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Abstract 

Background Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is an important disease of barley 
and wheat. A diverse sexual Pgt population from the Pacific Northwest (PNW) region of the US contains a high 
proportion of individuals with virulence on the barley stem rust resistance (R) gene, Rpg1. However, the evolutionary 
mechanisms of this virulence on Rpg1 are mysterious considering that Rpg1 had not been deployed in the region 
and the gene had remained remarkably durable in the Midwestern US and prairie provinces of Canada.

Methods and results To identify AvrRpg1 effectors, genome wide association studies (GWAS) were performed using 
113 Pgt isolates collected from the PNW (n = 89 isolates) and Midwest (n = 24 isolates) regions of the US. Disease 
phenotype data were generated on two barley lines Morex and the Golden Promise transgenic (H228.2c) that carry 
the Rpg1 gene. Genotype data was generated by whole genome sequencing (WGS) of 96 isolates (PNW = 89 isolates 
and Midwest = 7 isolates) and RNA sequencing (RNAseq) data from 17 Midwestern isolates. Utilizing ~1.2 million SNPs 
generated from WGS and phenotype data (n = 96 isolates) on the transgenic line H228.2c, 53 marker trait associa-
tions (MTAs) were identified. Utilizing ~140 K common SNPs generated from combined analysis of WGS and RNAseq 
data, two significant MTAs were identified using the cv Morex phenotyping data. The 55 MTAs defined two distinct 
avirulence loci, on supercontig 2.30 and supercontig 2.11 of the Pgt reference genome of Pgt isolate CRL 75-36-700-3. 
The major avirulence locus designated AvrRpg1A was identified with the GWAS using both barley lines and was delim-
ited to a 35 kb interval on supercontig 2.30 containing four candidate genes (PGTG_10878, PGTG_10884, PGTG_10885, 
and PGTG_10886). The minor avirulence locus designated AvrRpg1B identified with cv Morex contained a single can-
didate gene (PGTG_05433). AvrRpg1A haplotype analysis provided strong evidence that a dominant avirulence gene 
underlies the locus.

Conclusions The association analysis identified strong candidate AvrRpg1 genes. Further analysis to validate 
the AvrRpg1 genes will fill knowledge gaps in our understanding of rust effector biology and the evolution 
and mechanism/s of Pgt virulence on Rpg1.
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Background
Puccinia graminis f. sp. tritici (Pgt) is the causal agent of 
the disease wheat stem rust on barley (Hordeum vulgare 
L.) and wheat (Triticum aestivum L.) [1, 2]. Historically, 
Pgt caused economically devastating epidemics on both 
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cereal crops around the globe [1, 3, 4]. During the sec-
ond half of  20th century, Pgt was managed through the 
deployment of effective genetic resistance in barley and 
wheat [4, 5]. The removal of the sexual alternate host, 
barberry (Berberis vulgaris), in the Midwestern United 
States (US) and Western Europe nearly eliminated the 
Pgt sexual cycle effectively stabilizing Pgt populations in 
these regions by limiting the development of new viru-
lence gene recombination [1, 6]. However, the evolution 
of new virulent pathotypes like TTKSK (a.k.a Ug99) in 
Africa and the speed of dispersal across the continent 
reiterated the need for vigilant monitoring of Pgt sexual 
populations that can rapidly evolve virulence patterns 
that threaten global barley and wheat production [2, 7]. 
Recent stem rust outbreaks in Western Europe and their 
association with the sexual host, barberry, is alarming 
since genetic recombination during the sexual cycle can 
generate genotypes with novel virulence gene combina-
tions [8–10].

The Pacific Northwest (PNW: US states Washington, 
Idaho, Oregon, and Canadian province British Columbia) 
region of North America serves as a center of Pgt diver-
sity on the continent [11–15]. In the PNW, Pgt cycles 
between cereals, native grasses, Mahonia, and barberry 
shrubs to complete its sexual spore forming stage [12–
15]. Recently, the native shrubs endemic to the wood-
land areas of the PNW, Mahonia repens and Mahonia 
auilifolium, were shown to serve as sexual hosts of Pgt 
in addition to B. vulgaris that survived eradication in the 
PNW [13]. Virulence characterization of Pgt isolates col-
lected from Eastern Washington on the two major barley 
R-genes, Rpg1 and the rpg4/5-mediated resistance locus 
(RMRL) [15] identified isolates that are virulent on bar-
ley line Q21861, which carries both R-genes. This was 
the first report of Pgt races or isolates that were virulent 
on both major barley stem rust R-genes when stacked 
together representing the most virulent Pgt population 
on barley from across the globe.

We hypothesized that genetic reshuffling during sex-
ual reproduction of Pgt allowed both virulence genes to 
recombine in the PNW Pgt genotypes as isolates viru-
lent on each R-gene are also present in the population 
at higher frequency than the isolates virulent on both 
R-genes. These virulent genotypes not only pose a threat 
to the Washington barley industry but could be wind dis-
seminated over the Rocky Mountain and threaten pro-
duction in other major barley producing regions of North 
America. Indeed, the Pgt race QCCJB, the first North 
American isolate with virulence on barley lines contain-
ing Rpg1, that caused epidemics on barley and wheat 
during 1990s in the Midwestern US was hypothesized to 
have originated from the PNW region [12].

Rpg1, RMRL, and the recently identified Rpg7 are the 
three major wheat stem rust resistance genes in barley 
that confer all stage resistance to many North American 
pathotypes [5, 16–18]. Of these R-genes, Rpg1 is the only 
one deployed in commercial barley cultivars grown in the 
Northern Great Plains and Canadian Prairie provinces 
[5, 16]. Since the 1950s Rpg1 provided remarkably dura-
ble resistance for nearly 50 years, until Pgt race QCCJB 
emerged in the Northern Great Plains with virulence on 
barley lines containing Rpg1 [5, 12]. Rpg1 was mapped to 
the telomeric region of chromosome 7H [19] and cloned 
via a map-based strategy [16]. Rpg1 encodes a dual kinase 
domain protein with a pseudokinase domain (pK1) and 
an active kinase domain (pK2), that are both required for 
resistance [16]. Previously, two effectors, RGD and VPS9 
corresponding to the barley Rpg1 gene were identified 
from Pgt race MCCF [20, 21]. Inoculation with Pgt race 
MCCF containing these effectors resulted in phosphoryl-
ation of RPG1 as early as 5 min post inoculation, before 
spore germination (30 min), suggesting that these effec-
tors are very early elicitors of the Rpg1-mediated resist-
ance response.

Stem rust virulence/avirulence effector identifica-
tion has been slow partly due to the inability to culture 
the obligate biotrophic pathogen outside its hosts [22]. 
Till now, seven Pgt effector genes have been identified 
including AvrSr35 [23], AvrSr50 [24], AvrSr27 [25], 
AvrSr13c [26], AvrSr22 [26], RGD [20, 21], and VPS9 
[20, 21]. Several approaches including transcriptom-
ics, bi-parental mapping, and comparative genomics 
have been used to identify candidate effector loci or 
genes in fungal pathogens [27–30]. However, advances 
in high-throughput DNA sequencing have enabled 
whole genome sequencing of fungal pathogens at the 
population level, producing high density SNP markers 
which allow for high-resolution mapping via genome 
wide association studies (GWAS). This advancement in 
the high-resolution genetic characterization of fungal 
plant pathogen populations for host-pathogen genetic 
interactions allows for the rapid identification of can-
didate virulence/avirulence effector genes [31–35]. 
GWAS has been extensively used in plants and animals 
[36] but recently became a powerful tool to genetically 
map virulence/avirulence loci in plant fungal pathogens 
[31–35, 37, 38]. For example, [32] conducted a GWAS 
study on a natural population of Parastagonospora 
nodorum, a necrotrophic fungal pathogen of wheat, and 
identified novel virulence loci along with the previously 
described effector genes, SnToxA and SnTox3. Similarly, 
in another haploid fungal pathogen of wheat, Zymosep-
toria tritici, the avirulence gene Zt_8_609 was discov-
ered through genome wide association analyses [31]. 
Although the GWAS approach has increasingly been 
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utilized in haploid plant fungal pathogen populations 
the approach has seen little utilization in the dikaryotic 
cereal rusts. Recently, a similar approach, transcrip-
tome wide association study (TWAS), was performed 
using 24 Pgt isolates to identify 33 variants within 28 
genes that were associated with virulence on the bar-
ley rpg4/Rpg5-mediated resistance locus (RMRL) [30]. 
In a separate GWAS using 96 Pgt isolates, 17 Pgt loci 
were found to be associated with six stem rust resist-
ance genes in wheat [34, 35]. Once identified, aviru-
lence or virulence effectors can be utilized to aid in the 
deployment of broad-spectrum resistances in crops by 
accelerating R-gene identification, identifying specific 
interactions with host virulence targets, and provid-
ing an effective means to screen breeding materials if 
an effective delivery method is available by delimiting 
single gene-for-gene interactions [39]. Effector charac-
terization can also help elucidate evolutionary mecha-
nism of virulence acquisition in pathogens [23–25, 40]. 
For example, allele analysis of AvrSr35 among virulent 
and avirulent Pgt isolates identified that the insertion of 
a mobile element into AvrSr35 resulted in virulence on 
the wheat Sr35 gene [23].

The Pgt population characterized from eastern Wash-
ington in the PNW is dominated by genotypes that are 
virulent on barley lines containing Rpg1 (99%), contain a 
high proportion of individuals virulent on RMRL (16%), 
and 10% of the population is virulent on barley contain-
ing both Rpg1 and RMRL [15]. This raises the question 
of how this high level of virulence on barley became pre-
dominant in the population considering that neither the 
Rpg1 nor RMRL resistances were deployed in the region. 
Thus, the overarching goal of this study was to identify 
candidate Rpg1 virulence/avirulence effector genes in 
order to begin filling knowledge gaps in stem rust effec-
tor biology and the evolutionary processes that led to this 
high level of virulence on barley. Utilizing whole genome 
sequencing, RNAseq data and infection type data for 113 
Pgt isolates, 55 significant MTAs were identified cor-
responding to two unique loci in the Pgt genome that 
putatively contain AvrRpg1 effectors. Thus, Pgt loci that 
evolved to overcome Rpg1 resistance were characterized 

using genome wide association studies (GWAS) and can-
didate AvrRpg1 genes underlying these loci identified.

Methods
Barley genotypes
Five barley genotypes including the transgenic line 
H228.2c and cultivars (cvs) Morex, Golden Promise, Har-
rington, and Steptoe were used in this study (Table 1). The 
Golden Promise transgenic line (H228.2c) and cv Morex 
(CIho 15773) represent genotypes containing Rpg1 in dis-
tinct genetic backgrounds. Morex is a natural source of 
the Rpg1 gene from which the gene was originally cloned 
[16]. The Golden Promise transgenic line (H228.2c) car-
ries a single copy of the Rpg1 gene from cv Morex in the 
susceptible cv Golden Promise (GP) background [41] 
(Table  1). Wildtype cv Golden Promise (PI 343079) is a 
two-rowed malting barley developed by the Miln Marst-
ers seed company Cheshire, UK using mutational breed-
ing. Morex, is a six-rowed malting variety released by the 
University of Minnesota [42]. Steptoe (CIho 15229) is a 
six-rowed feed barley released by Washington State Uni-
versity [43]. Harrington is a two-rowed spring malting 
barley developed at the University of Saskatchewan [44]. 
Barley cultivars Steptoe, Harrington, and Golden Prom-
ise were used as susceptible checks because they are con-
sidered universal stem rust susceptible checks that do not 
carry any known stem rust R-genes [15] (Table 1). Details 
on the source, improvement status, and R-gene of the 
plant materials are provided in Table 1.

Puccinia graminis f. sp. tritici isolates
A total of 113 Pgt isolates were utilized in this study, 
including 89 from the Pacific Northwest region (PNW) 
(Washington and Idaho) and 24 from the Midwest (North 
Dakota) region of the U.S (Supplementary Table S1). The 
PNW isolates were derived from stem rust samples col-
lected from diverse hosts including barley, wheat, Maho-
nia, and barberry during the 2019–2020 growing seasons 
(Supplementary Table S1). The Midwestern isolates were 
collected as part of cereal rust surveys conducted in 
North Dakota from 1977 to 1999. Details on isolates are 
presented in Supplementary Table S1.

Table 1 Source, improvement status, and stem rust R-gene present in the barley genotypes used in this study

S.N Plant material Developer or source Improvement Status R-gene

1 Steptoe (CIho 15229) Washington State University, USA Cultivar None

2 Harrington University of Saskatchewan, Canada Cultivar None

3 Golden Promise (GP) (PI 343079) Miln Marsters seed company, Cheshire, UK Cultivar None

4 GP transgenic line (H228.2c) Washington State University, USA [41] Transgenic (Rpg1) Rpg1 + 

5 Morex (CIho 15773) University of Minnesota, USA Cultivar Rpg1 + 
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Phenotype assays
Disease phenotype data for 96 of the Pgt isolates was gen-
erated based on their infection types on the barley lines; 
WT cv Golden Promise (Rpg1 -), the cv Golden Promise 
transgenic line H228.2c (Rpg1 +), cv Morex (Rpg1 +), cv 
Steptoe (Rpg1 -), and cv Harrington (Rpg1 -). We also uti-
lized previously generated phenotype data on cv Morex 
for 17 additional Midwest isolates. Thus, disease phe-
notypes on cv Morex (Rpg1 +) was obtained for 113 Pgt 
isolates. Two Pgt races QCCJB and HKHJ with known 
disease reactions on the aforementioned barley lines 
were used as controls. Pgt race QCCJB is virulent and Pgt 
race HKHJ is avirulent on barley lines containing Rpg1 
[15].

Two seeds of each barley line were grown in contain-
ers filled with potting soil mix (Sungro Horticulture, MA, 
USA). Host genotypes were replicated three times in a 
completely randomized design. Each phenotype assay 
was conducted twice. The seedlings were grown in envi-
ronmentally controlled growth chambers set at 19 ± 1ºC 
with a 16-h (400 µm/m2) light and 8 h dark cycle. Inocu-
lations were performed when primary leaves were fully 
expanded (~ 9 days after planting). Seedlings were inocu-
lated with a suspension of light mineral oil and uredinio-
spores (0.05  mg urediniospore/plant) using atomizers 
pressured by a pump set at 30  kPa [15]. After inocula-
tion, plants were kept in mist chambers set at 19ºC, and 
100% RH with complete darkness for 18 h to facilitate the 
infection process. Seedlings were returned to the growth 
chamber and disease ratings taken at 14 days after inocu-
lations (DAI).

Stem rust infection types (ITs) were assessed for pri-
mary leaves at 14 DAI using the “modified 0–4 scale”, 
originally developed for wheat by [45]. The modifica-
tion of this 0–4 scale for barley were described by [46] 
and were based on the uredinial sizes on barley leaves. 
The description of each IT on the 0–4 scale for barley is 
explained by [47]. Barley shows a mesothetic reaction to 
Pgt where multiple ITs are observed on a single leaf. In 
this case, ITs were recorded in their order of prevalence. 
Then, the categorical phenotype scores of 0 to 4 were 
converted into numeric quantitative scores of 0 to 5 for 
the ease of virulence interpretation and association anal-
ysis [48]. A numeric quantitative disease score of < 3 was 
considered avirulent, and > 3 as virulent.

Puccinia graminis f. sp. tritici genotyping
Pathogen DNA extraction
Genomic DNA (gDNA) of each isolate (n = 96) was 
extracted from urediniospores (~ 30  mg/isolate) using 
the Quick-DNA Fungal/Bacterial Miniprep kit (Zymo 
Research) following the manufacturer’s recommended 

protocol. The integrity of gDNA was assessed on 1.2% 
agarose gel stained with gel red. gDNA with a high 
molecular weight band (~ 10–15  kb) without smear-
ing was considered as high-quality gDNA. gDNA for 
each isolate was quantified on the Qubit 4.0 fluorom-
eter using the Broad Range assay kit (ThermoFisher 
Scientific). The purity of gDNA samples were assessed 
using a NanoDrop 1000 Spectrophotometer (Ther-
moFisher Scientific). gDNA samples with 260/280 ratio 
of 1.8 ± 0.1 and 260/230 ratio of 2 ± 0.1 or above were 
considered pure DNA samples and utilized for whole 
genome sequencing library preparation.

WGS library preparation and sequencing
Whole genome shotgun sequencing libraries were pre-
pared for each of 96 isolates using the FS DNA library 
prep kit (NEB, New England Biolabs) following the 
manufacturer’s recommendations (Table  2). Briefly, 
gDNA (500  ng/sample) was randomly sheared, adap-
tor-ligated, size-selected, barcoded, PCR enriched, and 
bead cleaned to generate libraries with 250–300  bp 
insert sizes. Each isolate library was barcoded with 
unique dual indexes to facilitate multiplexing of sam-
ples for sequencing. Library fragment sizes were deter-
mined using the DNA 1000 assay on an Agilent 2100 
bioanalyzer system (Agilent technologies). Libraries 
with a single main peak around 370–420 bp and with-
out primer (80  bp) and adapter-dimer (128  bp) peaks 
were considered quality libraries for sequencing. 
Libraries (n = 96) were normalized to a 5  nM concen-
tration which was based on the average fragment size 
(bp) as determined by bioanalyzer data and DNA con-
centrations measured by the Qubit broad assay. Nor-
malized libraries were pooled together and an aliquot 
of 50  µl at 5  nM concentration was sent to Novogene 
corporation (Sacramento, CA, USA) for sequencing. 
At Novogene, the concentration of effective library 
was determined by qPCR assays before sequencing. A 

Table 2 Summary of sequencing strategy for Puccinia graminis f. 
sp. tritici isolates used in this  studya

a A total of 96 isolates were genotyped by whole-genome shotgun sequencing 
(WGSS) approach. Seventeen isolates from ND, Midwest were genotyped by 
RNA sequencing approach [30]. WA, ID, and ND refer to the states of Washington, 
Idaho, and North Dakota, respectively, from where isolates were collected

Number of isolates Genotyping Location

89 WGSS WA & ID

7 WGSS ND

96 (sub-total)
17 RNA-seq ND

113 (Total)
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150 bp paired-end sequencing run was performed uti-
lizing a single lane on a Novoseq 6000 sequencer (Illu-
mina platform).

Quality control, mapping and variant calling for WGS data
The quality of raw sequencing reads was examined using 
FastQC (v0.11.9) and low-quality reads were filtered out 
using Fastp software (v0.22.0) [49]. The Pgt isolate CRL 
75-36-700-3 reference genome was indexed using Bur-
rows-Wheeler Alignment (BWA) tool (v0.7.17). The Pgt 
isolate CRL 75-36-700-3 genome assembly represents the 
collapsed haploid assembly of two karyons of dikaryotic 
urediniospores with 392 supercontigs and a total assem-
bly size of 88.72 Mbp [50]. Quality reads were mapped 
to the indexed reference genome using the BWA-mem 
algorithm with default settings [51]. Alignment files in 
BAM format were coordinate sorted, indexed, and then 
duplicates were marked and removed using the Picard 
tools (v2.25.4). Variants were detected using the GATK 
(v4.2.5.0) tool. Briefly, per sample variant calling was 
done using GATK HaplotypeCaller then calls for all 
samples were merged using CombineGVCFs, and finally 
joint variants were called with the GenotypeGVCFs func-
tion of GATK. The raw variants were split into SNPs and 
INDELs using the SelectVariants function of GATK. 
Variants were filtered in two steps, first using the GATK 
hard filtering function and second using the VCFtools 
to generate a suite of high-quality variants. Hard fil-
tering was done using GATK VariantFiltration with 
options “QD < 2.0 || MQ < 40.0 || FS > 60.0 || SOR > 4.0 
|| MQRankSum < -12.5 || ReadPosRankSum < -8.0” for 
SNP filtering and "QD < 2.0 || FS > 200.0 || ReadPosRank-
sum < -20" for INDEL filtering. The SNPs and INDELs 
that passed the above criteria were filtered again using 
the VCFtools with parameter settings as: --minQ 30 
--maf 0.05 --min-alleles 2 --max-alleles 2 --max-missing 
1 --minDP 3 --min-meanDP 5. This generated a col-
lection of high-quality variants for the 96 Pgt isolates 
sequenced using the WGS approach. SNP variants were 
utilized for associating mapping with GPT, population 
structure and relatedness assessment, and linkage dis-
equilibrium calculation.

RNAseq library preparation and sequencing
RNA extraction, cDNA synthesis, library preparation 
and sequencing for 17 Midwest isolates was previously 
reported [30] (Table  2). In this study we utilized previ-
ously generated transcript sequence data to identify vari-
ants for 17 Midwest Pgt isolates.

Quality control, mapping and variant calling for RNAseq data
Quality control of raw sequencing reads was done as 
described for the WGS data. Quality reads were mapped 

to the CRL 75-36-700-3 reference genome using STAR 
mapper (v2.7.10a), a splice aware alignment tool [52]. 
Briefly, a genome index was build utilizing both reference 
assembly and gene annotation. Then, trimmed reads were 
mapped to the reference genome with option “--twopass-
Mode Basic”, to improve alignment to the splice junc-
tions. Alignment files in BAM format were coordinate 
sorted and indexed as described for the WGS data. Vari-
ant calling was done using GATK (v4.2.5.0). Before vari-
ant calling, RNAseq alignment was reformatted using 
the SplitNCigarReads function of GATK. This generated 
an alignment where reads containing Ns at the splicing 
events were split and mapping qualities reassigned to 
match DNA convention for GATK, HaplotypeCaller. Per 
sample variants were called using Haplotypecaller. Then, 
the sample variants of the 17 Midwestern isolates were 
merged with variants of 96 whole genome sequenced 
PNW isolates. Finally, joint variant calling was done for 
all 113 isolates using the GenotypeGVCFs function of 
GATK. Then, raw variants were processed further fol-
lowing the same procedure and parameters described 
for WGS. SNP variants obtained by combining RNAseq 
and WGS data were used for identification of marker-
trait associations (MTAs) with IT data generated for cv 
Morex.

Variants effect prediction
The SNP and Indel effects were determined and anno-
tated using SnpEff (v5.1) [53]. The SnpEff tool categorizes 
variant effects by impact into four classes: High, Moder-
ate, Low, and Modifier. The High and Moderate impact 
variants were considered detrimental, and their densities 
were determined on each supercontig (n = 392) of the 
CRL 75-36-700-3 reference genome. A detailed expla-
nation on different types of variants under these four 
classes can be found at http:// snpeff. sourc eforge. net/ 
VCFan notat ionfo rmat_ v1.0. pdf.

Variant heterozygosity and homozygosity
The proportion of homozygous and heterozygous SNP 
variants for the 96 Pgt isolates was determined using 
“stats” function of bcftools (v1.10.2) [54].

Principal component analysis (PCA)
PCA was performed on a reduced set of SNPs because 
of the computational load and run times with large data 
sets. Ten percent of the SNPs were randomly selected 
using the SelectVariants function of GATK. PCA was 
performed using the package SNPRelate [55] to describe 
the population structure of Pgt isolates (n = 96) for which 
genome wide SNP variants were available. The percent-
age of variance explained by each principal component 
was determined using the eigen values from PCA result. 

http://snpeff.sourceforge.net/VCFannotationformat_v1.0.pdf
http://snpeff.sourceforge.net/VCFannotationformat_v1.0.pdf
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Finally, new projected dimensions were visualized using 
the ggplot2 package in R.

Pgt isolates relatedness
Relatedness among the Pgt isolates was assessed utiliz-
ing 10% randomly distributed SNPs because of com-
putational difficulty to handle a large distance matrix. 
Genetic distance between Pgt isolates (n = 96) was cal-
culated using the ‘gdist’ function of the NAM package 
[56] in R. Based on the genetic distances of Pgt isolates 
clustering was performed using the hclust function and 
ward method in R. A dendrogram was constructed using 
“dendextend” package [57] with minimum number of 
clusters (k = 3) based on the lower Bayesian Information 
Criterion (BIC) value to evaluate and visualize related-
ness among isolates. Finally, a dendrogram was generated 
in circular form using the circlize package [58] in R.

Linkage disequilibrium (LD) calculation
LD was computed as squared allele frequency correla-
tions (R2) between intrasupercontig marker pairs using 
a sliding window size of 50 markers surrounding the 
current site in the Tassel software (v5.0) [59]. LD was 
performed on a reduced marker set (10%) for computa-
tional efficiency. To understand the pattern of LD decay, 
a non-linear model, y = log(x) was fitted, where x denotes 
distance between marker pairs (in kb) and y denotes R2 
value between marker pairs [34, 35].

Genome wide association studies (GWAS)
Association analysis between genotype and phenotype 
was performed using genome association and predic-
tion integrated tool (GAPIT) (v3.3) [60]. Quantitative 
disease scores were utilized as phenotype data and SNPs 
as genotype data. The mixed linear model (MLM), which 
can incorporate principal components (PCs), (Q) as fixed 
effect covariate and kinship/relatedness (K) as random 
effect covariate was run for association analysis [61]. The 
number of PCs that explained at least 25% variation were 
included in the model. Similarly, GAPIT by default incor-
porated the kinship data generated with the VanRaden 
function within the MLM model. If no significant asso-
ciation was detected with the MLM model, an additional 
model, BLINK was run. For the BLINK model [62], only 
the PCs could be incorporated as covariates. The Bonfer-
roni correction was applied to p-value (0.05) to prevent 
false association due to multiple testing of markers. The 
corrected p-value was calculated by dividing the generic 
p-value (0.05) by the total number of tested markers. The 
markers were considered significantly associated with 
phenotype only when the p-value associated with mark-
ers was lower than the corrected p-value.

Candidate effector identification
The logarithm of the odd (LOD) scores were calculated 
[LOD = -log10(p-value)] for all significant MTA SNP 
markers present on the Pgt isolate CRL 75-36-700-3 ref-
erence genome supercontigs. The LOD scores were plot-
ted along the physical position of markers to identify 
regions that harbor significant MTA (Supplementary Fig. 
S1). SNP markers flanking the significant MTA that fell 
below the significant threshold level were identified as 
flanking markers to delimit the physical regions contain-
ing candidate AvrRpg1 genes (Supplementary Fig. S1). 
The predicted gene models within the delimited regions 
were identified based on the Pgt isolate CRL 75-36-700-3 
reference genome [50] annotations and designated as 
candidate AvrRpg1 genes.

Characterization of candidate loci, underlying genes, 
and alleles
SNP and Indel densities for candidate AvrRpg1 loci were 
calculated to determine variant coverage in the region. 
Repeat features in the delimited AvrRpg1 region/loci 
were extracted using Ensembl REST API to visualize 
repeat landscape. Because the Pgt isolate CRL 75-36-
700-3 reference genome supercontigs are not anchored 
at the chromosome level, candidate AvrRpg1 gene 
sequences were BLAST (Basic Local Alignment Search 
Tool) searched against the genome assembly of the Aus-
tralian Pgt isolate Pgt21-0 [40] for which a haplotype 
phased chromosome level assembly is available. Briefly, 
the Pgt21-0 genome assembly was obtained from the 
JGI MycoCosm web portal (https:// mycoc osm. jgi. doe. 
gov/ mycoc osm/ home/ relea ses? flt= pucci nia+ grami nis) 
and a local nucleotide blast database was created using 
the makeblast function of the BLAST (v2.5.0 +) toolkit. 
Candidate gene sequences were blasted against the local 
Pgt21-0 nucleotide database using the blastn function 
of BLAST to determine presence/absence and chromo-
somal location of genes. Protein homologs of candidate 
genes were searched using the BLASTP program in the 
NCBI protein database at a threshold level of 90% iden-
tify with 90% query coverage. We also blast searched the 
candidate gene sequences against the reference assembly 
to find if these genes evolved through duplication events. 
Significant MTAs were aligned and manually assessed to 
determine the haplotype state, homozygous vs heterozy-
gous reference or alternate allele, for each locus among 
virulent and avirulent isolates to predict the dominant 
nature of avirulence or virulence. For the most signifi-
cant SNP on each gene, the correlation between SNP 
haplotypes and phenotypes was computed using the 
point bi-serial method in R. A Kruskal-Wallis test was 
performed to determine if the haplotypes of the most 

https://mycocosm.jgi.doe.gov/mycocosm/home/releases?flt=puccinia+graminis
https://mycocosm.jgi.doe.gov/mycocosm/home/releases?flt=puccinia+graminis
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significant SNP on each gene differed statistically for dis-
ease phenotypes.

Results
Pathogen phenotype
Each isolate was phenotyped for disease infection types 
(ITs) on the five barley genotypes; WT cv Golden Prom-
ise (Rpg1 -), the cv Golden Promise transgenic line 
H228.2c (Rpg1 +), cv Morex (Rpg1 +), cv Steptoe (Rpg1 
-), and cv Harrington (Rpg1 -). For the ease of virulence 
interpretation, ITs were converted to numeric disease 
scores of 0–5. Fifty-seven percent of the isolates (n = 96) 
were virulent on the cv Golden Promise transgenic line 
H228.2c (Rpg1 +) (Fig. 1, Supplementary Table S2). Dis-
ease scores of the 96 Pgt isolates on H228.2c ranged from 
0.17 to 3.69, with an average of 2.14. (Fig.  1). Eighty-
three percent of the isolates (n = 113) showed virulence 
on cv Morex (Rpg1 +), carrying the natural source of 
the Rpg1 gene (Fig. 1, Supplementary Table S2). Disease 
scores of the 113 Pgt isolates on cv Morex ranged from 
0.75 to 4.07, with a mean of 3.14 (Fig. 1). H228.2c exhib-
ited a strong immune reaction (ITs- 0, 0; or 0;1) against 
all avirulent isolates while cv Morex did not show these 

high levels of resistance in response to the avirulent iso-
lates (Fig.  1). Two control Pgt races QCCJB and HKHJ 
exhibited disease phenotype as expected where Pgt race 
QCCJB was virulent on H228.2c and cv Morex and Pgt 
race HKHJ was avirulent on both H228.2c and cv Morex. 
The susceptible checks, cvs Steptoe, Harrington, and 
Golden Promise, displayed susceptible reactions to Pgt 
races QCCJB and HKHJ as expected. However, the aver-
age disease score of the Pgt population was comparatively 
higher on Steptoe than Harrington and Golden Promise 
(Fig. 1).

Sequencing and mapping statistics
Whole genome sequencing of the 96 Pgt isolates primar-
ily collected from the PNW yielded a total of 6.4 billion 
paired end (PE) reads on a single Novogene 6000 (Illu-
mina) lane. The number of raw reads ranged from 45 to 
91 million per sample with an average of 67 million. This 
led to an average estimated genome coverage of 113 × of 
the Pgt genome as calculated by the Pgt isolate CRL 
75-36-700-3 reference genome assembly size of 88.72 Mb 
(Fig. 2A). Raw reads were quality trimmed and mapped 
to the CRL 75-36-700-3 reference genome. The mapping 

Fig. 1 Disease phenotype distribution of the Pgt isolates used in this study. Black dot in each violin indicates mean disease score. Disease scores are 
presented on a 0–5 scale. The Pgt population showed a clear unimodal disease distribution on susceptible lines, Steptoe, Harrington and Golden 
Promise (GP). A bimodal disease distribution was observed on Golden promise transgenic line (H228.2c), carrying the cv Morex source of the Rpg1 
gene. A skewed distribution was observed on Morex, carrying the natural source of the Rpg1 gene. Barley lines, Golden Promise and Golden 
Promise Transgenic are abbreviated as GP and GPT, respectively in the violin plot
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rate ranged from 82 to 94% with an average of 93% 
(Fig.  2B). The estimated genome coverage when com-
puted with mapped reads, ranged from 50 × to 106 × with 
an average of 79 × per sample (Fig. 2A). We extracted the 
unmapped reads from samples with < 90% mapping rate 
(n = 4). These reads predominantly represented thrip 
(Frankliniella occidentalis), barley (Hordeum vulgare 
Subsp. vulgare), and bacterial (Pantoea spp.) genomic 
DNA sequences. These contaminants were probably 
introduced during rust isolate increase and subsequent 
handling in the greenhouse.

For the 17 Midwest isolates, an RNAseq approach was 
used generating a total of 0.7 billion single end (SE) reads 
on an Illumina NextSeq 500 sequencer. The number of 
raw reads ranged from 33 to 82 million per sample with 

an average of 44 million. Seedling primary leaf tissues 
infected with each of the 17 Midwest Pgt isolates were 
utilized for RNA extraction, hence the raw data included 
both Pgt and barley RNAseq reads. The percentage of 
quality trimmed reads that mapped to the CRL 75-36-
700-3 reference genome ranged from 5 to 69% per sample 
with an average of 43%.

Variant statistics
Mapping of WGS reads to the CRL-75-36-700-3 refer-
ence genome and subsequent variant calling identified 
1,195,947 SNPs and 168,516 Indels among the 96 Pgt iso-
lates. The densities of variants were computed on each 
supercontig (n = 392) to determine genome-wide variant 
distribution (Fig.  3). SNP densities varied from 0 to 38 

Fig. 2 Read coverage and mapping summary for Pgt isolates (n = 96) sequenced using the whole genome sequencing approach. A Red line 
with dots indicates the genome coverage computed for each Pgt isolate using raw sequencing reads. Blue line with dots shows the genome 
coverage computed with mapped reads after quality control. B Blue and yellow dots indicate the percentage of mapped and unmapped reads, 
respectively to the reference genome, CRL 75-36-700-3. Each dot represents a Pgt isolate
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SNPs/Kb across the supercontigs (Fig. 3). Smaller super-
contigs (< 250  Kb) had uneven SNP and Indel densities 
compared to longer supercontigs (Fig. 3). The densities of 
Indels ranged from 0 to 8 Indels/Kb across the supercon-
tigs (Fig. 3). The size of Indels extended from 1 to 60 bp in 
length with the most frequent being 1 bp (33%) followed 

by 2  bp (20%), and 3  bp (14%). Smaller Indels (< 10  bp) 
accounted for 91% of total identified Indels.

Joint variant calling using the WGS for the 96 Pgt iso-
lates and RNAseq data for the 17 Midwestern isolates 
yielded a total of 136,391 SNPs and 8,238 Indels among 
the total of 113 Pgt isolates. Lower number of variants 

Fig. 3 Genomewide distribution of variants (SNPs/Indels) identified among Pgt isolates (n = 96). Red bars on the outer layer indicate the length 
of supercontigs (n = 392 supercontigs) for the Pgt reference assembly, CRL-75-36-700-3. Each axis on this layer represents 300 kb. Blue bars show 
gene densities on each supercontig. Each axis represents 1 gene/10 kb. Green and purple bars indicate SNP and Indel densities, respectively. 
Each axis represents 4 SNPs or 1 Indel per kb. Orange bars display the densities of deleterious SNPs. Each axis represents 1 SNP per kb. Grey bars 
indicate the densities of deleterious Indels. Each axis represents 1 Indel per 10 kb. Deleterious refers to high and moderate impact variants based 
on the SnpEff tool
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were detected in this combined analysis compared to 
only WGS data because the RNAseq alignments of the 
additional 17 isolates limited the variant detection to 
genic regions. Also, we did not permit any missing data, 
so variants identified outside genic regions based on 
WGS data were filtered out.

Variants effect predictions
The effects of variants were predicted using SnpEff. This 
tool outputs all possible consequences that can be caused 
by a variant in a gene’s transcript isoforms or in multi-
ple genes sharing the same promoter sequence. Thus, the 
total number of effects was greater than the total num-
ber of variants. The 1,195,947 SNPs and 168,516 Indels 
caused 4,012,622 and 643,357 effects, respectively. Vari-
ant effects were further categorized as high (0.07%), 
moderate (2.91%), low (4.60%), and modifier (92.4%) 
based on the impact they were predicted to cause in the 
genic regions. The densities of high and moderate impact 
SNPs were computed and visualized across each super-
contig (Fig. 3). The ratio of missense to silent mutations 
was 0.71 for SNP variants. A total of 1,911 nonsense 
effects (stop gained) were caused by SNPs across the Pgt 
genome. The effects of SNPs were mostly in downstream 
(34%) and upstream regions (34%) followed by intergenic 
(18%), exon (7%), intron (3%), and others (4%). High, 
moderate, low, and modifier Indel effects accounted for 
1.36%, 0.86%, 0.47%, and 97.29%, respectively, of the total 

predicted effects. Densities of high and moderate impact 
indels were calculated and visualized across each super-
contig (Fig.  3). Indel effects were primarily in upstream 
(36%) and downstream (35%) regions followed by inter-
genic (19%), intron (4%), exon (2%) and others (4%). 
Indels caused a total of 8,250 frameshift mutation within 
predicted genes across the genome.

Heterozygosity and homozygosity of SNP variants
To understand the genetic composition of Pgt isolates 
(n = 96), the proportions of homozygous and heterozy-
gous SNP variants were determined. The rate of SNP 
homozygosity extended from 49 to 69% per isolate with 
an average of 63% for the population (Fig.  4). SNP het-
erozygosity ranged from 31 to 51% per isolate with a 
population average of 37% (Fig.  4). Among the isolates 
(n = 50) collected from the alternate hosts barberry and 
Mahonia, the average rate of homozygous and heterozy-
gous SNP variants was 65% (52 to 69%) and 35% (31 to 
48%) (Fig.  4). Among isolates collected from the cereal 
hosts, barley, and wheat (n = 46), the average proportion 
of homozygous and heterozygous variants was 62% (49 
to 66%) and 38% (34 to 54%), respectively (Fig.  4). The 
six Midwest isolates (TMNK, 370-c, A-14, A-15, A-21, 
R29J) among the cereal isolates (n = 46) are believed to be 
asexual isolates [30]. The average rate of homozygous and 
heterozygous SNP variants was 60% (56 to 63%) and 40% 
(37 to 44%), respectively for the six Midwest Pgt isolates.

Fig. 4 Bar charts depicting the proportion of homozygous and heterozygous SNP variants for Pgt isolates derived from A alternate hosts (n = 50) 
and B cereal hosts (n = 46). The gold and blue portion of each bar represents the proportion of homozygous and heterozygous SNP variants, 
respectively. Dotted lines indicate average homozygosity (0.63) for the Pgt population



Page 11 of 24Upadhaya et al. BMC Genomics          (2024) 25:751  

Principal component analysis
Principal component analysis was done to infer the struc-
ture of the Pgt population (n = 96). The first three prin-
cipal components (PCs) explained 26.5% of the variance 
in the Pgt population structure (Supplementary Fig. S2). 
The percentage of variance explained by PC1, PC2, and 
PC3 was 15.60%, 6.35%, and 4.55%, respectively. PC1 vs 

PC2 and PC2 vs PC3 were visualized with biplots. (Sup-
plementary Fig. S2).

Relatedness
Genetic relatedness among the Pgt isolates (n = 96) was 
evaluated based on genetic distance using SNP genotype 
data and visualized with a dendrogram (Fig.  5). Three 

Fig. 5 Dendrogram showing genetic relatedness among the Pgt isolates (n = 96) used in this study. Three major clusters were observed and are 
indicated by blue, green, and pink colored branches. The first, second, and third cluster includes 63, 26, and 7 Pgt isolates, respectively. Red 
and black labels in the outermost layer represent isolates collected from alternate and cereal hosts, respectively. Isolates avirulent to Rpg1_Golden 
Promise transgenic line H228.2c (GPT) are indicated with a star
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major clusters were identified within the Pgt population 
based on the lowest BIC value (Fig.  5). The first cluster 
comprised of 63 Pgt isolates including 42 derived from 
alternate hosts and 21 from cereal hosts (Fig. 5). Twenty-
six isolates were grouped into the second cluster com-
prised of 8 isolates collected from alternate hosts and 18 
from cereal hosts (Fig. 5). The third cluster consisted of 
7 isolates obtained from cereal hosts only (Fig.  5). The 
first two clusters were comprised of both virulent and 
avirulent Pgt isolates to the Rpg1_trangenic line, H228.2c 
(Rpg1 +) (Fig. 5). However, the third cluster included only 
avirulent isolates to the Rpg1_transgenic line H228.2c 
(Fig.  5). Six Midwest isolates (R29J, A-14, 370-c, A-15, 
TMNK, and A-21) formed a separate sub-group within 
the first cluster (Fig.  5). Interestingly, one Midwest iso-
late (QCCJB) collected from cereal host was more closely 
related to sexual isolates from the PNW (Fig. 5).

Linkage disequilibrium (LD)
LD values (R2) were computed from 1.5 million marker 
comparisons using 119,595 SNP sites (10% of total SNP 
markers) generated from the GWS of the 96 Pgt isolates. 
A scatter plot was generated by plotting LD (R2) values 
against physical distance (Kb) between marker pairs 

[34, 35]. The non-linear model [y = log(x)] described the 
genome-wide LD (R2) pattern as shown by the red line 
in figure 4.7. Based on the model, LD decayed to the R2 
value of 0.3, at physical distance of ~ 10 kb [34, 35]. The 
extent of LD was detected up to 200 kb [34, 35].

Association analysis and candidate effector genes
The mixed linear model (MLM) identified 53 significant 
(p < 4.1 ×  10–8) SNPs associated with disease phenotypes 
on the Rpg1_transgenic line H228.2c (Fig.  6, Table  3). 
The LOD scores [LOD = -log10(p-value)] of significant 
marker-trait associations (MTAs) extended from 7.5 to 
9.4 (Fig.  6). The estimated heritability (h2) of the trait 
was 0.88. Minor allele frequency (MAF) of the significant 
SNPs ranged from 0.13 to 0.37 (Table 3). All the signifi-
cant MTAs corresponded to a single locus, on super-
contig2.30 within an ~ 35  kb interval (Supplementary 
Fig. S1). This locus, designated AvrRpg1A, harbored four 
predicted gene models; PGTG_10878, PGTG_10884, 
PGTG_10885, and PGTG_10886 in the delimited 35  kb 
region. The cumulative phenotypic variance explained by 
MTAs within AvrRpg1A was ~ 23%.

The MLM model did not detect any significant MTAs 
with the cv Morex infection type data. However, the 

Fig. 6 Manhattan plots depicting association analyses results of Puccinia graminis f. sp. tritici (Pgt) isolate phenotypes with two barley lines carrying 
the Rpg1 gene; A Golden Promise transgenic line (H228.2c), and B Morex. X-axis indicates Pgt supercontigs. Y-axis represents LOD [-log10(p)] 
scores for SNP markers. Blue dotted line shows significant threshold of 7.3 LOD value with H228.2c and 6.4 with Morex. AvrRpg1A and AvrRpg1B are 
the two avirulence loci corresponding to the barley R-gene, Rpg1. AvrRpg1A was identified with both Rpg1_H228.2c and Rpg1_Morex. AvrRpg1B 
was identified with Rpg1_Morex only
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Table 3 Significant markers trait associations identified with 
Rpg1_transgenic line H228.2c

Marker Supercontig Positiona P-valueb MAFc

SSUPER-
CONT2.30_755426

SUPERCONT2.30 755426 3.56E-10 0.319

SSUPER-
CONT2.30_756869

SUPERCONT2.30 756869 3.56E-10 0.319

SSUPER-
CONT2.30_756934

SUPERCONT2.30 756934 3.56E-10 0.319

SSUPER-
CONT2.30_756920

SUPERCONT2.30 756920 3.56E-10 0.319

SSUPER-
CONT2.30_756981

SUPERCONT2.30 756981 3.56E-10 0.319

SSUPER-
CONT2.30_757024

SUPERCONT2.30 757024 3.56E-10 0.319

SSUPER-
CONT2.30_735285

SUPERCONT2.30 735285 3.71E-10 0.335

SSUPER-
CONT2.30_735286

SUPERCONT2.30 735286 3.71E-10 0.335

SSUPER-
CONT2.30_744703

SUPERCONT2.30 744703 3.71E-10 0.335

SSUPER-
CONT2.30_739727

SUPERCONT2.30 739727 3.71E-10 0.335

SSUPER-
CONT2.30_742092

SUPERCONT2.30 742092 3.71E-10 0.335

SSUPER-
CONT2.30_727141

SUPERCONT2.30 727141 4.40E-10 0.330

SSUPER-
CONT2.30_734539

SUPERCONT2.30 734539 4.40E-10 0.330

SSUPER-
CONT2.30_726237

SUPERCONT2.30 726237 4.40E-10 0.330

SSUPER-
CONT2.30_756781

SUPERCONT2.30 756781 4.97E-10 0.266

SSUPER-
CONT2.30_756838

SUPERCONT2.30 756838 4.97E-10 0.266

SSUPER-
CONT2.30_757201

SUPERCONT2.30 757201 4.97E-10 0.266

SSUPER-
CONT2.30_756801

SUPERCONT2.30 756801 5.42E-10 0.314

SSUPER-
CONT2.30_756905

SUPERCONT2.30 756905 5.43E-10 0.277

SSUPER-
CONT2.30_756977

SUPERCONT2.30 756977 6.11E-10 0.271

SSUPER-
CONT2.30_756871

SUPERCONT2.30 756871 6.90E-10 0.303

SSUPER-
CONT2.30_757158

SUPERCONT2.30 757158 6.90E-10 0.303

SSUPER-
CONT2.30_757173

SUPERCONT2.30 757173 6.90E-10 0.303

SSUPER-
CONT2.30_757155

SUPERCONT2.30 757155 6.90E-10 0.303

SSUPER-
CONT2.30_757172

SUPERCONT2.30 757172 6.90E-10 0.303

SSUPER-
CONT2.30_756989

SUPERCONT2.30 756989 7.04E-10 0.309

SSUPER-
CONT2.30_726747

SUPERCONT2.30 726747 1.37E-09 0.324

SSUPER-
CONT2.30_727118

SUPERCONT2.30 727118 1.37E-09 0.324

a Physical position of marker in bp [50]
b Bonferroni corrected threshold p-value (< 4.1 ×  10–8)
c Minor allele-frequency

Table 3 (continued)

Marker Supercontig Positiona P-valueb MAFc

SSUPER-
CONT2.30_727953

SUPERCONT2.30 727953 1.37E-09 0.324

SSUPER-
CONT2.30_737063

SUPERCONT2.30 737063 2.04E-09 0.213

SSUPER-
CONT2.30_726793

SUPERCONT2.30 726793 3.04E-09 0.330

SSUPER-
CONT2.30_738798

SUPERCONT2.30 738798 3.45E-09 0.207

SSUPER-
CONT2.30_742278

SUPERCONT2.30 742278 3.45E-09 0.207

SSUPER-
CONT2.30_741612

SUPERCONT2.30 741612 3.45E-09 0.207

SSUPER-
CONT2.30_757602

SUPERCONT2.30 757602 5.12E-09 0.138

SSUPER-
CONT2.30_736219

SUPERCONT2.30 736219 5.83E-09 0.202

SSUPER-
CONT2.30_740039

SUPERCONT2.30 740039 5.83E-09 0.202

SSUPER-
CONT2.30_751795

SUPERCONT2.30 751795 1.20E-08 0.181

SSUPER-
CONT2.30_729972

SUPERCONT2.30 729972 1.49E-08 0.207

SSUPER-
CONT2.30_731095

SUPERCONT2.30 731095 1.49E-08 0.207

SSUPER-
CONT2.30_726515

SUPERCONT2.30 726515 1.99E-08 0.218

SSUPER-
CONT2.30_756356

SUPERCONT2.30 756356 2.14E-08 0.154

SSUPER-
CONT2.30_761120

SUPERCONT2.30 761120 2.32E-08 0.378

SSUPER-
CONT2.30_761270

SUPERCONT2.30 761270 2.32E-08 0.378

SSUPER-
CONT2.30_733267

SUPERCONT2.30 733267 2.56E-08 0.207

SSUPER-
CONT2.30_751829

SUPERCONT2.30 751829 2.96E-08 0.223

SSUPER-
CONT2.30_751796

SUPERCONT2.30 751796 2.96E-08 0.223

SSUPER-
CONT2.30_751864

SUPERCONT2.30 751864 2.96E-08 0.223

SSUPER-
CONT2.30_744521

SUPERCONT2.30 744521 3.00E-08 0.218

SSUPER-
CONT2.30_760720

SUPERCONT2.30 760720 3.16E-08 0.362

SSUPER-
CONT2.30_760884

SUPERCONT2.30 760884 3.16E-08 0.362

SSUPER-
CONT2.30_760856

SUPERCONT2.30 760856 3.16E-08 0.362

SSUPER-
CONT2.30_760892

SUPERCONT2.30 760892 3.16E-08 0.362
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BLINK model identified two significant (p < 3.6 ×  10–7) 
MTAs, one on supercontig2.30 and one on supercon-
tig2.11 (Fig.  6, Table  4). The LOD scores of markers 
located on supercontig2.30 and supercontig2.11 were 
11.8 and 10.2, and MAF was 0.32 and 0.47, respectively 
(Table  4). The MTA on supercontig2.30 and supercon-
tig2.11 explained 7.25 and 1.75% of phenotypic vari-
ance, respectively. The estimated heritability (h2) of the 
trait was determined to be 0.76. The MTA on supercon-
tig2.30 was 55  bp downstream of the predicted gene, 
PGTG_10886 within the AvrRpg1A locus identified with 
the Rpg1_transgenic line H228.2c infection type data. 
The MTA on supercontig2.11 was within the predicted 
gene PGTG_05433, and based on flanking non-signifi-
cant SNPs the locus containing this MTA was delimited 
to 78 bp. This locus was designated AvrRpg1B.

Candidate loci and gene characterization
The genome architecture of the 35 kb AvrRpg1A locus is 
shown in Fig. 7. Gene density in the genomic region was 
comparable (4 per 35  kb) to gene density (7 per 35  kb) 
across the supercontig2.30. The region harbored 102 
repeats ranging from 8 to 644  bp, with repeats < 20  bp 
being the most common. (Fig. 7). SNPs and Indel densi-
ties ranged from 0 to 17 and 0 to 4 per 200 bp, respec-
tively (Fig.  7). Candidate effector genes, PGTG_10878, 
PGTG_10884, PGTG_10885, and PGTG_10886 encode 
predicted proteins of 233, 386, 460, and 725 amino acids, 
respectively (Table  5). PGTG_10878 and PGTG_10884 
did not share protein homology with other fungal species 
and were specific to Pgt (Table  5). Protein homologs of 
PGTG_10885 were found in seven rust species includ-
ing Puccinia striiformis f. sp. tritici, Puccinia triticina, 
Austropuccinia psidii, Melampsora americana, Melamp-
sora larici-populina, Cronartium quercuum f. sp. fusi-
forme, and Puccinia sorghi (Table  5). PGTG_10886 was 
homologous to proteins of P. triticina and P. striiformis f. 
sp. tritici (Table 5). A BLAST search of candidate genes 
against the same reference genome (CRL 75-36-700-3) 
indicated no duplication events. The CRL 75-36-700-3 

reference genome assembly limited the identification of 
gene space to the supercontig level without anchoring at 
the chromosome level. Hence, to find the chromosomal 
location of candidate genes we used the Australian isolate 
Pgt21-0 with complete chromosomes assembled. BLAST 
searches of the four AvrRpg1A candidate gene sequences 
against the Pgt21-0 assembly indicated that these genes 
are located at the telomeric region of chromosome 2 
(haplotype B) from 676,683 bp to 700,790 bp.

Two loci were identified with the cv Morex pheno-
typing data, one colocalizing with the 35  kb AvrRpg1A 
locus on supercontig2.30 and the second delimiting the 
AvrRpg1B locus to a 78  bp region on supercontig2.11. 
The AvrRpg1B locus on supercontig2.11 harbored a sin-
gle gene, PGTG_05433, which was found to be unique to 
Pgt as determined by protein homology searches in the 
NCBI protein database (Table 5). A local BLAST search 
of PGTG_05433 sequence against Pgt21-0 genome 
assembly revealed three hits on chromosomes 11, 4, and 
3 (haplotype B), so a precise chromosomal position could 
not be determined.

Significant markers on candidate genes and regulatory 
regions
Among the 53 MTAs identified with Rpg1_transgenic 
line H228.2c, 26 MTAs were within genic or regulatory 
regions (500  bp upstream/downstream) of four candi-
date genes and the remaining 27 markers were located 
in intergenic regions. Candidate genes PGTG_10878, 
PGTG_10884, PGTG_10885, and PGTG_10886 har-
bored 1, 0, 1 and 11 SNP variants in genic and 1, 4, 
1, and 7 variants within putative regulatory regions, 
respectively (Fig.  8). Among the 13 SNPs in genic 
regions only two were located in exons, one in the first 
exon of PGTG_10878 and another in exon thirteen of 
PGTG_10886 (Fig.  8). The exonic SNP in PGTG_10878 
resulted in a predicted nonsynonymous mutation where 
asparagine was substituted by aspartic acid. The other 
exonic SNP in PGTG_10886 was a predicted synony-
mous mutation (tyrosine to tyrosine).

Among the two MTAs identified with Rpg1_Morex, 
one was within the regulatory region of gene model 
PGTG_10886 and another in the exonic region of 
PGTG_05433 (Fig. 8). The SNP on PGTG_05433 caused 
a predicted nonsynonymous mutation where arginine 
was replaced by lysine.

Allele analysis
The genotypes of significant SNPs identified with Rpg1_
transgenic line H228.2c were in homozygous or hete-
rozygous state in the majority of avirulent isolates while 
the alternate homozygous state was identified for viru-
lent isolates (Supplementary Table  S3). This indicated 

Table 4 Significant marker trait associations identified with 
Rpg1_Morex

a Physical position of marker in bp [50]
b Bonferroni corrected threshold -value (< 3.6 ×  10–7)
c Minor allele-frequency p

Marker Supercontig Positiona P-valueb MAFc

SSUPER-
CONT2.30_756871

SUPERCONT2.30 756871 1.31E-12 0.324

SSUPER-
CONT2.11_134838

SUPERCONT2.11 134838 6.21E-11 0.477
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that AvrRpg1A-mediated avirulence is dominant and 
virulence is recessive in the Pgt/Rpg1_H228.2c interac-
tion. Interestingly, the majority of avirulent isolates were 
in heterozygous state for the significant MTAs (Supple-
mentary Table  S3). All eighteen MTAs located within 
genic or regulatory regions of the gene PGTG_10886 
had near perfect correlations with the phenotypes for 

the Pgt isolates, with a correlation coefficient (|r|) of 0.95 
for the most significant SNP in the gene (Supplementary 
Table  S3; Fig.  9). Similarly, all eight MTAs within genic 
or regulatory regions of the other three candidate genes 
PGTG_10878, PGTG_10884, and PGTG_10885 also had 
good correlations with observed phenotypes, with the 
correlation coefficients ranging from 0.72 to 0.95 for 

Fig. 7 Genome architecture of 35 kb AvrRpg1A locus identified with Golden Promise transgenic line (H228.2c). The outer layer shows physical 
position (kb) on supercontig2.30. Orange tiles indicate the gene space of four candidate genes in the region. Predicted genes are labelled right 
above tiles along with the orientations (F = forward and R = reverse). Red and blue tiles represent smaller repeats (< 300 bp) and larger repeats 
(> 300 bp), respectively. Purple bars indicate total SNPs per 200 bp interval. Each axis represents 2 SNPs. Green bars depict total Indels per 200 bp. 
Two axes depict 1 Indel
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the most significant SNP in each gene (Supplementary 
Table S3; Fig. 9).

For both the significant MTAs identified with 
Rpg1_Morex, the MTA in the regulatory region of the 
gene model PGTG_10886 and the MTA within the 
PGTG_05433, moderate correlations (|r|= 0.45 to 0.52) 
were observed with disease phenotypes (Supplemen-
tary Table  S4, Fig.  9). The haplotype associated with 
PGTG_10886 was in heterozygous or homozygous state 
in 20 avirulent isolates and in alternate homozygous form 

in 53 virulent isolates (Supplementary Table  S4; Fig.  9). 
These data suggest that avirulence is dominant and viru-
lence is recessive in the Pgt/Rpg1_Morex interaction as 
was determined for the Pgt/Rpg1_H228.2c interaction.

Discussion
The first North American isolate collected from barley, 
designated Pgt race QCCJB based on wheat stem rust dif-
ferential lines, identified as virulent on barley lines con-
taining Rpg1 was hypothesized to have originated from 

Table 5 Summary of candidate effector gene, encoded protein, and protein  homologya

a Candidate effector genes, PGTG_10878, PGTG_10884, PGTG_10885, and PGTG_10886 correspond to Rpg1_H228.2c. Similarly, candidate genes, PGTG_10886 and 
PGTG_05433 correspond to Rpg1_Morex. Gene and protein information is based on the annotation of reference genome of the Puccinia graminis f. sp. tritici isolate, 
CRL 75-36-700-3) [50]. Protein homology search was done using blastp tool of NCBI with a threshold set at > 90% coverage and > 90% identity

Gene Exons Nucleotides Amino acids Protein Protein homology

PGTG_10878 2 786 233 Hypothetical none

PGTG_10884 1 1161 386 Hypothetical none

PGTG_10885 8 1939 460 26 s protease 
regulatory subunit 
6A

Puccinia striiformis f.sp. tritici, Puccinia triticina, Austropuccinia psidii, Mela-
mspora americana, Melamspora larici-populina, Cronartium quercuum f.sp. 
fusiforme, Puccinia sorghi

PGTG_10886 13 3130 725 Hypothetical Puccinia triticina, Puccinia striiformis f.sp. tritici

PGTG_05433 1 1938 645 Hypothetical none

Fig. 8 SNP variants in candidate effector genes underlying the AvrRpg1A and AvrRpg1B loci. For each candidate gene, exons are represented 
by blue boxes, intron/s by thin black lines, and putative 5’ and 3’ regions (500 bp upstream/downstream) by thick black lines. Red arrows represent 
SNPs. Red stars show non-synonymous mutations. Four effector gene candidates, PGTG_10878, PGTG_10884, PGTG_10885, and PGTG_10886 
correspond to the AvrRpg1A locus and were identified with Rpg1_H228.2c disease reactions. For PGTG_10878, SNPs are in exon 1 and 3’ region. 
The single exonic SNP is non-synonymous mutation, N92D. For PGTG_10884, SNPs are in the putative promoter region. For PGTG_10885, SNPs are 
in intron 5 and 3’ region. For PGTG_10886, SNPs are in intron 10, intron 11, intron 12, exon 13, and 3’ region. The single exonic SNP is a synonymous 
mutation. Two effector gene candidates, PGTG_10886 (AvrRpg1A) and PGTG_05433 (AvrRpg1B) were identified with the Rpg1_Morex disease 
reactions. For PGTG_10886, a single SNP is in 3’ region. For PGTG_05433, the single exonic SNP results in the predicted non-synonymous mutation, 
R34K
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Fig. 9 Box plots showing segregation of stem rust phenotypes on barley lines Rpg1_H228.2c (Golden Promise transgenic) and Rpg1_Morex for Pgt 
isolates with different haplotypes of the most significant SNPs in the AvrRpg1A and AvrRpg1B candidate genes
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the Pacific Northwest (PNW) population [12]. Interest-
ingly, our recent virulence profiling of Pgt isolates col-
lected from barley in eastern Washington showed that 
Rpg1 virulence was predominate (99%) in this Pgt popu-
lation [15]. This suggests that evolutionary pressure on 
this population selected for this virulence, however this is 
perplexing considering that Rpg1 had not been deployed 
in PNW barley varieties. To identify Pgt virulence/aviru-
lence loci that evolved to overcome Rpg1-mediated stem 
rust resistance in barley, we utilized whole genome shot-
gun sequencing, and phenotyping data on two barley 
lines containing Rpg1 for these diverse isolates collected 
from the PNW sexual population and isolates collected 
from the Midwestern US asexual population for genome 
wide association studies (GWAS). Two loci correspond-
ing to Rpg1 avirulence were identified. The major locus, 
AvrRpg1A (accounted for ~ 23% estimated phenotypic 
variance) mapped to a 35 kb interval on supercontig2.30 
that contains four candidate effector genes. The minor 
locus, AvrRpg1B landed on a single gene within a 78 bp 
region on supercontig2.11. The detection of only two 
dominant avirulence loci that interact with Rpg1 indi-
cated typical gene-for-gene interactions similar to those 
characterized for other rust pathosystems [63, 64].

In planta transcriptome data has been commonly used 
to identify candidate effector genes in several fungal 
pathogens including rust [22]. One prominent limitation 
of transcriptomics is difficulty to identify major loci con-
tributing to disease phenotype since several to hundreds 
of genes are temporally expressed during the infection 
process [30, 50]. Bi-parental mapping is another powerful 
genetic tool that has been used to map virulence/aviru-
lence loci in the rust pathogen, P. striiformis f. sp. tritici 
(Pst), a close relative of Puccinia graminis f. sp. tritici 
(Pgt) [65–67]. Unlike Pst, creating a crossing population 
is challenging for Pgt because Pgt teliospores exhibit a 
very strong dormancy for an extended period [68]. To 
overcome these limitations with transcriptomics and bi-
parental mapping, we utilized genome wide association 
studies (GWAS) to map avirulence loci corresponding to 
the barley Rpg1 gene. The benefit of GWAS is that it can 
utilize population scale variability to identify significant 
marker-trait associations (MTAs) linked to trait of inter-
est [69]. The power of GWAS to detect robust associa-
tions depends upon several factors including population 
size, type, phenotype and genotype data, and statistical 
tools used for association analysis [70].

The Pgt isolates utilized in this study represent a suit-
able population size to map virulence/avirulence loci 
in the Pgt genome (~ 89  Mb). Several avirulence genes 
were mapped across the Pst genome utilizing much 
smaller populations of 14 and 30 Pst individuals [71, 72]. 
In a recent review, a population size of 50–100 diverse 

individuals was considered adequate to precisely identify 
MTAs in pathogens [73]. The type of population, sexual 
or asexual, can significantly influence the resolution of 
genome-wide scans [73]. The Pgt population in this study 
comprised of a majority of isolates (n = 89) collected from 
the states of Washington and Idaho. The PNW region 
of North America (US states Washington, Idaho, and 
Oregon and Canadian province British Columbia) is rec-
ognized to harbor sexual population of Pgt with a high 
level of virulence diversity [11, 13]. In a recent rust sur-
vey around the Washington-Idaho border, as many as 16 
Pgt races were detected in a single field [74]. Roelfs and 
Groth [11] identified > 100 races among 426 Pgt isolates 
assayed from the PNW region. Higher meiotic recombi-
nation rates in the genomes of sexual populations break 
linkage blocks which allow for higher resolution mapping 
of virulence/avirulence loci utilizing GWAS [73]. The 
linkage decay (LD) in the Pgt population utilized in this 
study was approximately 10  kb across the genome, sug-
gesting a sexual population with a high level of recom-
bination [34, 35]. Since the collapsed haploid genome 
assembly was used for genomic analysis, including LD 
computation, the LD value reported here might have 
been underestimated to a certain degree; however, lower 
LD value would be expected in a population dominated 
by sexually originated isolates.

Robust disease phenotype data was generated for 96 
and 113 Pgt isolates on two sources of the Rpg1 gene, 
Golden Promise transgenic line H228.2c and cv Morex, 
respectively, by performing disease assays under temper-
ature and light-controlled conditions. Virulence profiles 
were determined based on infection types and the Pgt 
population showed a bimodal phenotypic distribution on 
H228.2c with an approximately 40:60 ratio of avirulent to 
virulent isolates (Fig. 1). The distinct segregation for con-
trasting phenotypes shows that this population is suit-
able for mapping avirulence/virulence loci corresponding 
to the Rpg1 gene in the H228.2c transgenic line. Aviru-
lence/virulence on cv Morex was skewed where 17% of 
the isolates were avirulent and 83% were virulent out of 
113 isolates used which included both the PNW popula-
tion and Midwestern isolates. Although H228.2c carries a 
single copy of Rpg1 from cv Morex in the Golden Prom-
ise background, it was shown in previous studies [15, 41] 
and in this study (Fig. 1, Supplementary Table S1) to con-
tain an elevated level of resistance to isolates avirulent on 
Rpg1 compared to cv Morex. Also, a larger proportion of 
the isolates were avirulent on H228.2c (43%) compared 
to the isolates avirulent on cv Morex (17%). The level of 
resistance on the avirulent isolates for H228.2c is near 
immunity (IT range of 0 to 2 and mode of 0;) whereas 
cv Morex provided a range from resistant to moder-
ately resistant (IT range of 0; to 23- and mode of 21) to 
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the avirulent isolates. Also, all the isolates avirulent on 
cv Morex showed near immunity reactions on H228.2c. 
We hypothesize that the resistance response mediated by 
the AvrRpg1- Rpg1 gene-for-gene interaction is enhanced 
by a genetic component in the cv Golden Promise back-
ground, or some isolates contain a suppressor of resist-
ance that functions in the cv Morex interaction but 
does not function in the Golden Promise transgenic line 
H228.2c. Since the PNW population (n = 89) has a low 
percentage of isolates avirulent on Rpg1 in the cv Morex 
background (10%) the phenotype data previously gener-
ated for 17 Midwestern US isolates [30] were added to 
the panel of the 96 Pgt isolates (PNW = 89, MW = 7) to 
increase the power of avirulence/virulence gene mapping 
with cv Morex.

Genotyping technologies like GBS or RNA sequencing 
are cheaper due to the reduced representation but pre-
sent limitations to high density genotyping. One pitfall 
of GBS is uneven sequencing coverage resulting in a high 
proportion of missing data [75]. RNAseq on the other 
hand only detects sequence variation within expressed 
genes [76]. Due to these constraints of GBS and RNAseq, 
a whole genome shotgun sequencing (WGS) approach 
was utilized to genotype the Pgt population. One major 
benefit of WGS is that it allows for the detection of vari-
ation in both gene coding and non-coding regions [77]. 
For precise variant detection high coverage sequence 
data is essential [77], thus 96 Pgt isolates were sequenced 
to an average depth of 113 × generating sequencing reads 
with Q30 for 94% of the bases. This high-quality sequenc-
ing data was suitable for variant calling and downstream 
processing. We obtained a total of 1,195,947 SNPs and 
168,516 Indels for the 96 isolates. This corresponds to 13 
SNPs and 2 Indels per kilobase of the Pgt genome (~ 89 
Mbp) indicating high marker density for this natural Pgt 
population. This marker density and population size was 
much more robust than a recent study where 30 Pst iso-
lates were sequenced to 30 × depth for the purpose of 
association mapping [72]. Of the > 1 million variants iden-
tified in this Pgt population deleterious variants included 
splice, start, stop lost/gained, splice, missense, frameshift, 
conservation inframe deletion/insertion, and disruptive 
inframe deletion/insertion variants that accounted for 2.9 
and 2.8% of total SNPs and Indel effects, respectively.

The level of genome homozygosity/heterozygosity is 
often used as an indicator of the mode of reproduction 
in an organism [78–80]. In diploid or binuclear fungi 
asexual reproduction is expected to increase genome het-
erozygosity due to accumulation of distinct mutations in 
one genome copy that are unable to recombine to form 
homozygotes [78]. Based on the rates of SNP homozy-
gosity of isolates collected from the primary cereal 
hosts barley and wheat, it can be inferred that sexual 

reproduction is the major means of propagation for Pgt in 
the PNW region. However, a comparatively higher level 
of heterozygosity of seven cereal isolates indicated that 
PNW Pgt also reproduces asexually. Apart from a few 
exceptions, the rate of SNP homozygosity in isolates col-
lected from cereal (barley and wheat) and alternate hosts 
(Mahonia and barberry) were similar. This indicated that 
sexual hosts are a major source of inoculum on PNW 
cereals. Originally, we hypothesized that six of seven iso-
lates collected from the Midwest US are of asexual ori-
gin so should carry highly heterozygous genomes. To our 
surprise, the heterozygosity rate (37–44%) for these six 
isolates was comparable to average heterozygosity (35%) 
of isolates from the alternate hosts. This indicates that 
Midwest isolates utilized in this study may have under-
gone a shorter asexual reproduction period than previ-
ously expected resulting in the accumulation of fewer 
mutations present in the heterozygous state. This data 
doesn’t fit with the hypothesis that these isolates were 
collected from a stabilized asexual population as they 
were collected after sexual hosts were eradicated from 
the Midwestern US. The midwestern isolates utilized in 
this study were collected from 1977 to 1999, after bar-
berry eradication phased out in the late 1970s. The viru-
lence profile of Midwest isolate, QCCJB resembles sexual 
isolates from the PNW, so it was speculated that QCCJB 
probably originated from the PNW [12]. The WGS data 
generated was utilized to provide conclusive evidence 
that QCCJB did originate from the PNW region and 
was disseminated eastward into the Midwest. The level 
of genome homozygosity (63%) supports the sexual ori-
gin of QCCJB. Based on hierarchical clustering (Fig.  5), 
QCCJB is more closely related to PNW isolates collected 
from the alternate host barberry while the other six Mid-
western isolates formed a separate sub-group within the 
same cluster. Initially we hypothesized that the clustering 
of isolates would be based on the host from which they 
were derived. However, two major clusters included iso-
lates originated from both primary cereal hosts barley 
and wheat and alternate sexual hosts barberry and Maho-
nia. Interestingly, cereal isolates were clustered based on 
geographic location. For example, cereal isolates from the 
Valley ford, WA region formed close sub-groups within 
the first cluster and the majority of cereal isolates from 
the Pullman, WA region were in second and third clus-
ter. However, sexual isolates had a lower degree of sub-
grouping based on the location of collection.

Association mapping identified 53 and 2 significant 
SNPs associated with disease phenotype on the Golden 
Promise transgenic line H228.2c and cv Morex, respec-
tively. One major pitfall of GWAS is spurious associa-
tion of genotype and phenotype resulting in detection of 
false-positive associations [81]. We tried to minimize this 
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error by incorporating structure (Q) and relatedness (K) 
data as covariate in the MLM model with H228.2c and 
structure (Q) in the BLINK model with cv Morex. Also, 
to alleviate the possibility of false associations stringent 
thresholds of 7.3 and 6.4 LOD scores were used with 
H228.2c and cv Morex, respectively. Two novel QTLs 
were identified for Avr_Rpg1, one on supercontig2.30 
(designated Avr_Rpg1A) and one on supercontig2.11 
(designated Avr_Rpg1B). The major avirulence locus on 
supercontig2.30 represents a common locus identified 
for both H228.2c and cv Morex. Haplotype analysis of 
significant SNPs at this locus indicated that the major-
ity of avirulent isolates share common haplotypes in the 
homozygous or heterozygous state whereas the virulent 
isolates share the alternate putative recessive virulent 
haplotype in the homozygous state. This suggests that 
this locus harbors a dominant avirulence gene shared by 
the majority of avirulent isolates hence is considered the 
major Avr_Rpg1 locus. The Avr_Rpg1B locus identified on 
supercontig2.11 with cv Morex was considered the minor 
locus because several avirulent isolates carry the same 
allele present among virulent isolates. This indicates that 
only a few avirulent isolates carry this avirulence effector 
or possibly represents a false positive association.

Harold Henry Flor in his landmark paper described the 
gene-for-gene hypothesis which explained the dominant 
nature of pathogen avirulence genes and their specific 
interactions with dominant host resistance genes on the 
basis of specific genetic interaction of flax rust, Melam-
spora lini with its host, flax (Linum usitatissimum) [82]. 
Based on the classical gene-for-gene hypothesis, the 
product of the dominant avirulence gene is directly or 
indirectly recognized by the dominant R-gene protein, 
resulting in resistance or an incompatible disease reaction 
[83]. Surprisingly, in the wheat-stripe rust pathosystem, 
P. striiformis f. sp. tritici (Pst) avirulence corresponding 
to several wheat stripe rust R-genes were determined to 
be recessive in contrast to the well-established dogma 
of dominant avirulence and recessive virulence in host-
pathogen genetic interaction with biotrophic pathogens 
[65, 66]. However, here we determined Pgt avirulence to 
Rpg1 is dominant based on the state of haplotypes (het-
erozygous/homozygous) carried by avirulent isolates 
at the major Avr_Rpg1A locus. Interestingly, the domi-
nant avirulence haplotype was present in the heterozy-
gous state for the majority of the avirulent isolates. Two 
cloned Pgt effector genes, AvrSr35 and Avr50 were also 
present in heterozygous state in the mutants from which 
they were identified [23, 24]. Mutation of Avr_Rpg1 could 
lead to loss of recognition by Rpg1, and the evolution of 
Rpg1 virulence in the PNW population. This hypothesis 
is supported by primary amino acid substitutions, N92D 
and R34K in two candidate effectors, PGTG_10878 and 

PGTG_05433, respectively. Host selection pressure is 
considered crucial for the evolution of virulence on 
deployed resistance genes in pathogen populations [84]. 
Thus, it is quite surprising that the PNW Pgt population 
assayed is dominated by isolates virulent on Rpg1 consid-
ering that the R-gene has not been deployed in commer-
cial cultivars grown in the region. Previous studies have 
reported several wild grasses like Elymus glaucus, Agros-
tis alba, Elytrigia repens, and Elymus canadensis host a 
native Pgt population in the PNW [13]. It is possible 
that these wild grasses or others carry resistance mecha-
nisms similar to Rpg1-mediated resistance that exerted 
selection pressure to overcome Rpg1 or there is a similar 
unknown resistance mechanism in wheat or the alternate 
sexual hosts that are applying the selection pressure for 
isolates virulent on Rpg1. To begin answering these ques-
tions of Rpg1 virulence evolution and mechanisms, it is 
essential to identify the Avr-Rpg1 effector or virulence 
effectors that suppress Rpg1-mediated resistance.

The major Avr_Rpg1A locus on supercontig 2.30 har-
bors a total of four candidate genes (PGTG_10878, 
PGTG_10884, PGTG_10885, and PGTG_10886) within 
a 35  kb interval and the minor Avr_Rpg1B locus con-
tains a single candidate gene (PGTG_05433) within a 
78  bp interval on supercontig2.11. Repeats identified 
within the major Avr_Rpg1A locus on supercontig 2.30 
were mostly small (< 20  bp) and represented a small 
portion (11%) of the region (Fig. 7). Also, the gene den-
sity in this region was comparable to rest of supecon-
tig2.30. In several fungi including Fusarium oxysporum 
f sp. lycopersici, Leptosphaeria maculans, and Zymosep-
toria tritici effector genes were reported in gene poor 
and repeat rich regions of the genome [73]. However, 
genomes of rust fungi including Pgt and Pst do not 
follow the two-speed genome model [50, 85]. Among 
the candidate genes, PGTG_10878 encodes a small 
protein (< 300 aa), PGTG_10884 and PGTG_10885 
encode medium sized proteins (300–500 aa) typical of 
known secreted effectors whereas PGTG_10886 and 
PGTG_05433 encode larger proteins (> 500 aa). Several 
cloned Pgt effector genes including AvrSr35 (578 aa) 
[23], RGD (818 aa) [21], and VPS9 (744 aa) [21] encode 
larger proteins while AvrSr50 (132 aa) [24] and AvrSr27 
(144 aa) [25] encode small proteins. Hence, protein 
size alone cannot be used to prioritize candidate effec-
tor genes in Pgt. Three candidate genes were unique 
to Pgt suggesting that they either evolved de novo or 
were acquired horizontally. Two genes were probably 
acquired from ancestral rust during speciation since 
they shared sequence similarity with other rust species. 
It is important to note that all effector genes are not 
species specific, and some are shared by several fungal 
species. For example, Verticillium dahliae avirulence 
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effector, Ave1 that interacts with Ve1 in tomato has 
homology or orthologs in many fungal species and bac-
teria [86].

Effectors are pathogen molecules that evolve virulence 
function to successfully colonize their host by suppress-
ing plant defense response [87] or evolve to aid in nutrient 
acquisition [88]. These effector molecules when detected 
by host R-gene receptors, cytoplasmic or intracellular, 
become avirulence effectors as they elicit the plant resist-
ance responses [89]. However, avirulence effectors can 
escape R-gene mediated recognition through molecu-
lar arms race evolutionary processes as depicted by the 
zig-zag model proposed by [90]. Avirulence genes can 
be disrupted through mechanisms including insertion, 
deletion, and nucleotide substitutions resulting in dif-
ferential expression, amino acid sequence alteration and 
protein modification [73]. Here, we show that nucleotide 
polymorphisms within the primary coding sequences or 
within regulatory regions of the candidate Avr_Rpg1A 
and Avr_Rpg1B avirulence genes delimited by our GWAS 
analysis potentially leads to loss of avirulent effector rec-
ognition by the cognate Rpg1 receptor. Since we iden-
tified candidate effector genes based on the result of 
genotype and phenotype association, the top candidate 
gene should be the one with a high degree of correlation 
between allele type and observed phenotypes. Based on 
this criterion, the gene model PGTG_10886 is the top 
candidate Avr_Rpg1A gene. Surprisingly, polymorphism 
detected on PGTG_10886 between virulent and avirulent 
isolates were in introns, near splice sites and 3’-regula-
tory region, except a SNP in exon 13 that caused a syn-
onymous mutation (Fig. 8). Hence, functional studies will 
be crucial to validate our candidate genes and elucidate 
the role of the causal mutations in phenotypic diversity. 
Also, it is important to note that Pgt gene architectures 
are based on predictions with computer algorithms, 
and thus misannotation can result in incorrect predic-
tions of causal mutations [50]. Another candidate gene, 
PGTG_10878 identified within the AvrRpg1A locus, 
contains a non-synonymous mutation (N92D) which is 
highly correlated (~ 90%) with disease phenotype of viru-
lent and avirulent isolates (Supplementary Table S3). Fur-
thermore, the gene is unique to Pgt and encodes a small 
protein. Hence, PGTG_10878 is also a strong Avr_Rpg1A 
candidate gene. The candidate gene, PGTG_05433 at the 
minor Avr_Rpg1B locus also harbors a single nucleotide 
variant in its coding sequence that is predicted to cause 
the non-synonymous mutation, arginine to lysine at 
amino acid position 34. However, genotype by phenotype 
correlation was not strong; therefore, the Avr_Rpg1B 
effector is probably shared by a low proportion of aviru-
lent isolates or this locus possibly represents a false asso-
ciation. Thus, two strong Avr_Rpg1A candidate genes, 

PGTG_10886 and PGTG_10978 will be prioritized for 
initial functional validation work.

Conclusions
It is crucial to understand the evolutionary mechanism 
of virulence on important R-genes which is especially 
important in the barley-Pgt pathosystem where the pri-
mary germplasm pool only contains three character-
ized effective stem rust resistance genes, Rpg1, RMRL, 
and Rpg7. Thus, to understand effective deployment of 
resistances the identification of avirulence loci/genes is 
the first step towards unravelling the evolutionary forces 
that enable effectors to evade or suppress R-gene medi-
ated defense signaling. We utilized ~ 1.2 million SNPs to 
map avirulence loci in Pgt via a GWAS approach. A total 
of 55 MTAs were identified corresponding to two unique 
loci associated with AvrRpg1 that interact with the bar-
ley Rpg1 gene. The major Avr_Rpg1A locus harbored four 
candidate effector genes and the minor Avr_Rpg1B locus 
harbored one candidate gene. The dominant nature of 
the Avr_Rpg1A locus agrees with Flor’s classical gene-for-
gene model. Several markers identified in this study per-
fectly correlated with pathogen phenotype, hence, they 
can be utilized to screen Pgt population for Rpg1 viru-
lence. The candidate Avr_Rpg1A and Avr_Rpg1B genes 
identified in this study will be utilized for future func-
tional validation work. Thus, this study begins to fill gaps 
in our current understanding of host-pathogen interac-
tion in the barley-Pgt pathosystem.
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and PC3 was 15.60%, 6.35%, and 4.55%, respectively. Pink and blue dots 
indicate isolates collected from cereal and alternate hosts, respectively.
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