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Abstract 

Background With the rapid development of high-throughput sequencing technology, high-throughput sequencing 
data has grown on a massive scale, leading to the emergence of multiple public databases, such as EBI and GEO. Con-
ducting secondary mining of high-throughput sequencing data in these databases can yield more valuable insights. 
Meta-analysis can quantitatively combine high-throughput sequencing data from the the same topic. It increases 
the sample size for data analysis, enhances statistical power, and results in more consistent and reliable conclusions.

Results This study proposes a new between-study variance estimator Em . We prove that Em is non-negative 
and Em τ̂

2
m

 increases with the increase of τ̂ 2
m

 , satisfying the general conditions of the between-study variance estima-
tor. We get the DSLE2 (two-step estimation starting with the DSL estimate and the Em in the second step) random-
effects meta-analysis model based on the between-study variance estimator Em. The accuracy and a series of evalu-
ation metrics of the DSLE2 model are better than those of the other 6 meta-analysis models. DSLE2 model is applied 
to lung cancer and Parkinson’s methylation data. Significantly differentially methylated sites identified by DSLE2 
model and the genes with significantly differentially methylated sites are closely related to two diseases, indicating 
the effectiveness of DSLE2 random-effects model.

Conclusions This paper propose the DSLE2 random-effects meta-analysis model based on new between-study vari-
ance estimator Em. The DSLE2 model performs well for methylation data.

Keywords Methylation sequencing data, Meta-analysis, Between-study variance, Random-effects model

Background
DNA methylation refers to the addition of a methyl 
group at the CpG site of the DNA chain [1]. DNA meth-
ylation occurs at millions of CpG dinucleotide positions 
in the genome and changes with age and the external 

environment [2]. It is an important epigenetic modifica-
tion [3]. In the correlation analysis between methylation 
and traits, HM450K (Infinium Human Methylation 450 K 
BeadChip) or other Illumina technologies use the meth-
ylated fluorescence signal intensity ( M ) and the unmeth-
ylated fluorescence signal intensity ( U ) of the CpG site 
to calculate DNA methylation levels [4]. Two commonly 
used calculation methods for methylation levels are 
β = M/(M + U) and M = log2(M/U) [5]. In the minfi 
R package, the getBeta function and getM function can 
be used directly to calculate the β value and M value of 
every probe [6].

With the development of high-throughput sequencing 
technology, multiple public databases have been formed, 
such as the GEO (Gene Expression Omnibus) data-
base and TCGA (The Cancer Genome Atlas database) 
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database [7]. People can obtain methylation sequencing 
data of the same disease from different databases [8]. Due 
to differences in experimental conditions and sample 
processing procedures, the results of methylation-trait 
association analysis of the same disease in different stud-
ies are different [9]. Meta-analysis can combine methyla-
tion data on the same topic to provide a more reliable list 
of significantly different methylation sites [10]. In meta-
analysis, datasets from independent studies with the 
same purpose often have heterogeneity [11]. In the ran-
dom-effects model, the comprehensive effect-size result 
depends on the quantification of heterogeneity between 
studies [12]. Therefore, the estimation of heterogeneity is 
the most critical step in the random-effects meta-analysis 
model [13, 14]. In addition to quantifying heterogene-
ity, investigating differences in experimental designs, 
participants, and interventions across studies can help 
to understand the causes of heterogeneity [15, 16]. This 
paper aims to estimate the size of the between-study var-
iance in a random-effects meta-analysis model.

We propose the DSLE2 meta-analysis model based 
on new between-study variance estimator Em for meth-
ylation high-throughput sequencing data. Under three 
hypothesis testing conditions, this model is compared 
with DSLR2 (two-step estimation starting with the DSL 
estimate and the R2 in the second step), DL (DerSimonian 
and Laird estimate), EB (Empirical Bayes estimate), HO 
(Hedges and Olkin estimate), RML (restricted maximum 
likelihood estimate), and SJ (Sidik and Jonkman estimate) 
random-effects meta-analysis models using sensitivity, 
and other evaluation metrics. The results show that the 
DSLE2 methylation meta-analysis model performs well 
under the first hypothesis testing condition. We apply the 
DSLE2 random-effects model to lung cancer and Parkin-
son’s methylation data, further demonstrating the reli-
ability of the DSLE2 meta-analysis model.

The proposed between-study variance estimator is 
designed to accurately quantify the true variability in 
effect sizes across studies, distinguishing it from ran-
dom error. This advancement enhances the precision 
and reliability of meta-analysis models, offering sig-
nificant benefits for research methodology, personal-
ized medicine, study design, and resource allocation. 
By implementing and validating this new estimator, we 
can achieve a clearer understanding of effect consist-
ency across studies, ultimately leading to more robust 
and generalizable conclusions. The primary purpose of 
the proposed between-study variance estimator is to 
improve the modeling of heterogeneity in methylation 
high-throughput sequencing data. FEM meta-analysis 
models often struggle to accurately capture the com-
plex variability inherent in such data due to differences 
in study design, populations, and technical procedures. 

Accurate effect size estimation is critical for identifying 
biologically significant methylation patterns and their 
potential clinical implications. To refine the estima-
tion of true effect sizes by more accurately accounting 
for between-study variance is very important. Reliable 
identification of consistent methylation markers across 
studies is also crucial for developing personalized med-
ical interventions. The improved model supports the 
discovery of biomarkers that are consistently reproduc-
ible, aiding in disease diagnosis, prognosis, and treat-
ment customization.

Methods
The random-effects model is a generalization of the 
fixed-effects model. The fixed effects model assumes 
that all studies included in the same meta-analysis 
have the same true effect size, while the random-
effects model assumes that the true effect sizes of dif-
ferent studies included in the same meta-analysis obey 
a normal distribution. The between-study variance is 
a statistic used by the random-effects model to meas-
ure the heterogeneity between studies from the same 
topic. If the between study variance is 0, the random-
effects model degenerates into the fixed-effects model. 
The between-study variance estimator of DSL (DerSi-
monian and Laird estimate) random-effects model is 
simple and the most commonly used method for esti-
mating the between-study heterogeneity. In addition 
to being easy to calculate, the between-study variance 
estimator is also suitable for effect sizes of different 
dimensions. However, in practice, due to the possible 
occurrence of negative values, DSL between-study vari-
ance estimators are often truncated. In this paper, we 
present a non-truncated estimator of between-study 
variance Em.

DSLE2 random‑effects meta‑analysis model
We propose a general heterogeneity variance estima-
tor for methylation sequencing data that is applicable 
to effect sizes at any scale and is non-negative. Assume 
that y1m, y2m, · · · , ykm are the effect sizes of k independ-
ent studies of methylation site m; Qm is a heterogeneity 
statistic for methylation site m; ωim is the weight of meth-
ylation site m for ith study in the fixed-effects meta-anal-
ysis model; ω∗

im is the weight of methylation site m for ith 
study in the random-effects meta-analysis model; σ 2

im is 
the within-study variability representing sampling errors 
of ith study; τ̂ 2m,DSL is the between-study variance estima-
tor in DSL random-effects model; µ̂m,DSL is the mean of 
effects in DSL random-effects model. And the between-
study variance estimator Em is
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where

The algorithm of DLSE2 meta-analysis model is as 
follows:

First, we use the fixed-effects model to calculate the 
weight and comprehensive effect value of each study

and

Then, we calculate the heterogeneity statistic Qm
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We use the DSL random-effects model to calculate the 
between-study variance estimator, the weight of each study, 
and the corresponding comprehensive effect size

We further calculate SMM,m

then

The weight of each study based on the between-study 
variance Em is

The comprehensive effect is

The random-effect for each study is

The variance of comprehensive effect is
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The z statistic of comprehensive effect is

The lower and upper bounds of the 100(1− α)% con-
fidence interval are

and

the p-value of one-sided test is

the p-value of two-sided test is

where �(·) is the cumulative function of the standard 
normal distribution.
Theorem  1 Assume that y1m, y2m, · · · , ynm are the 

effect sizes of n independent studies of methylation site 
m , and the between-study variance estimator Em is

where

Then,
Em(τ̂

2
m) is monotone and non-decreasing with respect 

to τ̂ 2m.
Proof It can be obtained from (3)
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So

It can be obtained from (2)

It can be obtained from (3) and (4)

It is attainable via (7)

It is available through (6), (7), (8) and (10)

So, Em(τ̂ 2m) increases with the increase of τ̂ 2m.
Theorem 2 Assume that y1m, y2m, · · · , ynm are the effect 

sizes of n independent studies of methylation site m, and 
the between-study variance estimator Em is
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Results
Simulation study
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in each category. The top 9000 methylation sites of each 
study are divided into K groups (km = 1, 2, · · · ,K ) . The 
first 9000/K  methylation sites belong to the first group 
(km = 1) , and the 9000/K + 1 to 9000 ∗ 2/K  methylation 
sites belong to the second group group (km = 2) , and so 
on, the methylation site from 9000(K − 1)/K + 1 to 9000 
methylation sites belong to the K-th group (kg = K ) , the 
9001 to 20,000 methylation sites belong to the 0th group 
(km = 0) . The algorithm for simulating data is summa-
rized as follows:

First, we randomly sampled the methylation sites of 
the c(1 ≤ c ≤ 100) th class of the k(1 ≤ k ≤ K ) th study 
k(1 ≤ k ≤ K ) , where k(1 ≤ k ≤ K ) , I200×200 is identity 
matrix, J200×200 is a matrix with all elements 1 , W−1 is 
the inverse of the Wishart distribution, and 

∑′
ck is nor-

malized to 
∑

ck , such that all its diagonal elements are 1 . 
Then, sample the methylation level of the c(1 ≤ c ≤ 100) 
th class site of the n(1 ≤ n ≤ 30) sample of the k th study 
(X ′

mc1nk
,X ′

mc2nk
, · · · ,X ′

mc200nk
)T ∼ MVN (0,

∑

ck ), 1 ≤ k ≤ K .
We performed differential methylation settings on the 

first 9000 methylation sites, randomly sampling 
δmk ∈ (0, 1) , so that K

∑

k=1

δmk = km(km = 1, 2, · · · ,K )
 . When 

δmk = 1 , site m of the k th study is a significantly differen-
tially methylated site. When δmk = 0 , site $m$ of the k th 
study is a non-significantly differential methylation site. 
This paper conducts random sampling µmk ∼ U(0.5, 3) . 
The methylation level of the control group remains 

unchanged, and the methylation expression level of the 
experimental group is Ymnk = X

′
m(n+N )k

+ µmk ∗ δmk
 , where 

1 ≤ m ≤ 9000, 1 ≤ n ≤ 15, 1 ≤ k ≤ K .
We compared the distribution of between study vari-

ance estimators of the DSLE2 random-effects model 
and six other meta-analysis models. As can be seen 
from Fig.  1, compared with the other six random-
effects models, the between-study variance estima-
tors of the DSLE2 meta-analysis model is relatively 
concentrated. The between-study variance estimators 
of DSLE2, DL, EB, HO, RML, and SJ random-effects 
models are mostly below 0.5. Compared with the other 
6 random-effects models, the DSLE2 random-effects 
model has a relatively larger number of between-study 
variances distributed around 0.

We also compared the accuracy, false negative rate, 
negative prediction rate, recall rate, Matthews correla-
tion coefficient, PCMiss (Prediction-conditioned miss) 
value, SAR value, and F value of the DSLE2 meta-analy-
sis model with DL, EB, HO, RML, and SJ meta-analysis 
models under three hypothesis.

Accuracy
We compared the accuracy of seven random-effects 
models under three hypothesis (see Fig. 2, Figure S1 and 
Figure S2). Under the first hypothesis, the DSLE2 meta-
analysis model has the highest accuracy, the SJ random-
effects model has the lowest accuracy, and the DSLR2, 

Fig. 1 Violin plot of between-study variance for seven random-effects meta-analysis models
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DL, EB, HO, and RML meta-analysis models have the 
similar accuracy. The accuracy of the DSLR2, DL, EB, 
HO, RML, and SJ meta-analysis models decreases as 
the number of studies increases. There is no obvious 
decreasing trend as the number increases for DSLE2 
random-effects model. Under the second hypothesis, 
the DSLE2 meta-analysis model has the lowest accu-
racy, the SJ meta-analysis model has the highest accu-
racy.The accuracy of the DSLR2, DL, EB, HO, RML, and 
SJ meta-analysis models increases with the number of 
studies increases. Under the third hypothesis, the DSLE2 
random-effects model has the lowest accuracy, and the 
DSLR2 meta-analysis model has the highest accuracy.

False negative rate
The false negative rate, also known as the second type 
error rate, refers to the proportion of the number of sig-
nificantly differential methylation sites predicted by the 
model as non-significantly differential methylation sites 
to the number of all significantly differential methyla-
tion sites. We compared the false negative rate of seven 
meta-analysis models under three hypothesis (see Fig. 3, 
Figure S3 and Figure S4).

Under the first hypothesis, the false negative rate of 
the DSLE2 model is the lowest among the seven ran-
dom-effects models; the false negative rate of the SJ 
model is the highest among the seven random-effects 

Fig. 2 Plot of accuracy for 7 random-effects meta-analysis models under the first hypothesis

Fig. 3 Plot of false negative rate curves for seven random-effects meta-analysis models under the first hypothesis
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models. The false negative rates of the DSLR2, DL, EB, 
HO, and RML meta-analysis models are relatively close, 
and they are all lower than the false-negative rates of 
the SJ meta-analysis model, and they are all higher 
than the false negative rate of the DSLE2 meta-anal-
ysis model. The false negative rate of the DSLR2, DL, 
EB, HO, RML, and SJ meta-analysis models increases 
with the increase of the number of studies. Under the 
second hypothesis, the false negative rate of the DSLE2 
meta-analysis model is the lowest among the seven ran-
dom-effects models, and the false negative rates of the 
DL, EB, HO, and RML random-effects models are rela-
tively close, and the false negative rate of the SJ model 
is the highest among the seven meta-analysis models.

Under the third hypothesis, the false negative rate of 
the DSLE2 meta-analysis model is the lowest among the 
seven meta-analysis models; the false negative rate of the 
SJ random-effects model is the highest among the seven 
random-effects models. The false negative rates of the 
DSLR2, DL, EB, HO, and RML meta-analysis models are 
relatively close, and they are all lower than the false neg-
ative rates of the SJ random-effects model, and they are 
all higher than the false negative rate of the DSLE2 meta-
analysis model. The false negative rate of the DSLR2, DL, 
EB, HO, RML, and SJ random-effects models increases 
with the increase of the number of studies.

Matthews correlation coefficient
Matthews correlation coefficient is the correlation coef-
ficient that describes the actual class and the predicted 
class. We compared the Matthews correlation coef-
ficients of seven random-effects models under three 
hypothesis testing conditions (see Fig.  4, Figure S5 and 

Figure S6). Under the first hypothesis, when the num-
ber of studies is greater than 4, the Matthews correlation 
coefficient of the DSLE2 meta-analysis model is the high-
est among the Matthews correlation coefficient of the 
seven random-effects models. The Matthews correlation 
coefficient of SJ meta-analysis model is the lowest among 
the Matthews correlation coefficients of the seven meta-
analysis models. The Matthews correlation coefficients 
of DSLR2, DL, EB, HO, and RML random-effects models 
are close, which are lower than the Matthews correlation 
coefficient of the DSLE2 meta-analysis model and higher 
than the Matthews correlation coefficient of the SJ ran-
dom-effects model. The Matthews correlation coefficient 
of DSLR2, DL, EB, HO, RML, SJ meta-analysis models 
decreases as the number of studies increases. Under the 
second hypothesis, the Matthews correlation coefficient 
of the DSLE2 random-effects model is the lowest among 
the Matthews correlation coefficients of the seven meta-
analysis models; the Matthews correlation coefficient of 
the SJ random-effects model is the highest among the 
Matthews correlation coefficients of the seven random-
effects models; the Matthews correlation coefficients of 
DSLR2, DL, EB, HO, and RML meta-analysis models are 
relatively close. The Matthews correlation coefficients of 
HO, RML, and SJ random-effects models increase with 
the increase of the number of studies. Under the third 
hypothesis, the Matthews correlation coefficient of the 
DSLE2 random effects meta-analysis model is the low-
est among the Matthews correlation coefficients of the 
seven meta-analysis models, and the Matthews correla-
tion coefficient of the DSLR2 meta-analysis model is the 
highest among the Matthews correlation coefficients of 
the seven random-effects meta-analysis models.

Fig. 4 Plot of Matthews correlation coefficient curves for 7 random-effects models under the first hypothesis
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Negative predictive value
Negative predictive value refers to the proportion of 
the number of non-significantly differentially methyl-
ated sites correctly predicted by meta-analysis model 
to the number of all non-significantly differentially 
methylated sites predicted by meta-analysis model. 
We compared the negative predictive values of seven 
meta-analysis models (see Fig. 5, Figure S7 and Figure 
S8). Under the first hypothesis, the negative predictive 
values of the DSLE2 meta-analysis model are the high-
est among seven random-effects models; the negative 
predictive values of the SJ meta-analysis model are the 
lowest among seven random-effects models. The nega-
tive predictive values of the DSLR2, DL, EB, HO, and 
RML random-effects models are relatively close, and 
they are all lower than the negative predictive value of 
the DSLE2 random-effects model and higher than the 
negative predictive values of SJ random-effects model. 
Under the second hypothesis, the negative predictive 
values of the SJ meta-analysis model are the lowest 
among the seven random-effects models. The negative 
predictive values of the DL, EB, HO, and RML random-
effects models are relatively close. Under the third 
hypothesis, the negative predictive values of the DSLE2 
meta-analysis model are the highest among the seven 
random effects models; the negative predictive values 
of the SJ random-effects model are the lowest among 
the seven meta-analysis models. The negative predic-
tive rates of DSLR2, DL, EB, HO, and RML meta-analy-
sis models are relatively close.

Prediction‑conditioned miss
PCMiss (Prediction-Conditioned Miss) refers to the pro-
portion of the number of sites incorrectly predicted as 
non-significantly differentially methylated to the num-
ber of all non-significantly differentially methylated 
sites predicted by the meta-analysis model. We com-
pared the PCMiss values of seven meta-analysis models 
under three hypothesis (see Fig. 6, Figure S9 and Figure 
S10). Under the first hypothesis, the PCMiss values of 
the DSLE2 random-effects model are the lowest among 
the PCMiss values of the seven meta-analysis models; 
the PCMiss values of the SJ random-effects model are 
the highest among the seven meta-analysis models. The 
PCMiss values of the DSLR2, DL, EB, HO, and RML 
random-effects meta-analysis models are relatively close; 
the PCMiss values of the seven models all increase with 
the increase of the number of studies. Under the second 
hypothesis, the PCMiss values of the SJ model are the 
highest among the PCMiss values of the seven models. 
The PCMiss values of the DL, EB, HO, and RML ran-
dom-effects models are close. Under the third hypothesis 
testing, the PCMiss values of the DSLE2 model are the 
lowest among the PCMiss values of seven random effects 
meta-analysis models; the PCMiss values of the SJ meta-
analysis model are the highest among the seven random-
effects models. The PCMiss values of the DSLR2, DL, EB, 
HO, and RML meta-analysis models are relatively close.

Recall
This paper measured the recall rates of seven random-
effects models under three hypothesis (see Fig. 7, Figure 

Fig. 5 Plot of negative predictive value curves for 7 random-effects models under the first hypothesis
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S11 and Figure S12). Under the first hypothesis, the recall 
rates of the DSLE2 meta-analysis model are the highest 
among seven random effects meta-analysis models; the 
recall rates of the SJ random-effects model are the low-
est among seven meta-analysis models. The recall rates of 
the DL, EB, HO, and RML meta-analysis models are rela-
tively close. The recall rates of the DSLR2, DL, EB, HO, 
RML, and SJ random-effects models decreases as the 
number of studies increases. Under the second hypoth-
esis, the recall rates of the DSLE2 model are the high-
est among the seven meta-analysis models, followed by 
the recall rates of the DSLR2 model, and the recall rates 
of the SJ are the lowest among seven models. The recall 

rates of the DL, EB, HO, and RML random-effects mod-
els are relatively close. Under the third hypothesis, the 
recall rates of the DSLE2 meta-analysis model are the 
highest among the seven random-effects models, and the 
recall rate of the SJ model is the lowest among the seven 
meta-analysis models. The recall rates of DSLR2, DL, EB, 
HO, and RML random-effects models are relatively close.

SAR
SAR combines accuracy, AUC (the area under the 
receiver operating characteristic curve) value, and root 
mean square error. The SAR value is more robust than a 
single indicator. We computed the SAR values of seven 

Fig. 6 Plot of PCMiss-value curves for 7 random-effects models under the first hypothesis

Fig. 7 Plot of recall curves for 7 random-effects meta-analysis models under the first hypothesis
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meta-analysis models under three hypothesis (see Fig. 8, 
Figure S13 and Figure S14). Under the first hypothesis, 
the SAR values of the DSLE2 random-effects model are 
the highest among the SAR values of seven meta-analysis 
models, and the SAR values of SJ model are the lowest 
among the seven random-effects models. The SAR values 
of DL, EB, HO, and RML meta-analysis models are rela-
tively close. Under the second hypothesis, the SAR values 
of DSLR2 random-effects model are the highest among 
the SAR values of seven meta-analysis models, and the 
SAR values of the DSLE2 model are lowest among the 
seven random-effects models. The SAR values of the 
DL, EB, HO, RML, and SJ random-effects meta-analysis 

models are relatively close. The SAR values of the seven 
meta-analysis models all increase with the increase of the 
number of studies. Under the third hypothesis, the SAR 
values of the DSLR2 meta-analysis model are the highest 
among the SAR values of seven random-effect models. 
Moreover, the SAR values of the DL, EB, HO, and RML 
meta-analysis models are relatively close.

Precision‑recall F measure
Precision and recall indicators sometimes conflict 
with each other. In this case, precision and recall 
indicators need to be considered comprehensively. 
The most common method is to calculate the F value 

Fig. 8 Plot of SAR-value curves for 7 random-effects meta-analysis models under the first hypothesis

Fig. 9 Plot of F-value curves for 7 random-effects meta-analysis models under the first hypothesis
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of precision and recall. We computed the F  values of 
7 random-effects models under three hypothesis (see 
Fig.  9, Figure S15 and Figure S16). Under the first 
hypothesis, the F values of the DSLE2 random-effects 
model are the highest among the F values of seven 
random-effects models, and the F values of the SJ 
meta-analysis model are the lowest among the seven 
meta-analysis models. The F values of DSLR2, DL, 
EB, HO, and RML meta-analysis models are relatively 
close. Under the second hypothesis, the F values of 
the SJ meta-analysis model are the highest among the 
F values of seven random-effects models, and the F 
values of the DSLE2 random-effects model are the 
lowest among the seven meta-analysis models. The 
F values of DSLR2, DL, EB, HO, and RML random-
effects models are relatively close. Under the third 
hypothesis, the F values of the DSLE2 random-effects 
model is the lowest among the F values of seven 
meta-analysis models.

Application of DSLE2 random‑effects meta‑analysis model 
to lung cancer methylation data
Lung cancer is the second most common cancer 
worldwide and the most common cancer among men. 
According to the World Cancer Statistics Center, more 
than 2.2 million cases of lung cancer occur every year 
[17]. We collected three sets of lung cancer methyla-
tion data in the GEO database: GSE63704, GSE83842, 
and GSE85845. The EPIC and 450  K methylation data 
of lung cancer in TCGA database were also collected. 
A total of 927 samples and 156,680 methylation sites 
were analyzed. The distribution of the number of sig-
nificantly differential methylation sites determined 
by 7 random-effects models is shown in the Fig.  10. 
The number of significantly differential methylation 
sites determined by the DSLE2 random-effects model 
is more than the number of significantly differential 
methylation sites determined by DSLR2 and is less than 
the number of significantly differential methylation 
sites determined by DL, EB, HO, RML, and SJ meta-
analysis models.

Fig. 10 Histogram of the number distribution of significantly differential methylation sites identified by 7 random-effects meta-analysis models
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The DSLE2 random-effects model identified 59,146 
significantly differential methylation sites, of which 2,230 
significantly differential methylation sites distributed in 
1stExon of 3,039 genes, and 2,003 significantly differen-
tial methylation sites were distributed in 3’UTR of 1,660 
genes, and 4899 significantly differentially methylated 
sites distributed in the 5’UTR of 2754 genes, and 21,029 
significantly differentially methylated sites distributed 
in the Body of 7056 genes, and 7500 significantly differ-
entially methylated sites distributed in the TSS1500 of 
5113 genes, and 6210 significantly differentially methyl-
ated sites distributed in TSS200 of 3963 genes. Research 
shows that lung cancer is closely related to A2BP1 [8], 
AACS [18], DNAH10 [19], PINK1 [20], and other genes 
with significantly differential methylation sites. The sig-
nificantly differentially methylated sites identified by the 
DSLE2 meta-analysis model may affect the expression of 
the corresponding genes.

Application of DSLE2 meta‑analysis model to Parkinson’s 
methylation data
Parkinson’s disease (PD) is a chronic neurodegenerative 
disease [21]. According to the World Health Organi-
zation (WHO), there were 2.5 million and 6.1 million 
cases of PD worldwide in 1990 and 2016 [22]. However, 

the number of PD patients increased significantly to 8.5 
million, and it is estimated that by 2040, the number of 
PD patients worldwide may exceed 17 million [23]. In 
2019, PD caused 5.8 million disabilities, an 81% increase 
since 2000, and 329,000 deaths, an increase of more than 
100 percent since 2000 [23]. PD causes serious trouble 
to people’s life, but there is no clear cause and effective 
treatment. DSLE2 random-effects model was used to fur-
ther study the causes of PD.

We collected five sets of PD methylation data in the 
GEO database: GSE72774, GSE72776, GSE111629, 
GSE145361 and GSE165081. A total of 3,080 samples 
and 161,261 methylation sites were analyzed. The DSLE2 
model identified 26,244 significantly differentially meth-
ylation sites (Fig.  11). Most of significantly differentially 
methylation sites identified by DSLE2, SJ, HO, DSL, 
DSLR2 meta-analysis methods were same. DSLE2 model 
independently identified 2181 significantly differentially 
methylation sites.

We further analyzed the location of significantly dif-
ferential methylation sites on genes (Figs.  12 and 13). 
Most of the significant differential methylation sites 
were located on the gene body, followed by TSS1500 
and 5’UTR (Fig.  12). Relatively few Significantly differ-
ential methylation sites were located at 3’UTR and the 

Fig. 11 Venn of significantly differential methylation sites identified by 5 random-effects meta-analysis models
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first exon (Fig.  12). Most of the significantly differential 
methylation sites are uniquely located on a single gene 
and only a small number of genes contain multiple sig-
nificantly differential methylation sites (Fig.  13). There 
are 51, 62 and 122 significantly differentially methyla-
tion sites for BCOR, HDAC4 and PRDM16, respectively. 
Research shows that PD is closely related to BCOR [24], 
HDAC4 [25], PRDM16 [26], and other genes with signifi-
cantly differential methylation sites.

Discussion and conclusion
For high-throughput methylation sequencing data, 
we proposed the DSLE2 random effects meta-analysis 
model based on the between-study variance estimator 
Em . Under the alternative hypothesis that the effect sizes 
of all studies are not 0, the DSLE2 meta-analysis model 
performs better than the other 6 random-effects models 
in terms of accuracy, negative prediction rate, recall rate, 
Matthews correlation coefficient, PCMiss value, and SAR 
value, F value.

We applied the DSLE2 meta-analysis model to the lung 
cancer methylation datasets. 59,146 significantly differ-
ential methylation sites were identified, with 2,230, 2,230 
2003, 4899, 21,029, 7500, and 6210 significantly differen-
tially methylated sites were located on 1stExon, 3’UTR, 
5’UTR, Body, TSS1500, and TSS200 of 3039, 1660, 2754, 
7056, 5113, and 3963 genes, respectively. Studies have 
shown that lung cancer is closely related to genes such as 
A2BP1, AACS, and DNAH10 with significantly differen-
tial methylation sites.

We further applied the DSLE2 meta-analysis model to 
the PD methylation datasets. 26,244 significantly differ-
entially methylation sites, with 952, 776, 2466, 7604, 3897 
and 2052 significantly differentially methylated sites were 
located on 1stExon, 3’UTR, 5’UTR, Body, TSS1500, and 
TSS200 of 703, 700, 1240, 3059, 2495 and 1267 genes, 
respectively. Research shows that PD is closely related to 
BCOR, HDAC4, PRDM16, and other genes with signifi-
cantly differential methylation sites.

This work presents a new between-study variance esti-
mator for meta-analysis model. First, the primary purpose 

Fig. 12 Histogram of significantly differential methylation sites on genes. The horizontal axis refers features, and the vertical axis is the number 
of significantly differential methylation sites
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of the between-study variance estimator is to measure the 
extent of variability in effect sizes across different studies 
that is attributable to true differences rather than within-
study sampling error. Accurately estimating between-study 
variance allows us to distinguish between variability due to 
real differences in study effects and variability due to ran-
dom error, providing a clearer understanding of the con-
sistency of the effect across studies. Second, meta-analyses 
synthesize data from multiple studies to derive conclusions 
with greater statistical power. By accurately accounting for 
between-study variance, the proposed model enhances the 
validity of meta-analytic results, leading to more trustwor-
thy conclusions. And it can improve the quality of evidence 
synthesis, promoting better decision-making in clinical 
practice, policy, and further research. Third, understand-
ing heterogeneity is key to identifying which treatments 
work best for specific populations in medical research. A 
better estimation of between-study variance can help in 
understanding consistent treatment effects, aiding in the 
development of personalized therapeutic strategies. More-
over, efficiently allocating research resources requires an 

understanding of where variability lies. By identifying true 
sources of heterogeneity, researchers and funding bodies 
can focus efforts on areas with the most significant impact, 
optimizing the use of limited resources.

In addition, after significant differential methylation 
sites identified by DSLE2 meta-analysis model, several 
software tools and platforms can be used for down-
stream analysis. These tools help in various aspects 
such as functional annotation, pathway enrichment 
analysis and so on. We can use Chip Analysis Meth-
ylation Pipeline (ChAMP) to annotate significantly 
differential methylated regions (DMRs), perform gene 
ontology (GO) analysis, and integrating with other epi-
genetic data. GREAT (Genomic Regions Enrichment of 
Annotations Tool) can be used to annotate and analyze 
the functional significance of sets of genomic regions, 
including DMRs, by associating them with nearby 
genes and functional terms. We can also use GSEA 
(Gene Set Enrichment Analysis) to do pathway enrich-
ment analysis based on significant differential methyla-
tion sites identified by DSLE2.

Fig. 13 Histogram of significantly differential methylation sites on genes. The horizontal axis is the number of significantly differential methylation 
sites, and the vertical axis is the number of genes
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Abbreviations
DSLE2  Two-step estimation starting with the DSL estimate and the Em in 

the second step
RML  Restricted maximum likelihood estimate
DSLR2  Two-step estimation starting with the DSL estimate and the R2 in 

the second step
DSL  DerSimonian and Laird estimate
SJ  Sidik and Jonkman estimate
GEO  Gene Expression Omnibus database
AUC   The area under the receiver operating characteristic curve
M   The methylated fluorescence signal intensity
U    The unmethylated fluorescence signal intensity
HM450K  Infinium Human Methylation 450 K BeadChip
TCGA   The Cancer Genome Atlas database
EB  Empirical Bayes estimate
HO  Hedges and Olkin estimate
PCMiss  Prediction-conditioned miss
WHO  World Health Organization
PD  Parkinson’s disease
1stExon  The first exon of a gene
TSS1500  200–1,500 Bases upstream of the transcriptional start site
TSS200  0–200 Bases upstream of the transcriptional start site
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