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Abstract
Background The growth stages largely determine the crop yield, while little is known about their genetic 
mechanisms in castor. In this study, the QTL mapping and candidate gene mining of growth stages were conducted 
using populations F2 and BC1, combining with differential expression analysis and weighted gene co-expression 
network analysis (WGCNA). The traits studied included the emergence date (ED), the budding date of primary spike 
(PSBD), the flowering date of primary spike (PSFD), the maturation date of primary spike (PSMD), and the maturation 
date of primary branch spike (PBSMD).

Results A total of 20 QTLs conferring four traits (ED, PSBD, PSFD and PBSMD) were identified in the F2 population, 
with a phenotypic variation explained (PVE) of single QTL ranged from 0.24 to 25.46%. Five QTLs underlying PSMD 
and PBSMD were identified in the BC1 population, with a PVE of single QTL ranged from 4.74 to 10.82%. To our 
surprise, almost all the identified QTLs were clustered within two marker intervals, the RCM1769-RCM1838 on linkage 
group 6 and RCM950-RCM917 on linkage group 3. Subsequently, 473 open reading frames (ORFs) were searched out 
within these two clusters and 110 differentially expressed genes (DEGs) were screened out from these ORFs by the 
comparative transcriptome clean data (a total of 140.86 G) at the budding date, the initial flowering date and the full 
flowering date between parental racemes. With these DEGs, five distinct gene co-expression modules were generated 
using WGCNA. Showing significant differential expression between parents, four candidate genes (LOC8261128, 
LOC8278994, LOC8281165 and LOC8259049) in module MEturquoise, were recognized and were annotated as RcSYN3, 
RcNTT, RcGG3 and RcSAUR76 respectively. This finding implies their potential role in regulating the growth stages of 
castor.

Conclusion In this study, numerous QTLs conferring growth stages were detected and four candidate genes were 
mined, which need to be functionally validated. The results provided a new insight into the genetic structure of ED, 
PSBD, PSFD, PSMD and PBSMD, offered the candidate genes and molecular markers for their improvement as well in 
castor.
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Introduction
Castor plant (Ricinus communis L.) is an important 
industrial oil crop with seed oil content accounting for 46 
to 55%, which is widely grown in tropical, subtropical and 
temperate regions [1]. Ricinoleic acid, the most impor-
tant component of castor oil (more than 85%), is a special 
hydroxyl fatty acid, which makes castor oil widely used 
in aerospace, machinery manufacturing, textile, printing, 
dyeing, medicine and other fields [2, 3]. With the rapid 
development of economy, the demand for castor oil is 
increasing steadily worldwide [2]. Castor oil is extracted 
by pressing castor seed, which is a commercially impor-
tant source of castor oil [4, 5]. In the past decades, 
although some excellent achievements have been made, 
the genetic research and variety improvement of cas-
tor are still lagging behind on the whole [6], resulting in 
a lower planting benefit and a decreasing planting area 
year by year [7]. Therefore, breeding high-yielding variet-
ies is of great significance to the development of castor 
industry.

Flowering date (FD) and maturation date (MD) largely 
determine castor yield, their enough cumulative days 
ensure that castor individuals have vigorous growth 
potential and harvest more plump seeds (i.e., decreased 
shriveled seed rate), which in turn increases overall yield 
[8, 9]. They have a potential role in reducing the culti-
vation cost and enhancing adaptability, especially FD, 
which is the key stage for the transition from vegetative 
growth to reproductive growth in flowering plants. In 
addition, seed filling date is also an important factor in 
determining castor yield, and seed filling duration signifi-
cantly affects seed size and seed weight [10, 11]. Under-
standing the genetic structure of castor growth stages, 
with available functional gene resources, is conducive 
to the development of breeding strategy for purposeful 
cross-breeding; moreover, it is also available to accelerate 
the breeding of early-maturing and high-yielding castor 
varieties by means of technologies genome-modification, 
transgenic, molecular markers-assisted selection and 
multi-omics [6]. Through generation mean analysis, it 
was initially found that castor FD and MD were jointly 
controlled by major genes and polygenes, and conformed 
to the additive-dominant-epistatic inheritance model [9, 
12–14]. The additive effect was predominant in castor 
FD, whereas the additive and non-additive effects were 
equal in castor MD [9, 12–14]. Furthermore, 183 possible 
flowering-related genes were tentatively found [15–17]. 
Nonetheless, few available gene resources (i.e., genes 
RcNF-YB8, PLC2, PLC2M, PLC2N, PLC4, PLC4X2 and 
PLC6) can be applied in castor molecular breeding [16, 
17].

FD and heading date (HD) have been extensively stud-
ied in Arabidopsis and rice respectively, which are sus-
ceptible to the environment (including photoperiodic, 

temperature, hormonal, stress and nutrient availability) 
[18–20]. Firstly, the photoperiodic pathway is the most 
important induction factor, which mediates HD through 
pathways GIGANTEA-Heading date 1-Heading date 3a 
(GI-Hd1-Hd3a) and Grain number, plant height, and 
heading date 7-Early heading date 1-Hd3a/RICE FLOW-
ERING LOCUS T 1 (Ghd7-Ehd1-Hd3a/RFT1) in rice, the 
former corresponding to the GI-CONSTANS-FLOWER-
ING LOCUS T (GI-CO-FT) pathway that regulates FD in 
Arabidopsis thaliana [19]. In fact, many genes that have 
been recently identified regulate rice HD by promoting/
repressing the expression of the above pathway members, 
such as Early heading date 5 (Ehd5) [21], Small Auxin 
Up RNA 56 (SAUR56) [22], Flowering Locus T-like 12 
(FTL12) [23], Late Heading Date 3 (LHD3) [24]. Secondly, 
the temperature is an effective factor in predicting HD, 
e.g., Pseudo-Response Regulator 37 (PRR37) represses 
flowering when the mean ambient temperatures fall 
below a critical threshold, while reverts to a flowering 
promoter at higher temperatures [25]. Thirdly, plant hor-
mones, e.g., auxin [26], gibberellins [27], cytokinins [28], 
abscisic acid [29], brassinosteroids [30] and ethylene [31], 
have significant effects on plant flowering; Fourthly, abi-
otic stresses (including drought, salt and temperature) 
affect plant flowering mainly via the Ghd7-Ehd1-Hd3a/
RFT1 pathway [18]. Fifthly, nutrients also affect plant 
flowering, a moderate amounts of potassium and phos-
phorus promote flowering while a low or high nitrogen 
delays flowering [32, 33]. Additionally, numerous genes 
have also been mined in other crops and even revealed 
crop-specific flowering pathways, e.g., genes, TraesC-
S2A02G181200 [34], constans of Zea mays1 (conz1) [35], 
FANTASTIC FOUR gene family members (FAFs) [36] and 
Hd3a [37], control flowering in wheat, maize, tomato and 
perilla respectively; modules BnTFL1-BnGF14nu-BnFD 
[38] and FvemiR160-FveARF18A-FveAP1/FveFUL [39] 
regulate flowering in rapeseed and woodland strawberry 
respectively.

In this study, mapping QTLs conferring emergence 
date (ED), budding date of primary spike (PSBD), flow-
ering date of primary spike (PSFD), maturation date of 
primary spike (PSMD) and maturation date of primary 
branch spike (PBSMD) was performed in populations 
F2 and BC1 with methods composite interval mapping 
(CIM) and inclusive composite interval mapping (ICIM); 
And then, transcriptome sequencing on racemes of both 
parents at different stages was conducted for mining can-
didate genes within QTL clusters. It is expected to pro-
vide a reference for molecular marker-assisted selection 
and genetic function identification of growth stages in 
castor.
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Materials and methods
Materials
Populations F2 and BC1 were constructed in a short cycle, 
with low cost and simple operation; moreover, the for-
mer had a large phenotypic segregation range and abun-
dant genetic recombination, and the latter could be used 
to validate detected QTLs. Therefore, F2 and BC1 were 
selected as the mapping populations in this study. Two 
inbred lines, 9048 (P1, 25 individuals) and 16–201 (P2, 25 
individuals), and three populations derived from them, 
i.e., F1 (25 individuals), F2 (282 individuals) and BC1 (F1 
backcross with P2, 250 individuals), were used in this 
study. 9048, a pistillate line, was the female parent of Zibi 
5, a main cultivar in China, with an earlier ED and a later 
budding date, flowering date and maturation date (Fig. 
S1); In contrast, 16–201 was a monecious line with a later 
ED, but with an earlier budding date, flowering date and 
maturation date than 9048. So, the BC1 population was 
constructed using 16–201 backcrossed to F1, in the hope 
that we could screen a group of materials within this pop-
ulation that significantly early flowering and other traits 
not much different from 9048. All the populations were 
planted at the experimental base of Guangdong Ocean 
University, Mazhang, Zhanjiang, Guangdong, China in 
September, 2020. Besides, populations P1 (15 individuals) 
and P2 (15 individuals) were planted again in November, 
2023 for collecting transcriptome sequencing samples. 
The plant and row spacing was one meter. The cultivation 
management was same as high-yield field.

Phenotype investigation
The days from sowing to castor cotyledon spreading, 
budding of primary spike, bloom of 50% female flowers 
on primary spike, maturation of 50% capsules on primary 
spike, and maturation of 50% capsules on primary branch 
spike were recorded as ED, PSBD, PSFD, PSMD and 
PBSMD respectively. Statistical description and Student’s 
t test were run by software SPSS 25 and Excel 2021.

DNA extraction, genotyping and genetic map construction
Genomic DNA was extracted through a modified 
CTAB method, as suggested by Agyenim-Boateng et al. 
(2019) [40]. Five hundred sixty-six pairs of SSR (Simple 
sequence repeats) primers (Fig. S2), with clear and stable 
bands, were used in this study, which uniformly distrib-
uted on the whole castor genome and were selected from 
1750 pairs of SSR primers developed based on the castor 
scaffolds JCVI_RCG_1.1 (BioProject: PRJNA16585) by 
the castor research group of Guangdong Ocean Univer-
sity [41]. Polymorphic primer screening and population 
genotyping were carried out according to the procedures 
described by Huang et al. (2023) [42] and Yeboah et al. 
(2021) [43] respectively.

The genetic map of F2 population was constructed 
using QTLIcimapping v4.2 software, using population 
model 7 to process population genotyping data and the 
Kosambi function to calculate the genetic distance, set-
ting the LOD threshold value to eight. The genetic map of 
BC1 population was constructed similarly with the popu-
lation model 2, and the linkage groups were determined 
according to the genetic map of F2 population and the 
marker information.

QTL analysis
Under the condition of a better balance of false positives 
and false negatives and statistical significance, in order 
to detect more QTLs, single locus QTLs were mapped 
using the CIM method in WinQTLCart v2.5 software 
and the ICIM-ADD method in QTLIcimapping v4.2 
software, with a LOD value of two [44]; Meanwhile, epi-
static QTLs were identified using the ICIM-EPI method 
in QTLIcimapping v4.2 software with default parameters 
[45]. Confidence intervals for all QTLs were determined 
with 95% confidence. The QTLs with a phenotypic varia-
tion explained (PVE) more than 10% were defined as 
main-effect QTL. All detected QTLs were named accord-
ing to the format described by Huang et al. (2023) [42], 
i.e., started with “q”, followed by trait abbreviation, chro-
mosome serial number and QTL serial number on the 
chromosome; In addition, the capital “F” and “B” were 
prefixed the QTLs detected in populations F2 and BC1 
respectively.

RNA extraction and transcriptome sequencing
Racemes of 9048 and 16–201 were collected at the bud-
ding date (BD), the initial flowering date (IFD, 25% female 
flowers bloomed on the raceme) and the full flowering 
date (FFD, 75% female flowers bloomed on the raceme) 
respectively, with three biological replicates. Total RNA 
was extracted using RNAprep Pure Plant Plus Kit (Cat 
No. DP441, TIANGEN, Beijing, China) following the 
manufacturer’s protocol. In total, 18 RNA-seq libraries 
(two parents × three sampling stages × three biological 
replicates) were constructed and sequenced on the Illu-
mina sequencing platform by Metware Biotechnology 
Co., Ltd. (Wuhan, China). Raw reads with adapter or N 
content over 10% or the number of low-quality bases 
more than 50% were filtered; And then, sequencing 
error rate and GC content distribution were conducted 
to generate clean reads. The clean reads were aligned to 
a reference castor genome ASM1957865v1 (BioProject: 
PRJNA589181) [46] by the software HISAT v2.2.1 with 
default parameters.

Candidate gene prediction and expression analysis
Differentially expressed genes (DEGs) were screened in 
the two QTL clusters with |log2 Fold Change (FC)| ≥ 1 
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and false discovery rate (FDR) ≤ 0.05. Weighted gene co-
expression network analysis (WGCNA) was performed 
on the Metware Cloud platform  (   h t t p s : / / c l o u d . m e t w a r 
e . c n     ) using default parameters. Combining the genomic 
annotation information (including BlastP annotation and 
Swissprot annotation) and available literature descrip-
tion, candidate genes were expected to be found.

Relative expression levels of the selected candidate 
genes were assayed in racemes used for transcriptome 
sequencing. Except for the internal reference gene Glyc-
eraldehyde 3-phosphate dehydrogenase (GAPDH) [43], all 
primers were designed by the online tool Primer-blast ( 
h t t p  s : /  / w w w  . n  c b i  . n l  m . n i  h .  g o v  / t o  o l s /  p r  i m e r - b l a s t /)  ( S u 
p p l e m e n t a r y Table S1). cDNA was synthesized with one 
µg total RNA using the PrimeScript™ RT reagent kit (Cat 
No. RR047A, TAKARA, Japan). Quantitative real-time 
polymerase chain reaction (qRT-PCR) was carried out 
according to the procedures described by Yeboah et al. 
(2021) [43]. The internal reference gene was amplified in 
parallel with each candidate gene, repeated three times. 
The relative expression level of the candidate genes was 
calculated using the 2−ΔΔCt method [47], and shown as 
mean and standard deviation.

Results
Phenotype analysis
PSBD, PSFD, PSMD and PBSMD of 9048 were signifi-
cantly later than that of 16–201 (p < 0.01), mostly due to 
the fact that the primary stem and branch stem of 9048 
need to form more nodes than 16–201 to grow racemes 
(Table 1, Fig. S1). As a whole, these traits (i.e., ED, PSBD, 
PSFD, PSMD and PBSMD) showed a unidirectional 
transgressive inheritance. All traits displayed a multi-
peaked continuous distribution or left skewed continuous 
distribution in populations F2 and BC1 (Fig. 1), implying 
the existence of major genes controlling ED, PSBD, PSFD, 
PSMD and PBSMD in castor [48]. There were significant 
positive correlations between these five traits in these 
two segregating populations (p < 0.01) (Fig. 1).

Genetic map construction
The genetic maps of populations F2 and BC1 contained 
63 and 33 SSR markers, with an average marker inter-
val of 10.21 cM and 13.31 cM and a LOD value of eight 
and three, including ten and six linkage groups, covered 
643.36  cM and 439.25  cM of the genome respectively 
(Fig. S3).

QTL mapping with methods CIM and ICIM
A total of eight and four QTLs were detected by the CIM 
method in populations F2 and BC1 respectively (Fig.  2; 
Table 2). They were distributed on linkage group 3, 6 and 
9, with a PVE of single QTL ranged from 0.24 to 25.46%.
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In F2 population, two, one, two and three QTLs under-
lying ED, PSBD, PSFD and PBSMD were identified, with 
the PVE of single QTL ranged from 0.24 to 25.46%, 
1.85%, 2.22–4.34% and 1.75–6.36% respectively. No QTL 
conferring PSMD was detected. Numerous minor-effect 

QTLs and one main-effect QTL (FqED6.3) with a PVE of 
25.46% were found.

In BC1 population, two QTLs conferring PSMD were 
detected with the PVE of single QTL ranged from 7.71 
to10.82%; as well as two QTLs underlying PBSMD with 

Fig. 1 Frequency distribution and correlation analysis in populations F2 (a) and BC1 (b). For correlation analysis, reflecting the strength of the correlation 
by the size of the shaded area and are colored from red (coefficient = 1) to cyan (coefficient = -1); * and ** refer to significant and extremely significant 
correlation respectively
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the PVE of single QTL ranged from 4.56 to 4.74%. No 
QTL conferring ED, PSBD and PSFD was detected. Only 
one main-effect QTL (BqPSMD6.1) with a PVE of 10.82% 
was found.

A total of 12 and one QTLs were detected by the ICIM 
method in populations F2 and BC1 respectively (Fig.  2; 
Table  2). They were distributed on linkage group 3 and 
6, with a PVE of single QTL ranged from 3.25 to 7.81%. 
Many QTLs were simultaneously detected by the CIM 
and ICIM-ADD methods.

In F2 population, three, four, four and one QTLs under-
lying ED, PSBD, PSFD and PBSMD were identified, 
with the PVE of single QTL ranged from 4.06 to 4.28%, 
3.58–7.81%, 3.25–6.49% and 3.35% respectively. No QTL 
conferring PSMD was detected. Although no main-effect 
QTLs were found, most of the QTLs detected with PVE 
approached 4%, especially, four QTLs (with a total PVE 

of 20.08%) underlying PSBD and four QTLs (with a total 
PVE of 19.07%) conferring PSFD were found.

Only one QTL (BqPSMD3.1) conferring PSMD was 
identified in BC1 population, with a PVE of 7.18%.

QTL clusters
All the detected QTLs were distributed on linkage group 
3 and 6 except for FqPBSMD9.1, although there were 
other linkage group on the genetic map with higher 
density markers than these two linkage groups (Fig. 
S3). Notably, after mapping the above QTLs to the cas-
tor genome ASM1957865v1, they were found to be 
located within the marker interval RCM1769-RCM1838 
(10,477.5 kb) on chromosome 6 and the marker interval 
RCM950-RCM917 (936.8 kb) on chromosome 3, named 
as QTL-cluster1 and QTL-cluster2 respectively (Fig.  2). 
Summarily, these two QTL clusters consisted of 18 and 
six allelic QTLs with the PVE of single QTL ranged 

Fig. 2 Distribution map of QTLs conferring growth stages in castor. For physical mapping, the black lines are the CIM mapping results and the red lines 
are that in ICIM

 



Page 7 of 13Huang et al. BMC Genomics          (2025) 26:178 

from 0.24 to 25.46% and 3.25–7.71%, shared by five and 
four traits, containing 349 and 124 open reading frames 
(ORFs) respectively (Fig. 2; Table 3), which revealed the 
existence of the gene pleiotropy or close linkage between 
genes controlling ED, PSBD, PSFD, PSMD and PBSMD, 
and the genetic foundation of significant correlation 
among these five traits in castor (Fig. 1).

Epistatic QTL analysis
In F2 population, a total of 34 pairs of epistasis QTLs 
were identified (Supplementary Table S2). Among them, 
25, one, three, four and one pairs of epistasis QTLs con-
ferring ED, PSBD, PSFD, PSMD and PBSMD, with a PVE 
of each pair of QTLs ranged from 0.71 to 6.98%, 8.88%, 
10.25–12.40%, 10.23–11.39% and 18.74% respectively. 

Table 2 QTLs detected in populations F2 and BC1

Pop Trait Method QTL LG Pos. Add. Dom. LOD PVE (%) CI MI
F2 ED CIM FqED6.1 6 10.01 -0.12 -2.13 38.41 0.24 8.5–11.1 RCM1769-RCM1843

FqED6.3 6 190.11 -0.72 0.43 3.62 25.46 176.9-191.5 RCM550-RCM1848
ICIM FqED6.1 6 2 -0.15 -0.46 2.39 4.06 0-10.5 RCM1769-RCM1843

FqED6.2 6 92 0.15 -0.50 2.44 4.28 89.5–98.5 RCM1768-RCM1784
FqED6.4 6 204 -0.05 0.53 2.86 4.16 199.5–204 RCM1848-RCM1846

PSBD CIM FqPSBD6.2 6 89.21 -2.85 -1.32 3.36 1.85 84.7-101.3 RCM1838-RCM1625
ICIM FqPSBD6.1 6 18 -2.86 2.59 2.29 3.97 8.5–41.5 RCM1769-RCM1843

FqPSBD6.2 6 90 -1.56 -3.85 5.52 4.72 89.5–95.5 RCM1768-RCM1784
FqPSBD6.3 6 202 -0.24 6.55 7.42 7.81 197.5–204 RCM1848-RCM1846
FqPSBD3.1 3 36 -1.35 4.05 3.25 3.58 33.5–41.5 RCM950-RCM933

PSFD CIM FqPSFD6.1 6 89.21 -3.16 -1.35 3.53 2.22 83.8–94.5 RCM1838-RCM1784
FqPSFD3.1 3 34.21 -1.33 3.28 2.10 4.34 25.9–40.5 RCM917-RCM933

ICIM FqPSFD6.2 6 17 -3.61 3.88 2.92 5.58 10.5–36.5 RCM1769-RCM1843
FqPSFD6.1 6 91 -1.35 -4.07 4.63 3.75 89.5–95.5 RCM1768-RCM1784
FqPSFD6.3 6 202 0.19 6.38 6.85 6.49 197.5–204 RCM1848-RCM1846
FqPSFD3.1 3 36 -1.60 4.28 3.20 3.25 33.5–40.5 RCM950-RCM933

PBSMD CIM FqPBSMD6.1 6 74.81 -1.95 -1.29 3.09 1.75 72.2–88.2 RCM1842-RCM1768
FqPBSMD6.3 6 202.01 -1.41 3.94 2.95 6.36 196.1–204 RCM1848-RCM1846
FqPBSMD9.1 9 59.11 -1.42 -0.46 2.15 2.14 49.9–68.8 RCM523-RCM42

ICIM FqPBSMD6.2 6 110 -1.30 -1.12 2.16 3.35 102.5-133.5 RCM1778-RCM398
BC1 PSMD CIM BqPSMD6.1 6 73.31 3.54 - 2.10 10.82 63.3–90 RCM1778-RCM551

BqPSMD3.1 3 29.31 2.23 - 4.24 7.71 19.5–41.3 RCM920-RCM922
ICIM BqPSMD3.1 3 29 2.10 - 3.67 7.18 21.5–40.5 RCM917-RCM931

PBSMD CIM BqPBSMD6.1 6 49.21 -3.61 - 2.26 4.56 47.8–55 RCM1772-RCM1625
BqPBSMD3.1 3 33.31 2.25 - 2.14 4.74 18.3–49.5 RCM920-RCM922

Pop, LG, Pos., Add., Dom., CI and MI are abbreviations for population, linkage group, position, additive effect, dominance effect, confidence interval, and marker 
interval respectively

The trait description is the same as in Table 1

Table 3 Information of QTL clusters
QTL cluster QTL-cluster1 QTL-cluster2
Population F2 / BC1 F2 / BC1

Position marker interval RCM1768-RCM1846 in chromosome 6 marker interval 
RCM950-RCM920 in 
chromosome 3

LOD 2.15–38.41 / 2.10–2.26 2.10–3.25 / 2.14–4.24
PVE (%) 0.24–25.46 / 4.56–10.82 3.25–4.34 / 4.74–7.71
Shared by ED, PSBD, PSFD, PBSMD / PSMD, PBSMD PSBD, PSFD / PSMD, 

PBSMD
Allelic QTL FqED6.1, FqED6.2, FqED6.3, FqED6.4, FqPSBD6.1, FqPSBD6.2, FqPSBD6.3, 

FqPSFD6.1, FqPSFD6.2, FqPSFD6.3, FqPBSMD6.1, FqPBSMD6.2, FqPBSMD6.3 / 
BqPSMD6.1, BqPBSMD6.1

FqPSBD3.1, 
FqPSFD3.1 / 
BqPSMD3.1, 
BqPBSMD3.1

Number of allelic QTL with a PVE over 4% 9 / 2 1 / 3
Main-effect QTL FqED6.3 / BqPSMD6.1 -
The trait description is the same as in Table 1
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And four QTLs (FqED6.1, FqED6.2, FqPSBD6.1 and 
FqPSFD6.2) possessed both epistatic and single-locus 
effects.

In BC1 population, a total of six pairs of epistasis QTLs 
were detected (Supplementary Table S3). Of which, two 
and four pairs of QTLs conferring ED and PSMD, with a 
PVE of each pair of QTLs ranged from 3.44 to 4.02% and 
3.32–3.54% respectively. And two QTLs (BqPSMD6.1 
and BqPSMD3.1) possessed both epistatic and single-
locus effects. No epistasis QTL underlying PSBD, PSFD 
and PBSMD was identified. With a percentage from 30.67 
to 100% (Table 4), the epistasis effect was the important 
genetic component of castor ED, PSBD, PSFD, PSMD 
and PBSMD.

Mining candidate genes combined with transcriptome 
analysis
In this study, 18 raceme RNA-seq libraries were con-
structed. After raw data filtering (i.e., filtering adaptor 
sequences and low base quality sequences), sequencing 
error rate checking (0.01%) and GC content distribution 
checking (the average GC content was 43.34%), a total 
of 140.86 G clean data were obtained by the Illumina 

sequencing, and the average Q20 and Q30 were 98.86% 
and 96.58% respectively (Supplementary Table S4). 
After the clean data were aligned to the castor genome 
ASM1957865v1, the total, mapped, unique-mapped and 
multi-mapped reads were shown (Supplementary Table 
S5).

Within QTL-cluster1 and QTL-cluster2, there were 
51, 40 and 80 DEGs associated with BD, IFD and FFD 
respectively (Fig. 3a). And a total of 110 different DEGs 
(including 24 common DEGs) were found (Fig. 3b).

WGCNA on the above 110 DEGs produced five distinct 
gene co-expression modules (Fig. 4a). Each module was 
consisted of five to 40 DEGs (Fig. 4b). Among them, the 
MEturquoise module was significantly correlated with 
all sampling stages (i.e., BD, IFD and FFD) with correla-
tion coefficients more than 0.95 (p < 0.01) (Fig. 4b), which 
implied the existence of genes controlling castor flower-
ing in this module. Furthermore, 40 DEGs in the MEtur-
quoise module were generally high-expressed in 9048, 
but low-expressed in 16–201 (Fig. 4c), suggesting that the 
target genes negatively regulated castor flowering.

Candidate gene prediction and their relative expression 
analysis
Combining the annotation information and the avail-
able literature descriptions, four candidate genes were 
screened from 40 DEGs in the MEturquoise module (Fig. 
S4, Supplementary Table S6). Among them, two genes 
(viz., LOC8261128 and LOC8278994) in QTL-cluster1 
were annotated as sister chromatid cohesion 1 pro-
tein 3 (RcSYN3) and zinc finger protein WIP2 (RcNTT) 
respectively, which were predicted to regulate the mei-
otic progression of male and female gametophytes [49–
51] and affect the expression of other flowering genesis 
factors [52, 53] respectively; the other two genes (viz., 

Table 4 Percentage of epistatic effect
Population Trait SE (%) EE (%) P (%)
F2 ED 12.50 69.49 84.76

PSBD 20.07 8.88 30.67
PSFD 19.07 34.88 64.66
PSMD - 43.59 100
PBSMD 3.35 18.74 84.84

BC1 ED - 7.46 100
PSMD 7.18 13.87 65.88

SE PVE of single locus effect, EE PVE of epistasis effect, P percentage of epistatic 
effect

The trait description is the same as in Table 1

Fig. 3 Differential gene expression analysis. (a) Up and down regulated DEGs in racemes of both parents at different stages within two QTL clusters; (b) 
Venn diagram of union DEGs in racemes of both parents within two QTL clusters
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LOC8281165 and LOC8259049) in QTL-cluster2 were 
annotated as guanine nucleotide-binding protein subunit 
gamma 3 (RcGG3) and auxin-responsive protein SAUR76 
(RcSAUR76) respectively, which were predicted to con-
trol growth stages [54, 55] and mediate plant growth [56] 
respectively.

A total of 11 DEGs (including the above candidate 
genes and randomly selected DEGs) were selected to 
conduct qRT-PCR for verifying the availability of the 
transcriptome data. The qRT-PCR results and RNA-
seq results of these 11 DEGs displayed a linear regres-
sion trend [i.e., log2FC (qRT-PCR) − 0.8497 = log2FC 
(RNA-seq), R2 = 0.8581], proving that the transcrip-
tome data were reliable (Fig.  5a). The four candidate 
genes, LOC8261128, LOC8278994, LOC8281165 and 
LOC8259049, were significantly differentially expressed 
(p < 0.01) between parents based on qRT-PCR (Fig. 5b-e) 

and generally high-expressed in 9048 (especially at FFD). 
The expression differences at BD, IFD and FFD ranged 
from 1.24 to 9.41, 1.64–5.31, 1.33–3.84 and 1.12–3.19 
times respectively.

Discussion
Genetic structure of growth stages in castor
Understanding the genetic basis of growth stages in cas-
tor will be beneficial for improving yields, reducing costs 
and breeding varieties adapted to various growing envi-
ronments and farming systems. In this study, one to four 
QTLs underlying each trait were detected in three link-
age groups (Fig.  2; Table  2, Fig. S3). The PVE of most 
QTLs was less than 5%, a few QTLs between 5% and 
10%, and only two QTLs (i.e., FqED6.3 and BqPSMD6.1) 
reached 25.46% and 10.82% respectively. Obviously, ED, 
PSBD, PSFD, PSMD and PBSMD were quantitative traits 

Fig. 4 WGCNA of the DEGs expression matrix. (a) Gene-based co-expression network analysis dendrogram; (b) The correlation heat map between five 
modules and three stages. Each row represents a module labeled with the same color as in (a), the number in each cell represents the correlation coef-
ficient and shows with color, the p-value of the corresponding module-trait is exhibited in parentheses; (c) The expression pattern diagram of DEGs in 
MEturquoise module. The upper part shows the clustering heatmap of DEGs, with high expression in red and low expression in green, and the lower part 
shows the expression patterns of DEGs in different assay samples
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jointly controlled by major genes and polygene, consis-
tent to the phenotypic genetic analysis results (Fig.  1; 
Tables  1 and 3). In the future, QTL analysis should be 
carried out in multi-populations and/or multi-environ-
ments using high-density genetic map for further vali-
dation of the above identified QTLs and detecting more 
novel QTLs; after all, QTL mapping was only performed 
in two segregating populations for one year in this study, 
and partial results were obtained with the aim of provid-
ing a reference for further research and breeding. Here, 
two advantages arose from the mapping results which 
may be applied in breeding, one is the molecular marker 
assisted selection of the two main effect QTLs (FqED6.3 
and BqPSMD6.1) to grasp the principal contradiction 
among numerous genes, another is the genetically related 
selection using the linkage between the QTLs conferring 
the same trait and different traits to realize early growth, 
rapid development and early maturing. As for the epi-
static effect, it was the important genetic component of 
ED, PSBD, PSFD, PSMD and PBSMD in castor, there is 
not yet a clear way to use it in breeding now (Table  4), 
mainly because of its complex interaction pattern and the 
serious interference from environmental factors, which 
makes it difficult to grasp precisely in breeding [57].

QTL clusters underlying growth stages in castor
In most cases, the detected QTLs cannot be simultane-
ously identified in multiple environments [42, 58], which 
raised concerns about the feasibility of studying them 
in depth. QTL cluster is favored for genetic manipula-
tion, it contains target genes (at least indicates that the 

allelic QTLs are reliable), because it consists of the allelic 
QTLs conferring multiple traits [42] or one trait in mul-
tiple environments [58] or the multiple traits in mul-
tiple environments [42]. Fortunately, two QTL clusters 
(i.e., QTL-cluster1 and QTL-cluster2) were found in this 
study (Fig. 2). QTL-cluster1, located in the marker inter-
val RCM1769-RCM1838 (10,477.5  kb), contained most 
of the detected QTLs, including 2 main-effect QTLs, in 
populations F2 and BC1 (Fig. 2; Table 3). It is worth focus-
ing on this region to carry out in-depth and detailed gene 
mining.

In order to reach certain goals such as flower syn-
chronization and simultaneous harvesting, it is some-
times not essential to significantly change FD and MD in 
local cultivars. Hence, the genes with minor effects are 
equally desirable targets for fine-tuning FD and MD in 
castor [34]. QTL-cluster2, located in the marker interval 
RCM950-RCM917 (936.8 kb) (Fig. 2; Table 3), was con-
sisted of six allelic QTLs underlying PSBD, PSFD, PSMD 
and PBSMD with each of contribution rate ranged from 
3.25 to 7.71% (Table 2), which functioned as either minor 
effect QTLs to modify the major gene or sub-major effect 
QTLs to participate in the forming of growth stages.

Strategy for mining candidate genes
With the decrease of sequencing cost, integrating QTL 
mapping with other omics analysis (especially transcrip-
tome analysis) has been widely used in candidate gene 
mining. WGCNA is one of the most popular methods to 
mine hub factors, which analyzes gene expression pat-
terns with transcriptomic data to construct core gene 

Fig. 5 Differential expression of candidate genes controlling growth stages in 9048 and 16–201. (a) Correlation between qRT-PCR and RNA-seq data; (b-
e) Relative expression levels of 4 predicted candidate genes. One-way ANOVA was performed, and ** indicates significance level at 0.01
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networks [59]. In this study, four candidate genes were 
screened out from two QTL clusters with this strategy, 
combined with annotation information and available 
literature descriptions. In the same way, the candidate 
genes regulating root development and fiber develop-
ment were mined from the corresponding QTL clusters 
in rapeseed [60, 61] and cotton [62] respectively, which 
proved the effectiveness of this strategy.

Candidate gene annotation
In this study, the four candidate genes, viz., LOC8261128, 
LOC8278994, LOC8281165 and LOC8259049, were 
annotated as RcSYN3, RcNTT, RcGG3 and RcSAUR76 
respectively (Supplementary Table S6). AtSYN3 is an 
essential gene concerning the development of male and 
female gametophytes in Arabidopsis, if knocked out, 
the meiotic progression will be repressed and the flow-
ering will be delayed in turn [49–51]. It is inferred that 
LOC8261128 (RcSYN3) delays the flowering of castor 
plant in the same way. NO TRANSMITTING TRACT 
(AtNTT) represses the expression of FRUITFULL (FUL) 
[52], which cooperates with APETALA1 (AP1) and 
CAULIFLOWER (CAL) to induce Arabidopsis flower-
ing [53]. Likewise, LOC8278994 (RcNTT) is inferred 
to delay FD of castor plant by repressing the expression 
of positive flowering regulators. The overexpression of 
Arabidopsis Guanine nucleotide-binding protein subunit 
gamma 3 (AtGG3) will shorten the vegetative growth 
and reproductive growth periods [54, 55], which implies 
that LOC8281165 (RcGG3) functions in controlling 
the growth stages in castor. In Arabidopsis, AtSAUR76 
controls leaf and root development and regulates plant 
growth by mediating cell number [56]. LOC8259049 
(RcSAUR76) is annotated as auxin-responsive protein 
SAUR76, homologous to AtSAUR76, and may function 
to regulate castor plant growth. Anyway, the significant 
differential expression between parents remains the 
important basis for the identification of candidate genes 
(Fig. 5b-e).

Conclusion
Dozens of QTLs and four candidate genes (i.e., 
LOC8261128, LOC8278994, LOC8281165 and 
LOC8259049) conferring castor ED, PSBD, PSFD, PSMD 
and PBSMD were identified in populations F2 and BC1. 
However, the real function of these candidate genes has 
not been determined. Therefore, in the future, it is nec-
essary to analyze whether these four genes affect cas-
tor FD through molecular biology technologies (such as 
gene overexpression and RNA interference), and explore 
their exact molecular mechanisms. It is conducive to 
the breeding of superior castor varieties with high yield 
and early maturity, and introduces them to high latitude 
regions.
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