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Abstract
Background Integrating germplasm populations genotyped by different genotyping platforms via genotype 
imputation is a way to utilize accumulated genetic resources. In this study, we used 278 canola samples genotyped 
via whole-genome sequencing (WGS) at 10× coverage to evaluate the imputation accuracy of three imputation 
approaches. The optimal imputation methods were used to impute and integrate two Canola genotype datasets: 
a diverse canola collection genotyped by genotyping-by-sequencing via transcriptome (GBS-t) and a double 
haploid (DH) line collection genotyped with low-coverage WGS (skim-WGS). The genomic predictive ability (GP) 
and detection power of marker‒trait association (GWAS) of the combined population for blackleg resistance were 
evaluated.

Results The empirical imputation accuracy (r2) measured as the squared correlation between observed and imputed 
genotypes was moderate for Minimac3 when imputing from the GBS-t density to the WGS. The accuracy dramatically 
improved from 0.64 to 0.82 by removing SNPs with poor Minimac3-reported Rsq (Rsq < 0.2) quality statistics. The r2 
for GLIMPSE was higher than that for Beagle when imputing from different low-coverage to full-coverage WGS. We 
imputed and integrated the diverse canola collection and the DH lines, and the combined population showed similar 
or slightly greater predictive ability (PA) for blackleg resistance traits than did each of the single populations with 
~ 921 K SNPs. Higher marker-trait association (MTA) detection powers were indicated with the combined population; 
however, similar numbers of MTAs were discovered when each single population was combined in a meta-GWAS.

Conclusion It is feasible to impute and integrate germplasms from different sequencing platforms for downstream 
analyses. However, genetic heterogeneity across populations could add complexity to the analysis. Increasing the 
sample size by combining datasets showed slightly greater predictive ability and greater detection power in GWASs in 
the present study.

Using genotype imputation to integrate 
Canola populations for genome-wide 
association and genomic prediction 
of blackleg resistance
Huanhuan Zhao1*, Iona M MacLeod1,2, Gabriel Keeble-Gagnere1, Denise M Barbulescu1, Josquin F Tibbits1, 
Sukhjiwan Kaur1 and Matthew Hayden1,2*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-025-11250-4&domain=pdf&date_stamp=2025-3-3


Page 2 of 13Zhao et al. BMC Genomics          (2025) 26:215 

Introduction
Modern plant breeding programs require accurate and 
cheap genotyping tools when genotyping a large number 
of breeding materials. Low-cost genotyping-by-sequenc-
ing (GBS) based on reduced representation sequencing 
and high- or low-density SNP arrays are popular geno-
typing methods for breeders [1, 2]. With advances in 
sequencing technology, low-coverage whole-genome 
sequencing (skim-WGS), which does not require library 
preparation, has emerged as an alternative approach in 
genotyping [3]. Thus, it is important to investigate how to 
integrate the increasing number of genetic and genomic 
resources obtained from different sequencing platforms 
and germplasm panels to maximize their utilization in 
breeding programs.

Genotype imputation is a modern genomic tool devel-
oped to infer missing genotypes of individuals. It is widely 
used to infer sporadic missing genotypes in a dataset 
(such as in skim sequencing) or to fill in higher-density 
genotypes for individuals with lower-density genotype 
data [4]. Schmidt et al.. imputed the missing genotypes 
from a 9 K SNP chip in barley to assess the genomic pre-
diction of malting quality traits [5]. Shi et al.. conducted 
genotype imputations in two steps, first from a low SNP 
density (9  K array) to 90  K and then from 90  K to the 
exome sequence in wheat [6]. Several genotype imputa-
tion methods developed over the past two decades can 
be broadly clustered into two categories according to 
whether a reference population is needed. When a pub-
lished assembly is unavailable and genotype markers are 
unordered, the map-independent methods of imputa-
tion are adopted. This type of imputation deploys linkage 
disequilibrium (LD) information between SNP markers 
to predict missing genotypes [7, 8]. He et al. found that 
map-dependent methods had substantially greater impu-
tation accuracy than map-independent methods using 
a diverse wheat collection [9]. However, when SNPs 
are mapped to a high-quality assembly, the accuracy of 
imputing genotypes without a reference panel for low-
coverage skim-WGS reached accuracies comparable 
to the imputation with a reference panel [10]. Imputa-
tion methods with reference populations can be further 
subdivided into population-based and pedigree-based 
methods. Pedigree-based imputation requires accurate 
pedigree information to extract the identity-by-descent 
(IBD) information for imputation [11], while population-
based imputation methods mainly deploy the haplotype 
information inferred from the reference population [12]. 
Pedigree-based imputation has been shown to be advan-
tageous for biparental breeding populations, and high 
imputation accuracy has been achieved for imputing 

both descendants and parents [13, 14]. Population-based 
imputing approaches, implemented in popular imputa-
tion softwares, such as Minimac, Beagle, and Impute, 
are generally useful for imputing genotypes in unrelated 
individuals [15–17]. Torkamaneh & Belzile tested fast-
PHASE, Beagle, and Impute2 using soybean GBS and 
SNP array datasets, and reported that an imputation 
accuracy as high as 90% could be achieved [18].

The use of imputed sequence genotypes is generally 
reported to improve statistical power in genome-wide 
association studies (GWAS) [19] and genomic predic-
tion [20]. Sakhale et al.. used imputed genotypes in rice 
to identify novel candidate genes for adaptation to dry 
direct seeding in the field [21]. In ryegrass, the imputa-
tion of genotypes from low coverage to high coverage 
resulted in a meaningful increase in genomic prediction 
accuracy (up to 9%) [22]. Although the use of imputation 
to integrate datasets from different sequencing platforms 
for genomic evaluation has been widely studied in human 
and animal research [23, 24], similar studies in plants are 
relatively limited [25]. Wang et al.. proposed the first rice 
imputation pipeline to integrate different rice genetic 
resources with improved statistical power to identify 
quantitative trait loci (QTLs) via GWASs [26].

Canola (Brassica napus L.) is an oil seed crop culti-
vated globally, with major growers including the Euro-
pean Union, Canada, China, India and Australia [27]. 
One of the major diseases affecting this crop is Blackleg, 
caused by the fungal pathogen Leptosphaeria maculans, 
which can lead yield losses of up to 80% [28]. Develop-
ing canola varieties with blackleg resistance is the most 
efficient and sustainable way to combat this disease [29]. 
Genomic tools such as GWAS and genomic selection 
(GS) have been incorporated in plant breeding programs 
for germplasm enhancement and varieties development 
[30]. GWAS identifies genomic regions or loci underly-
ing genetic variation in target traits [31], whereas GS uses 
genome-wide markers to develop genomic prediction 
models to assist the selection of superior individuals with 
selected traits that have genotypes but no phenotypes 
[32]. In canola, a diverse panel of 337 canola/rapeseed 
accessions was used for GWAS and genomic prediction 
of sclerotinia stem rot (SSR) resistance, which detected 
ninety-eight significant SNPs associated with the SSR 
resistance and achieved medium to high genomic pre-
diction accuracy [33]. GWAS conducted on a set of 213 
accessions for canola blackleg resistance revealed eight 
MTAs distributed among seven chromosomes, and 
three of these MTAs explained more than 30% of the 
phenotypic variation [34]. Raman et al.. performed a 
GWAS on a diverse panel of 179 canola accessions and 
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discovered a new resistance gene, Rlm12, to L. maculans 
located on chromosome A01 and a few additional QTLs 
[35]. Genomic prediction for canola blackleg resistance 
achieved low to moderate prediction accuracy within 
both spring (0.30–0.69) and winter canola (0.19–0.71) 
populations by using 532 diverse canola accessions [36].

In this study, we collected three canola datasets geno-
typed on different platforms, the GBS-t dataset, the 
skim-WGS dataset, and the 10× WGS dataset, and we 
combined these genomic resources through imputation 
to explore the benefit of the combined dataset for GS 
and GWAS in canola blackleg resistance. Therefore, the 
first objective of this study was to evaluate the imputa-
tion performance of three imputation software programs: 
Minimac, Beagle, and GLIMPSE. The second objective 
was to impute the datasets with the best-performing 
imputation approaches and combine the datasets. The 
third objective was to investigate the performance of the 
combined dataset for GWAS and GS in canola blackleg 
resistance.

Materials and methods
Genotype datasets
The three canola genotype datasets used in our study 
have been described in previous studies: (1) a diverse 
canola collection of 638 accessions and lines (includ-
ing spring canola and winter canola types) sourced from 
the Australian grain GenBank and genotyped by GBS-t 
[37], (2) a canola double haploid (DH) line sample set 
of 1500 individuals derived from 84 different 4-way 
crosses within 97 Australian spring canola varieties and 
genotyped with skim-WGS [38], and (3) a canola core 
collection selected from the diverse population and 
genotyped with WGS at 10× coverage [37]. In addition, 
we sequenced an additional 89 winter canola, 18 spring 
canola, and 24 DH lines with 10× coverage WGS using 
the same protocol described in [37]. Information on 
these canola individuals is presented in supplementary 
Table S1.

All canola raw sequences used in the study were 
realigned to the new 2020 Darmor-bzh (B. napus) refer-
ence assembly [39] using the Burrows‒Wheeler Aligner 
(BWA) [40]. The sequence alignment and variant calling 
procedures followed the in-house scripts described in 
Malmberg et al. [37]. We applied a stringent SNP filter 
for the 10× WGS dataset and removed the sites with a 
minimum mapping quality score ≤ 30, a read depth ≤ five, 
SNPs with a missing rate > 30%, a minor allele frequency 
(MAF) < 0.03, and heterozygosity > 20%. This resulted in 
7.9  million SNPs, and sporadic missing genotypes were 
imputed by Beagle 4.0 with default parameters [16]. The 
imputed WGS set, which included a total of 278 canola 
individuals with 7.9  million SNPs, was used as the pre-
liminary imputation reference. We filtered the variants 

of the GBS-t and skim-WGS datasets with a mapping 
quality > 20, a mean read depth > 3 and a missing rate 
of < 80%. The overlapping SNPs (shared SNPs) among 
GBS-t, skim-WGS, and WGS, including tagging SNPs 
(LD_r2 = 0.95) by PLINK 1.9 [41], were generated and 
used as a confident SNP list for data integration.

Empirical imputation accuracy
There were 160 canola accessions and lines common to 
both the GBS-t and WGS imputation references. There-
fore, we used the 160 canola to evaluate the empirical 
imputation accuracy of the imputed genotypes from 
GBS-t to WGS by Minimac3 [17]. We imputed each of 
the 160 individually by a leave-one-out cross-validation 
method to maximize the size of the imputation reference. 
First, we masked the WGS genotypes of the target sam-
ple except those that overlapped between the WGS and 
GBS-t datasets. Then, we used the remaining 277 WGS 
as the imputation reference to impute the target sample-
masked genotypes to WGS by Minimac3 with the default 
parameters. The GBS-t genotypes were pre-phased by 
Eagle [42]. The empirical imputation accuracy was mea-
sured as the square of the Pearson correlation (r 2 ) 
between the imputed and observed genotypes. The con-
cordance rate was calculated as the proportion of the 
imputed genotypes matching the observed genotypes.

To assess the Minimac3 Rsq quality statistic, we per-
formed an additional validation test by randomly select-
ing 40 out of the 160 overlapping individuals to form the 
target set, and the remaining 238 individuals were used 
as the imputation reference. We repeated the process 
five times, and each time, we imputed the target set from 
GBS-t to WGS. The Minimac3 Rsq quality statistic and 
r2 for each SNP were averaged across 5 replicates. We 
grouped the Minimac3 Rsq into different bins and calcu-
lated the mean r2 in each Rsq bin to observe the relation-
ship between those two measurements.

The 24 DH lines that overlapped between WGS and the 
skim-WGS dataset were used as the target set to evalu-
ate the empirical imputation accuracy from low-coverage 
skim-WGS to full coverage (10×). The skim coverage 
level of the DH lines varied; therefore, we tested a range 
of skim coverage levels ranging from 0.2×, 0.5×, 1×, 2×, 
to 5× by down sampling the 10× coverage in silico with 
SAMtools [43]. We randomly selected 16 out of the 
24 individuals, reduced their 10× WGS coverage to the 
defined coverage, and imputed them back to full cover-
age using the remaining 262 WGS samples as the imputa-
tion reference. This process was repeated five times. Two 
imputation software were compared, Beagle 4.0 [16] and 
GLIMPSE [44], and the r2 and concordance rate were 
averaged across the five cross-validation runs.

We also used the 24 real skim-WGS sequence geno-
types as the target set to calculate the r2 for each SNP. 
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This was conducted by a 6-fold cross-validation, which 
divided the 24 individuals randomly into 6 even groups of 
four and imputed each group at a time using 274 WGS as 
an imputation reference. We repeated this cross-valida-
tion three times and reported the average r2 across differ-
ent minor allele frequency (MAF) bins.

Data integration for downstream studies
The diverse canola collection was imputed from GBS-t 
to WGS using the Eagle + Minimac3 pipeline, while 
GLIMPSE was used to impute the 1500 DH lines with 
skim-WGS to full coverage WGS. After imputation, 
three datasets were combined according to the identi-
fied shared SNPs (~ 1  M SNPs). A total of 1867 canola 
individuals with 921,734 SNP (~ 921  K) genotypes were 
retained after removing duplicated individuals and SNPs 
with poor Minimac3 Rsq values (Rsq ≤ 0.4). All samples 
information was presented in supplementary Table S1. 
We calculated the genomic relationship matrix (GRM) 
with the VanRaden method [45]. The first two principal 
components (PCs) based on GRM were plotted to review 
the integrated dataset population structure and the rela-
tive relatedness of the imputation reference to the target 
individuals.

Field trials and phenotypes
The diverse canola collection was evaluated for black-
leg resistance in 2015, and the sample details and field 
design were described by Fikere et al. [36]. Briefly, two 
field sites were established in Wimmera, Victoria, where 
all canola were planted in canola stubble from the previ-
ous year’s crop. We sowed 150 seeds per row in a ran-
domized block design with two replications per location. 
In 2018, 1200 DH lines and 200 diverse spring accessions 
were tested for blackleg resistance in two locations with 
the same experimental design and management as in the 
2015 experiment. We repeated the blackleg disease trial 
in 2021 in one location with a total of 600 lines (diverse 
accessions and DH lines). Three blackleg traits, accord-
ing to the Spring Blackleg Management Guide, were 
collected: emergence count (Eme), which is the percent-
age of the seed resulting in germinated plants 6 weeks 
after sowing; survival rate (SurvRt), which is the ratio of 
the surviving plant count at maturity to the emergence 
count; and average internal infection (AveInf ), which is 
the percentage of the black-rot-affected area of the total 
stem cross-section. Only SurvRT and AveInf were used 
in the downstream analysis of this study.

We estimated the best linear unbiased estimates 
(BLUEs) for SurvRT and AveInf at each field trial by fit-
ting the line as the fixed effect and fitting spatial adjust-
ments in the error using ASReml [46]:

 y = Xb + Zrr + Zcc + e (1)

where y is a vector of phenotypic records for each indi-
vidual; b is a vector of fixed effects, including the mean, 
individual, and replication; r and c are vectors of ran-
dom field design effects for rows and columns; e is a 
vector of random residuals, distributed as N (0, Rσ2) 
with R=

∑
r (ρ r) ⊗

∑
c (ρ c), which are the row and 

column two-dimensional covariance; and X, Zr, and Zc 
are the corresponding design matrices for b, r, and c, 
respectively.

High genetic correlations were observed among the 
trials (supplementary Table S2). Therefore, we further 
combined the BLUEs by fitting the location and year 
combination as fixed effects as in Model 1 but without 
the row and column effects.

Genomic prediction
After matching the genotypes with the phenotypes, 1724 
individuals remained, including 675 diverse canola and 
1049 DH lines. The BLUEs of 1724 canola individuals 
are present in supplementary Table S3. We estimated the 
narrow-sense heritability (h2) and model predictive abil-
ity (PA) for blackleg resistance traits with 921,734 SNPs 
(~ 921 K) for the DH lines, diverse canola, and combined 
population. Additionally, we further removed SNPs with 
heterozygous genotypes in the DH population, and a 
total of 10,710 SNPs (~ 10 K) remained. We repeated the 
h2 and PA estimation with this low-density SNP set.

The h2 were estimated using BLUEs in the GBLUP 
model as follows:

 y = Xb + Zg + e  (2)

where y is the vector of BLUEs, b is the vector of fixed 
effects, g is the vector of additive genetic effects with 
g ~ N(0, Gσg), and e is the residual with e ~ N(0, Iσe). 
Therefore, σ2

g and σ2
e are the genetic and residual vari-

ances, respectively. I is an incidence matrix, and G is 
the GRM to account for the population structure. X and 
Z are the corresponding design matrices for b and g, 
respectively.

The 5-fold cross-validation method was used to evalu-
ate the PA for blackleg resistance with model 2, and 
the PA, as a measure of model prediction accuracy was 
defined as ‘Pearson’s correlation coefficient between 
genomic estimated breeding values (GEBVs) and BLUEs 
for the validation set for each blackleg trait. Briefly, the 
DH lines were randomly divided into five equal subsets, 
and each subset was, in turn, chosen as the validation set 
and subsequently predicted by the remaining individuals 
in either the DH population or the combined population. 
We applied the same prediction processes to the diverse 
population, the prediction was repeated five times, and 
the mean PA and standard deviation (SD) were averaged 
across all 25 validation sets for each trait.



Page 5 of 13Zhao et al. BMC Genomics          (2025) 26:215 

Genome-wide association study (GWAS)
We initially investigated the LD patterns of 675 diverse 
canola, 1049 DH lines, and the combined 1724 individu-
als with 921,734 SNPs (~ 921  K). The LD between all 
pairs of SNP markers within 1  Mb of physical distance 
was calculated using PLINK 1.9 [41], and LD decay was 
plotted in R [47].

We performed GWAS with three populations (a diverse 
population with 921,734 SNPs, a DH population with 
10,710 SNPs, and a combined population with 10,710 
SNPs) for the SurvRT and AveInf traits. The mixed lin-
ear model (MLM) in the GCTA [48] can be described as 
follows:

 y = a + bx + g + e (3)

where y is the combined BLUE for each canola line, a is 
the mean, b is the allele substitution effect of the test SNP, 
x is the SNP genotype coded as 0, 1, or 2, and g and e are 
the same as those for the GBLUP model (model 2). In the 
combined population GWAS, we fitted the population as 
a fixed effect in the model to account for population dif-
ferences. In addition, we also conducted a meta-GWAS 
by using diverse and DH single-population GWASs with 
~ 10  K SNPs to compare the detection power between 
the combined population GWAS and the meta-GWAS. 
The meta-GWAS was implemented with the weighted z 
score method in METAL [49], where the weighted z score 
is proportional to the square root of the sample size for 

each of the populations. Manhattan plots were generated 
to visualize all the GWAS results in R [50]. Quantile‒
quantile (QQ) plots and the false discovery rate (FDR) 
[51] were used to determine the SNP significance thresh-
olds. A single QTL region for each trait was defined as 
the position of the most significant SNP and the 200 kb 
flanking region on either side.

Results
Empirical imputation accuracy
The empirical accuracy of imputation was assessed either 
as the squared Pearson’s correlation (r2) or the concor-
dance between imputed and observed genotypes. The r2 
values of the WGS genotypes imputed from GBS-t den-
sity by Minimac 3 are shown in Fig.  1a. The average r2 
was 0.64, with a broad range from 0.44 to 0.83, indicating 
that the r2 varied among imputed individuals. The aver-
age concordance was 0.89, with a narrow range between 
the minimum and maximum concordance (0.83 to 0.92).

The r2 for each SNP in different Minimac Rsq bins 
showed a positive trend, although the two values were 
not directly equivalent (Fig. 1b). The Minimac Rsq values 
of 0.2, 0.4, and 0.8 corresponded to r2 values of 0.58, 0.78, 
and 0.92, respectively. After removing the SNPs with 
Rsq < 0.2, the r2 improved from 0.64 to 0.82, and when we 
set the Rsq acceptable threshold to 0.4, the r2 increased 
to 0.87 (supplementary Table S4). This indicated that fil-
tering SNPs with the Minimac Rsq could improve r2 by 
discarding poorly imputed data.

Fig. 1 Boxplot of the empirical imputation accuracy (represented by Concordance and r2) (a) and the mean r2 values across different Minimac Rsq quality 
statistic bins (b). Both panels are used to visualize the performance of imputing from GBS-t density to WGS using Minimac3. We further compared the r2 
in Beagle and CLIMPSE by imputing from different skim coverages to 10× WGS (Fig. 2a). GLIMPSE outperformed Beagle in all low-coverage datasets, and 
the greatest differences were at 0.5× and 1.0×, where GLIMPSE (0.88 and 0.9) achieved 16% greater accuracy than Beagle (0.74 and 0.66). Additionally, 
GLIMPSE also had a slightly greater r2 for all MAF bins than did Beagle (Fig. 2b). The r2 was lower for SNPs with low MAFs (MAF < = 0.06) for both methods; 
however, the concordance did not change dramatically across different MAF bins in either Beagle or GLIMPSE
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Population structure of the integrated dataset
We integrated three genotype datasets after imputa-
tion with 921,734 shared SNPs (~ 921  K), which were 
more evenly distributed in the A genome than in the C 
genome (supplementary Fig S1). The population struc-
ture of 1867 individuals was assessed based on PC1 and 
PC2 of the GRM (Fig.  3). The diverse canola collection 
was further grouped into winter canola and spring canola 
according to seasonality, and PC1 clearly differentiated 
the two subgroups (spring and winter type) and the DH 
lines. The DH lines overlapped with the spring canola but 
also showed more diversity according to PC2 than did the 
spring and winter lines. The WGS imputation reference 
(the blue dot) distributed across the diverse canola and 
DH lines indicated that it fully covered the population 
diversity.

Genomic prediction
After matching canola with genotypes and phenotypes, 
1724 individuals remained. The summary statistics 
showed that the DH lines had a slightly greater mean 
SurvRT and lower mean AveInf than did the Diverse 
population (Table  1). The estimated narrow-sense heri-
tability (h2) by the GBLUP model (model 2) was moder-
ate, ranging from 0.3 to 0.53 for both blackleg traits. In 
the diverse population, the estimated h2 using ~ 921  K 
SNPs were 0.5 and 0.53 for AveInf and SurvRT, respec-
tively and they were 0.39 and 0.3 in the DH population. 
The estimated h2 were lower in the combined population 
than in the diverse population. In addition to using the 
~ 921  K SNPs for genomic prediction, we also used the 
~ 10 K SNPs, which resulted from removing all the SNPs 
with heterozygous genotypes in DH lines. The estimated 
h2 in the combined population for both traits was greater 
for ~ 921 K SNPs than for 10 K SNPs, which was the same 
trend as that in the diverse population; however, in the 

Fig. 3 Dot plots of the first two principal components (PC1, PC2) of the genomic relationship matrix (GRM) with all canola lines included in the study, 
with color-coded groups

 

Fig. 2 The average empirical imputation accuracy (r2) for imputing from different sequencing coverage to 10× WGS using Beagle and GLIMPSE (a) and 
the average r2 at different MAF bins with the full SNP dataset using Beagle and GLIMPSE (b)
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DH population, the estimated h2 using 10 K SNP density 
was approximately 0.38 and 0.42 for AveInf and SurvRT, 
respectively.

The PA did not follow the trends of estimated h2. Mod-
erate to high PAs were observed for both blackleg traits, 
ranging from 0.66 to 0.72 in all populations with ~ 921 K 
SNPs. The combined population showed a slightly greater 
PA when predicting diverse individuals than did the 
diverse population, while no improvement was observed 
when predicting DH lines. When using the ~ 10  K SNP 
dataset, the PAs to DH individuals decreased to 0.5 and 
0.52 for the AveInf and SurvRT traits, respectively, in the 
DH population but were still greater than the PAs in the 
combined population (0.44 and 0.45, respectively). The 
PAs to diverse individuals were around 0.6 for both traits 
within the diverse population; however, they decreased 
dramatically to 0.2 (AveInf ) and 0.3 (SurvRT) when pre-
dicted by the combined population (Table 1).

Genome-wide association study
The LD decay pattern differed among the diverse popu-
lation, the DH population, and the combined population 
with ~ 921 K SNPs (supplementary Fig S2). LD decayed 
at the slowest rate in the DH lines, indicating that strong 
LD and long haplotypes existed, and it decayed moder-
ately in the combined population between the LD decay 
rates in the DH lines and the diverse populations.

The Manhattan plots of GWAS with different popula-
tions and methods for both blackleg traits are shown 
in Fig.  4. According to the QQ plot (supplementary s3, 
s4) and the varied SNP numbers used in the GWAS, we 
applied different P value thresholds to identify the signifi-
cant SNPs in each population (Fig. 4; Table 2). We found 
that most of the significant SNPs were common between 
SurvRT and AveInf, which was due to the strong pheno-
typic correlation between the two blackleg traits (-0.93). 
The SNPs in red are the significant SNPs from all four 

GWAS. We observed that most of the significant SNPs 
identified in the diverse population were absent in the 
DH, combined, and meta-GWASs after SNP number 
decreased from 921 K to ~ 10 K. Several SNPs that were 
not significant in diverse populations showed significance 
in the DH, combined, or meta-GWAS. Although the 
number of significant SNPs did not increase dramatically 
in the combined population, the -log10 (P value) of some 
SNPs increased from 8 to 14 compared to those in the 
DH population.

A large number of significant SNPs were detected in 
the diverse population with ~ 921 K SNPs, and 35 puta-
tive QTL regions were identified for AveInf, while 29 
QTL regions were identified for SurvRT (Table 2). These 
putative QTLs were distributed on nearly all 19 chromo-
somes, except chromosomes A10, C02, C04, and C08 
(Fig. 4). The DH population with ~ 10 K SNPs had fewer 
significant SNPs for both traits, and they were distrib-
uted across 8 chromosomes: A03, A05, A06, C01, C03, 
C04, C07, and C09 (Fig. 4). There were 17–25 significant 
SNPs for both blackleg traits in the combined population 
GWAS and meta-GWAS, most of which overlapped with 
significant SNPs in the DH population (supplementary 
Table S5). No significant overlapping SNPs were detected 
between the diverse and DH populations for either trait; 
however, a single putative QTL for AveInf was identi-
fied on chromosome C04, which was shared among the 
diverse, DH, and combined populations. The putative 
QTL regions related to both traits are listed in supple-
mentary Table S5.

Discussion
A larger sample size will benefit genomic prediction 
and GWAS. In our study, we showed that combining 
canola individuals genotyped by different sequencing 
platforms is feasible via genotype imputation. However, 

Table 1 Summary statistics, heritability (h2), and predictive ability (PA) for blackleg traits of average internal infection (AveInf ) and 
survival rate (SurvRt)
Trait Population Sample

size
summary statistic No. of

SNPs
h2 SE Predictive Ability (SD)

Min Max Mean SD DH_PA Diverse PA
AveInf Diverse 675 -3.82 88.61 58.02 16.91 921,734 0.5 0.06 - 0.71 (0.0)

DH 1049 1.623 87.3 52.12 17.28 921,734 0.39 0.05 0.68 (0.0) -
combined 1724 -3.82 88.61 54.52 17.37 921,734 0.45 0.04 0.68 (0.0) 0.72 (0.0)
Diverse 10,710 0.43 0.06 - 0.63 (0.01)
DH 10,710 0.38 0.05 0.5 (0.01) -
combined 10,710 0.33 0.04 0.44 (0.0) 0.2 (0.02)

SurvRT Diverse 675 12.69 118.7 55.28 19.95 921,734 0.53 0.06 - 0.69 (0.01)
DH 1049 14.47 114.7 65.13 21.18 921,734 0.3 0.04 0.66 (0.0) -
combined 1724 12.69 118.7 61.45 21.29 921,734 0.4 0.04 0.66 (0.0) 0.71 (0.0)
Diverse 10,710 0.43 0.06 - 0.60 (0.01)
DH 10,710 0.42 0.05 0.52 (0.01) -
combined 10,710 0.35 0.04 0.45 (0.0) 0.3 (0.04)
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Fig. 4 Manhattan plots of the diverse, DH, and combined population and meta-GWAS for survival rate (SurvRt, left) and average internal infection (AveInf, 
right). The SNPs shown in red are all significant SNPs from all four GWAS
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the combined population with an increased sample size 
showed limited benefit for GS and GWAS.

Genotype imputation
The r2 was moderate to high for imputing to full-cover-
age WGS using Minimac and GLIMPSE, suggesting that 
imputing from low-density / coverage genotypes to high 
density / coverage WGS is feasible in canola. The diverse 
genetic background and relatively lower LD between 
SNPs could partly explain the lower accuracy observed 
for Minimac than reported for human or animal stud-
ies [52, 53]. A similar imputation accuracy of 0.71 for 
imputing from the 90 K SNP chip to the exome sequence 
was reported with different imputation methods in a 
diverse wheat collection [54]. When the Minimac Rsq 
was 0.4, the corresponding empirical r2 was around 0.78 
(r = 0.883), which was very close to the value (0.865) 
reported for sheep [55]. We found a very strong rela-
tionship between the empirical r2 and the Minimac Rsq. 
Hence, the Minimac Rsq can be used to set a threshold to 
filter SNPs that are likely poorly imputed, which is use-
ful when it is not feasible to test the empirical imputation 
accuracy.

Skim-WGS genotyping is becoming more cost-com-
petitive and is bias-free compared with SNP chips or 
complexity-reduced GBS. GLIMPSE is designed spe-
cifically for the imputation of skim-WGS datasets, and 
it integrates the haplotype information of both reference 
and target sets by computing a matrix of genotype likeli-
hoods and updating these likelihoods by iteratively run-
ning genotype imputation and haplotype phasing with a 
Gibbs sampling procedure [44]. Our results confirmed 
the advantage of GLIMPSE over Beagle for skim-WGS 
imputation, where the Beagle imputation of missing 
genotypes was largely based on phased haplotype infor-
mation in the reference set. Similar methods have been 
developed to increase the imputation accuracy of mul-
tiparent advanced generation intercrossing (MAGIC) 
populations or biparental crossing populations [56, 57]. 
In addition, several new imputation methods, such as 
practical haplotype graph pangenome databases, have 
been used to impute low-coverage WGS datasets [58]. 

The whole-genome sequence is the gold standard for 
genomic study because all the variants underlying the 
target traits are expected to be present in the genotypes. 
However, GLIMPSE and Beagle both had lower imputa-
tion accuracy at minor allele frequencies < 0.06 for the 
skim-WGS dataset. Improving the imputation accuracy 
for SNPs with very low MAFs by developing novel impu-
tation methods requires further investigation.

Genomic prediction
The successful implementation of GS in a breeding pro-
gram depends on the availability of a large reference 
population. The diverse gene-bank collections and the 
advanced breeding lines formed the basis of the reference 
populations; however, the reference size of such popula-
tions is limited [59]. In our study, the combined popula-
tion included a large number of individuals (1724 canola 
individuals), which formed the GS training population. 
However, PA was similar or slightly greater in the com-
bined population than in each of the populations with 
~ 921 K SNPs. In a multibreed reference in dairy cattle, 
a minimal advantage for genomic evaluations of multi-
breed references over single-breed was indicated [60]. 
A study of a purebred population combined with cross-
bred animals also showed that a purebred population had 
greater prediction accuracy than a combined population 
[61].

Several factors could impact the multi-population 
genomic predictive ability in our study. First, the LD 
between markers and QTLs associated with blackleg 
resistance may vary across subpopulations, or QTLs 
could segregate only in a specific subpopulation. We 
found a large number of putative QTL regions in the 
diverse population, which was in line with the findings 
of the previous study [62]. The overlap between the DH 
lines and the diverse spring canola in the PCA plot indi-
cated that the DH lines were related to the diverse pop-
ulations. Therefore, the genomic prediction of diverse 
individuals using the combined population could benefit 
from the extra genomic information added by the DH 
population [63]. In a Japanese pear tree study, a high PA 
was reported when the parent population was combined 

Table 2 Number of significant SNPs and putative quantitative trait loci (QTLs) detected by GWAS in different populations for two 
blackleg resistance traits, survival rate (SurvRt) and average internal infection (AveInf )
Trait Population Sample SNP P_value No. of Sig_SNP No. of Putative_QTL
SurvRT Diverse 675 921,734 P < 10− 4 217 29

DH 1049 10,710 P < 10− 3 20 8
combined 1724 10,710 P < 10− 3 25 11
meta_GWAS 10,710 P < 10− 3 21 10

AveInf Diverse 675 921,734 P < 10− 4 188 35
DH 1049 10,710 P < 10− 3 18 8
combined 1724 10,710 P < 10− 3 22 11
meta_GWAS 10,710 P < 10− 3 17 9
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with the full-sib breeding population [64]. When we 
reduced the SNP density from ~ 921  K to ~ 10  K, most 
of the significant signals in the Manhattan plot of the 
diverse population disappeared, which was an indication 
of low LD between SNPs and the underlying causal vari-
ants. The common significant SNPs observed between 
the combined population and DH population suggested 
that the QTLs in the combined population were mainly 
associated with the DH population. Therefore, the 
PA in the combined population of diverse individuals 
decreased significantly. The DH lines in our study showed 
a very strong LD with ~ 921 K SNPs. Although the com-
bined population showed faster LD decay than did the 
DH lines, the predicted effects in the combined popula-
tion could be dominated by the LD of the DH lines. Con-
sequently, we did not observe an increased PA for DH 
individuals in the combined population. However, when 
the SNP density decreased to ~ 10 K by removing all the 
heterozygous SNPs in the DH lines, the added hetero-
geneous diverse population could violate the LD in the 
combined population, and we detected decreased PA for 
DH individuals in the combined population.

Second, SNP density needs to be sufficient for multi-
population genomic prediction. Studies in cattle sug-
gested that a large number of SNPs are required in 
multi-bred populations to ensure that the causal muta-
tions are in high linkage disequilibrium with at least one 
SNP [65]. The SNP density should be sufficient to account 
for the relationships between all breeds [66]. In our study, 
we used the shared SNP list instead of the whole genome 
sequence SNP for data integration. The estimated h2 and 
PA for the diverse population with the shared SNP list 
were consistent with a previous study indicating that the 
~ 921 K SNP set was able to capture the genetic variation 
within the diverse population [36]. The estimated h2 and 
PA of the diverse population decreased when the ~ 10 K 
SNP was used, indicating that the SNP density was not 
sufficient to predict the performance of the diverse lines, 
although it captured a reasonable amount of genetic vari-
ation within the DH population. The combined popula-
tion showed greater predictive ability with ~ 921 K SNPs 
than with ~ 10 K SNPs for blackleg traits, indicating that 
~ 921  K SNPs were sufficient for genomic prediction in 
the combined population.

Third, model selection has an impact on the predictive 
ability for multiple populations. In a previous study on 
canola blackleg resistance, the GBLUP model performed 
slightly better than a Bayesian model (BayesR) within 
populations [36]. However, the simple assumption that all 
molecular markers shared the same effects in the GBLUP 
model may not be viable for the combined population. 
Studies in cattle have shown that the GBLUP model has 
limited or no benefit when applied to a multibreed popu-
lation [67, 68]. In our study, the haplotypes observed in 

the diverse population could be different from those in 
the DH population through recombination, and the rare 
variant in the diverse population could have a greater 
frequency in the DH lines due to crossings and selection. 
Hence, the genetic heterogeneity of the two subpopula-
tions increased the genomic complexity of the combined 
population. Lehermeier et al.. tested the heterogeneity of 
marker effects across naturally diverse populations and 
plant breeding populations and agreed that models con-
sidering population structure and admixture have greater 
predictive power [69, 70]. However, in our study, without 
sharing QTLs between the subpopulations, PA improve-
ment by model choice was limited.

Combined population GWAS
We performed GWAS in the combined population with 
10  K SNPs to identify the genomic regions associated 
with canola blackleg resistance. The increase in the sig-
nificance level of SNPs (i.e., lower P values) in the com-
bined population suggested that a larger population size 
improved the ability to detect some of the marker‒trait 
associations. This is consistent with previous studies, 
e.g., in dairy cattle, multibreed GWAS could improve the 
precision of mapping causative variants underlying milk 
production, although a significant proportion of QTLs 
are segregated within rather than across breeds [71]. The 
meta-GWASs shared the most putative QTL regions 
with the combined population in our study, indicating 
that meta-GWASs could be an alternative way to com-
bine marker‒trait associations of populations, especially 
where the raw genotypes and phenotypes cannot easily 
be shared.

The canola diverse population has been previously used 
for the GWAS of blackleg resistance, and a total of 79 
genomic regions were reported to confer potential black-
leg resistance [62]. Although the putative QTL regions 
observed in our study showed different physical positions 
in the diverse population, it could be due to the align-
ment of 2020 Darmor-bzh (B. napus) [39]. The putative 
QTL regions discovered in DH lines in our study could 
be particularly valuable, as DH lines containing these 
QTLs can be directly utilized in breeding programs. For 
example, the first known R gene for blackleg resistance 
on the C subgenome of B napus, Rlm13, located within 
the homoeologous A03/C03 region, was discovered from 
a mapping population derived from the cross CB-Telfer/
ATR-Cobbler [72]. Those two varieties were also the 
parental lines used to produce the DH lines in this study. 
We detected two putative QTLs on chromosomes A03 
and C03, which differed from the QTLs regions detected 
by the diverse population. Further annotation will be 
required to determine if these represent novel QTLs for 
blackleg resistance. The other six putative QTL regions 
located on chromosomes A05, A06, C01, C04, C07, and 
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C09 detected in the DH line population didn’t harbor 
any known R genes [73], however, GWAS with different 
diverse population have revealed significantly associated 
QTLs on those chromosomes [74, 75].

Conclusions
Our results confirmed that the Minimac3 quality statistic 
(Rsq) was useful for filtering out poorly imputed geno-
types to improve imputation accuracy. GLIMPSE was 
the preferred imputation approach compared to Beagle 
for imputing skim-WGS. We imputed and integrated two 
genotype datasets sequenced by different platforms. The 
combined population showed similar or slightly greater 
predictive ability and greater detection power for the 
marker‒trait associations.
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