ject to some limitations. First, the antibodies detected 
and neutralization activity measures were not specific 
to emergent variants since the occurrence of heavily 

Table 1 Comparison of neutralizing capacity in vaccinated PLWH and PLWOH
2–6 months after vaccination 7–12 months after vaccination

PLWH
Inhibition activity (%)
Median (IQR)

PLWOH
Inhibition activity (%)
Median (IQR)

P-value PLWH
Inhibition activity (%)
Median (IQR)

PLWOH
Inhibition activity (%)
Median (IQR)

P-Value

Sinopharm/BBIP-CorV 90.6[78.7 ; 94.2] 92.2[75.5 ; 93.2] 0.21 86.6[60.1 ; 90.4] 89.3[65.5 ; 92.2] 0.23
Sputnik/Gam-COVID-Vac 91.3[76.4; 93.4] 92.3[80.9 ; 94.6] 0.09 85.9[70.6 ; 87.8] 87.2[73,8 ; 90.1] 0.14
Janssen/Ad26.COV2.S 93.9[80.7 ; 95.8] 95.2[80.3 ; 96.1] 0.08 80.1 [62.5 ; 84.6] 85.4 [70.1 ; 87.5] 0.31
P-value 0.002 0.012 0.013 0.022
IQR: interquartile range

Table 2 Comparison of anti-S IgG levels in vaccinated PLWH and PLWOH
2–6 months after vaccination 7–12 months after vaccination

PLWH
Median IgG concentra-
tion (UI/ml) (IQR)

PLWOH
Median IgG concentra-
tion (UI/ml) (IQR)

P-value PLWH
Median IgG concen-
tration (UI/ml) (IQR)

PLWOH
Median IgG concen-
tration (UI/ml) (IQR)

P-
Val-
ue

Sinopharm/BBIP-CorV 234.5[164.2 ; 326.7] 376.3[186.2 ; 792.1] 0.014 186.4[61.6 ; 199.3] 200.7[103.7 ; 222.4] 0.031
Sputnik/Gam-COVID-Vac 412.3[86.4; 93.4] 602.1[452.2 ; 820.7] 0.001 155.1[55.3 ; 181.3] 176.1[120.2 ; 195.1] 0.017
Janssen/Ad26.COV2.S 533.9[474.2 ; 1032.5] 653.2[470.1 ; 1185.2] 0.022 102.5 [50.2 ; 111.2] 152.6 [109.3 ; 288.2] 0.015
P-value 0.005 0.009 0.003 0.005
IQR: interquartile range
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mutated SARS-CoV-2 has raised questions on the poten-
tial of breakthrough infections in fully vaccinated indi-
viduals due to immune escape [59]. Further studies will 
help provide an in-depth analysis of vaccine-induced 
antibody responses specific to SARS-CoV-2 by using 
high-throughput antibody quantification approaches 
such as plaque reduction neutralization test (PRNT) 
[60]. Second, although the current study grouped par-
ticipants by age of vaccination, we did not investigate the 
durability of antibodies after full vaccination by a longi-
tudinal approach. Our future investigations will estab-
lish causality by conducting a cohort study and using a 
Cox regression model. Third, it is important to mention 
that antibody responses account for part of the protec-
tive effect of vaccination but not for the entire protection, 
since T-cell responses were not assessed in this study but 
would be informative for further investigations.

Conclusion
Both PLWH and PLWOH elicited high levels of antibody 
responses after complete vaccination (excluding boosted 
dose) with inactivated virus vaccine (Sinopharm/BBIP-
CorV) and adenovirus-based vaccines (Janssen/Ad26.
COV2.S and Sputnik/Gam-COVID-Vac). Overall, no 
difference was observed in IgG levels and neutralization 
capacity between PLWH and PLWOH as long as they 
had a well-controlled HIV infection. This underlines the 
importance of implementing integrated health systems 
that provide PLWH the opportunity to benefit HIV pre-
vention and care at the same time with the monitoring of 
their vaccine-induced antibody kinetics for appropriate 
booster schedules.
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