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Background
Over the past decades, Genome-wide association studies 
(GWAS) have discovered thousands of genetic variants 
associated with various traits and diseases. Unfortu-
nately, these have turned out to explain only a small 
portion of phenotypic variants, and research those yet 
to be detected continues. Previous studies have shown 
that more than one causal variant may play a role in a 
single locus in influencing a particular disease or a trait 
[1–11]. This is referred to as allelic heterogeneity, and it 
is common for Mendelian traits [12] and known to be 
widespread across many other complex traits and expres-
sion quantitative trait loci [13]. For this reason, standard 
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Abstract
Background Despite the successes in GWAS, there is still a large gap between the known heritability and the part 
explained by the SNPs identified by GWAS. Set-based analysis is one of the approaches that has tried to identify 
associations between multiple variants in a locus a trait, leveraging allelic heterogeneity to increase power in 
association testing. MARS is a set-based analysis method that integrates likelihood ratio test with a recently developed 
fine mapping technique to accurately account for causal status of variants in a risk locus. Unfortunately, due to its 
complex running process, time complexity, and the requirement of high-performance computing resources, it is not 
widely used.

Results To address these issues, we proposed a fully automated web-based analysis service, MARSweb. By providing 
a web service, we minimized the effort required for initial configuration. Additionally, users can perform analyses 
by simply uploading their data without needing to familiarize themselves with intricate analysis procedures. 
Furthermore, it facilitates easier interpretation of results by integrating advanced visualization tools. We confirmed the 
performance of MARSweb by detecting eGenes and performing pathway analysis of the genes using a Yeast Dataset.

Conclusions MARSweb is a web-based analysis service that fully automates set-based analysis. It offers an intuitive 
user interface, making complex analyses more accessible while significantly reducing processing time for enhanced 
efficiency. MARSweb is available for use at  h t t p  : / /  c b l a  b .  d o n  g g u  k . e d  u /  M A R S w e b and its source code is available at  h t t 
p  s : /  / g i t  h u  b . c  o m /  D G U -  C B  L A B / M A R S w e b.
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genetic association tests that assume only one causal 
variant per locus may fail to identify variants with small 
effect sizes at loci displaying allelic heterogeneity.

While the standard association test analyzes an asso-
ciation between a single variant and a trait, several sta-
tistical approaches, known as set-based association tests, 
have been designed to analyze the association between a 
set of variants and a trait. Most of these set-based associ-
ation test methods utilize simple statistics, such as mean 
or the sum of χ2, to examine multiple variants together 
[14–17]. Recently, a method called Model-based Associa-
tion test Reflecting causal Status (MARS) [18] has been 
proposed that extends a fine mapping method, CAVIAR 
[9], to identify associations between multiple variants in 
a locus and a trait. MARS incorporates the linkage dis-
equilibrium (LD) structure into the model by utilizing a 
multivariate normal (MVN) distribution conditional on 
the causal status of the variants. It has been shown that 
MARS increases the power of association testing com-
pared to other set-based association test methods by 
leveraging allelic heterogeneity [18].

Despite its advantages, MARS has not been widely used 
because it does not provide a ready-to-use program with 
user-friendly settings and execution processes. MARS is 
coded in a mixture of different programming languages 
and requires certain libraries to be installed for complex 
matrix multiplication processes. In addition, the compil-
ing process often takes effort due to path settings and 
version-specific complications in which some parts of the 
code require higher versions of the compiler than others. 
Another challenge in running MARS is that, as genom-
ics data continuously grows, high-performance computer 
resources are required for running complicated statisti-
cal calculations. The processing of genomic data not only 

costs time and memory at each step but also resources 
that may not be available to users.

Here, we introduce MARSweb, a fully automated web 
service for set-based association testing. MARSweb pro-
vides a user-friendly web service that not only allows 
users to run MARS without having to know all the com-
plicated installation and execution procedures but also 
allows users to run MARS without having access to a 
high-performance computer. It reduces the running time 
of MARS by providing parallel processing and optimiza-
tion in the I/O processes and complex statistical calcu-
lations used throughout the program, making it possible 
to analyze large genomics datasets in practice. In addi-
tion, it provides visual tools such as set-based eQTL map 
and Manhattan plot generators for visualizing the asso-
ciation between variant sets and a trait of interest. When 
applied to a yeast dataset [19], we show that MARSweb 
successfully discovered 2852 eGenes, of which 2210 
were reported elsewhere [20]. For the newly discovered 
642 eGenes, we performed a pathway analysis to find the 
genes are related to transcriptional regulation. Besides 
the web service, for those who do not want to share their 
data to a third party, a downloadable version of MAR-
Sweb is provided as well.

Implementation
Fully automated web service for SNP-set-based association 
testing
MARSweb is a web-based service that provides a user-
friendly interface where a user can activate an analysis 
by simply clicking on the web browser. The execution 
process is hidden from the user, and the user does not 
necessarily keep track of each stage of running process. 
MARSweb is expected to increase the usability of the 

Fig. 1 Overview of MARSweb’s main processes
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program for any user, but particularly those who lack 
professional experience in programming languages.

Figure  1 shows an overview of MARSweb’s processes. 
MARSweb requires summary statistics and LD informa-
tion on the genotypes. For the summary statistics, users 
can upload either a file with Z-scores or an association 
test report file from PLINK [21]. For the LD information, 

users can upload their own LD estimates or genotypes, 
from which the LD will be estimated by MARSweb auto-
matically. In addition, for users who do not have geno-
type information, MARSweb provides reference LD 
panels not only for Human but also for other model 
organisms such as yeast and mouse. Genotypes from 
the 1000 Genome project [22], Saccharomyces Genome 

Fig. 3 Execution times for MARS (solid lines) and MARSweb (dashed lines). Yeast data was used to estimate the running time. The x-axis shows the num-
ber of samplings used for the statistical analysis and the y-axis shows the execution time. The orange, yellow, green, brown line colors indicate the number 
of the SNPs composing the dataset: 500, 1000, 2000, and 3000, respectively

 

Fig. 2 MARSweb’s service webpage for uploading input files
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Database [23], and Mouse Genome Project [24] were 
used to estimate the LD information of human, yeast, and 
mouse, respectively. As MARS is aimed at performing 
set-based analysis, set information should be provided as 
well. Users can either provide summary statistics and LD 
for each set to be analyzed or simply provide information 
containing chromosome and position for each set, with 
which MARSweb automatically extracts summary statis-
tics and LD information for the set.

After uploading all the input files, MARSweb assigns 
the sets to be analyzed among the available processors. 
To make the run efficient, MARSweb utilizes multiple 
central processing units to divide tasks. To compute a test 
statistic, MARS performs a likelihood ratio test referred 
to as LRTstat. To test the statistical significance of an 
association using LRTstat, MARS performs a re-sampling 
process that samples null LRTstat statistics from an MVN 
distribution. There are three options for the sampling 
process: normal-sampling, fast-sampling, and impor-
tance-sampling. The normal-sampling option samples 
LRTstat from a MVN distribution with a variance-cova-
riance matrix estimated from the summary statistics of 
sets, which does not require genotype information. Thus, 
if genotype information is not available, a user can use 

a reference LD panel, which is provided by MARSweb, 
and select the normal-sampling option. When genotype 
information is available, a user can choose either the 
fast-sampling or importance-sampling option. In most 
cases, the number of individuals (n) is much smaller than 
the number of SNPs (m). Utilizing the fact that covari-
ance of summary statistics can be estimated from geno-
types, fast-sampling use n by n identity matrix instead 
of m by m covariance matrix of summary statistics as 
variance-covariance matrix for the MVN sampling [25]. 
This drops the sampling time significantly. Lastly, to uti-
lize genotypes to estimate the variance-covariance matrix 
in the MVN, the importance-sampling option performs 
the Monte Carlo simulations to reduce the number of 
samplings at the cost of accuracy. MARS has shown that 
importance-sampling well approximates the p-value esti-
mated from the original sampling approach, while reduc-
ing the sampling number dramatically; from 108 to 104, in 
a GWAS dataset.

After the analysis has been completed, MARSweb 
sends a result to the email provided by the user. In addi-
tion, MARSweb provides visual tools that can be used to 
interpret the results or perform post-analysis.

Fig. 4 Memory usage for MARS (solid bar) and MARSweb (dashed bar). Yeast data was used to estimate the memory usage. The x-axis shows the number 
of samples used for the statistical analysis and the y-axis shows memory usage. The orange, yellow, green, and brown colors indicate the number of the 
SNPs composing the dataset: 500, 1000, 2000, and 3000, respectively
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MARSweb client-server web service
Apache Tomcat 9 is used as the application server for 
deploying the MARSweb system. HTML5 serves as the 
foundational framework for the web interface, with CSS 
and JavaScript enhancing user interaction. On the back-
end, Java Servlet is employed to establish a robust client-
server model.

The workflow involves users selecting input data and 
running options through the front-end. Subsequently, 
this information is transmitted to the server, which con-
ducts the analysis, including data pre-processing. Follow-
ing the completion of the analysis, the server sends a link 
to the user’s provided email address, allowing them to 
download the results.

Figure  2 shows the webpage for running MARSweb, 
where users can upload input files, choose options for 
their analysis, and get description for each stage.

The web service and a step-by-step manual are pro-
vided on  h t t p  : / /  c b l a  b .  d o n  g g u  k . e d  u /  M A R S w e b.

Program optimization
MARS is composed of multiple running stages, for which 
different programming languages have been used. Com-
munication between different languages produces I/O 
burdens for each stage, resulting in high memory usage 
and time delay. MARSweb unifies the programming lan-
guage to C++, which is fast and efficient in many aspects 

and reduces the unnecessary I/O burdens. Furthermore, 
MARSweb utilized Eigen library to optimize the matrix 
calculations to reduce the running time.

Parallel processing for high-throughput analysis
The set-based association test is mostly used for high-
throughput data such as GWAS or eQTL, which requires 
hundreds to tens of thousands of sets to be analyzed. At 
most of the running stages, each set runs independently, 
thus sets could be assigned to different processors. MAR-
Sweb utilizes high performance multiple core servers for 
the parallel processing to increase the efficiency of high-
throughput analyses. When a user uploads an input data-
set, MARSweb utilizes the available number of cpu cores 
to divide the tasks among multiple processes, the results 
of which are merged and provided to the user.

Post analysis tools
MARSweb provides post-analysis tools that visualize 
results from a set-based analysis. One generates set-
based eQTL maps that show the association between sets 
of SNPs and gene expressions in a map, allowing that a 
users can systematically view a set-based eQTL analysis 
result in a sight. In the map, a user can compare results 
of the set-based association test to those of the standard 
eQTL analysis, referred to as the univariate test, which is 

Fig. 5 Execution time for different numbers of processors used in parallel processing. 100 sets were used to estimate the execution time using 1, 5, 10, 
and 15 processors
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based on an association between a single SNP and a trait 
[18].

Another tool provided by MARSweb draws set-based 
Manhattan plots that show the association between sets 
of SNPs and a trait in a dot plot. With these plots, given 
a threshold, a user can identify significant associations 
with a quick look. As in the set-based eQTL map, a user 
can compare results of the set-based association test to 
those of the univariate association test.

MARSweb also provides Venn diagrams that compare 
the number of associations identified by the set-based 
test and the univariate test. A user can download the list 
of sets identified by either or both tests.

Downloadable docker image
Genetic data contains sensitive health-related informa-
tion, and thus, sharing it represents a privacy risk for 
individuals or data subjects. Some data are protected by 
the law of genetic privacy [26], and it cannot be legally 

Fig. 6 eGenes identification in a yeast dataset using MARSweb. (a) A set-based eQTL map. The x-axis shows the locations of SNPs and the y-axis shows 
the location of genes. (b) A set-based manhattan plot. The x-axis shows the locations of genes and the y-axis shows the − log10 converted p-values. Red 
dots indicate genes identified by MARSweb but not identified by traditional methods in the previous study, blue dots show the results only from the set-
based test, and gray dots show the results from both univariate SNP and set-based tests. (c) A Venn diagram, comparing eGenes identified by MARSweb 
(red), the ones identified by the univariate test (blue), and the ones reported in the previous study (purple) [11]
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shared with others. For those who do not want to pro-
vide their data to a third-party, a downloadable version 
of MARSweb is available as a web software docker image 
file along with the source code. Users can easily down-
load and install the docker image to run the MARSweb 
service on their local computer, cloud server, etc. A user 
does not need to consider any preprocessing steps, such 
as setting up the running environment, installing neces-
sary packages, preparing running scripts, etc. For those 
not familiar with using a docker image, the necessary 
information and step-by-step commands are provided 
in a detailed user manual. Furthermore, MARSweb pro-
vides a source code for the analysis tool, thus a user can 
make any necessary changes for their analysis if required. 
The docker image, source code, and its manual are pro-
vided on  h t t p  s : /  / g i t  h u  b . c  o m /  D G U -  C B  L A B / M A R S w e b.

Results and discussion
MARSweb improves runtime performance of MARS
To evaluate the performance of MARSweb, we estimated 
the execution time for different SNP sample sizes—500, 
1000, 2000, and 3000 SNPs, with sampling sizes ranging 
from 10⁵ to 10⁶ chosen from yeast data [19]. The biggest 
bottleneck for MARS with respect to the execution time 
is the MVN distribution re-sampling process. As the size 
of the analyzed dataset increases, the computation time 
increases by up the cube of the increase in the size of 
the dataset. Figure 3 compares execution time of MARS 
and MARSweb for the datasets with increasing numbers 
of SNP sampling. For both MARS and MARSweb, the 

fast-sampling option was used, and no parallel process-
ing was applied for the analysis. The figure shows that 
MARSweb displays a dramatically higher execution time 
compared to MARS. As the number of SNPs increased, 
the discrepancy in execution time between MARS and 
MARSweb increases. Considering that the most used 
number of samplings sized used in GWAS was 108, which 
took over a day for MARS to complete, this represents a 
huge advantage for MARSweb. Notably, increasing the 
resampling size the performance of MARSweb, while for 
MARS, the set size is critical for the analysis in respect to 
the running cost.

In addition to the execution time, we have compared 
memory usage of MARS and MARSweb for the datasets 
with increasing numbers of SNP sampling (Fig.  4). The 
figure demonstrates that MARSweb is significantly more 
memory efficient.

In addition, MARSweb is expected to increase in per-
formance utilizing parallel processing. To measure the 
effectiveness of parallel processing, we have increased 
the number of cores and estimated the running time. 
Figure 5 shows the execution time using different num-
bers of processors up to analyze 100 number of sets using 
MARSweb. The execution time drops as the number of 
processors increases.

The experiments were conducted on a server with 267 
GB of RAM and a dual-socket Intel® Xeon® E5-2630 v4 
CPU running at 2.20 GHz under a CentOS Linux 7 envi-
ronment. For evaluating the running time and memory 
usage in Figs. 3 and 4 and a single core was used and for 

Fig. 7 Functional annotation results for the eGenes newly identified by MARSweb. The bar plots depict the significantly enriched pathways for (a) GO-
Biological Process and (b) GO-Molecular Function. The lengths of the bars present the combined score of each GO-term
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evaluating the effectiveness of parallel processing (Fig. 5), 
depending on the number of processes, the required 
number of 20 cores was allocated.

Yeast dataset analysis using MARSweb
We performed an eQTL set-based analysis utilizing a 
yeast dataset containing 1012 meiotic segregants with 
5720 genes and 42,052 SNPs [19]. The R package Matrix 
eQTL [27] was used for mapping SNP and gene loca-
tions and to estimate test statistics. Based on Saccharo-
myces cerevisiae reference genome SGD R64-1-1 [28], 
SNPs within ± 10Kb of a transcription starting site (TSS) 
were used to define each set, resulting in 5661 gene sets. 
Applying MARSweb, we identified 2852 eGenes, includ-
ing 1087 not captured by the conventional set-based 
method. Among them, 642 are newly identified eGenes 
not reported in previous studies [20] (Fig.  6). A signifi-
cance threshold level of p < 0.01 (FDR adjust p-value) was 
used for the analysis. Figure 6 shows the set-based eQTL 
map, SNP-based Manhattan plot, and a Venn diagram 
drawn by MARSweb.

To validate the credibility and biological meanings of 
the eGenes that were only detected using MARSweb, we 
conducted a functional annotation analysis for the 642 
genes. There were 11 and 13 significantly enriched (com-
bined score > 1) pathways for “Biological Processes” (BP) 
and “Molecular Function” (MF), respectively. The major-
ity of the pathways identified in GO-BP were related to 
metabolic or synthetic processes, which implies that 
MARSweb can explain genetically regulated gene expres-
sion for fundamental biological mechanisms (Fig.  7A). 
Interestingly, these genes are known to have enzymatic 
activities involved in transcriptional regulation, support-
ing that MARSweb can successfully identify novel SNP-
gene associations (Fig. 7B).

Conclusions
In this paper, we introduced a fully automated set-based 
analysis tool, referred to as MARSweb, providing a user-
friendly web-based service. This hides all the complicated 
installation and running procedures from the user. After 
uploading the input data and choosing execution options, 
users do not even have to keep their computers running 
while performing the analysis and will be notified about 
the results via e-mail. The web service provides some 
visualization tools that can help the post-analysis inter-
pretation and presentation of the results as well. In addi-
tion, we provide a downloadable docker image, which 
could be useful for those who do not want to expose their 
data to a third party.

MARSweb upgrades the previous MARS software 
in many aspects by optimizing the code and execution 
processes, including parallel processing. Utilizing vari-
ous simulated data, we have compared the performance 

of MARSweb and MARS and show that MARSweb has 
improved greatly in respect to the running time, which, 
considering the sizes of modern genomic data available, 
is a major advantage. Utilizing yeast data, we discov-
ered 642 new eGenes, not identified using a traditional 
analysis in previous research, and confirmed their valid-
ity through functional annotation analysis. This analy-
sis shows that MARSweb can successfully identify the 
unknown SNP-gene associations in practice.

Considering the fact that the majority of MARS users 
are expected to be scientists with Biology or Statistics 
background, we believe the tool could be used by every-
one, including those unfamiliar with computer program-
ming. The MARSweb can be obtained from  h t t p  s : /  / g i t  h 
u  b . c  o m /  D G U -  C B  L A B / M A R S w e b, where installation 
instructions are provided, and the MARSweb service is 
available at  h t t p  : / /  c b l a  b .  d o n  g g u  k . e d  u /  M A R S w e b.
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BP  Biological processes
MF  Molecular function
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