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Background
Long non-coding RNAs (lncRNAs) are defined as tran-
scripts with lengths of more than 200 nucleotides without 
any protein-coding ability [1], and are poorly conserved 
between species, while messenger RNAs (mRNAs) are a 
category of transcripts that have similar sequence struc-
ture to lncRNAs but encode proteins. Whole transcrip-
tome sequencing data suggests that more than 75% of the 
human genome and more than 50% of the Arabidopsis 
genome can be transcribed into RNAs [2, 3]. Non-cod-
ing RNAs (ncRNAs) account for more than 98% of the 
human genome and play important roles in gene expres-
sion and regulation [4].
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Abstract
Background  Long non-coding RNAs (lncRNAs) are RNA transcripts of more than 200 nucleotides that do not encode 
canonical proteins. Their biological structure is similar to messenger RNAs (mRNAs). To distinguish between lncRNA 
and mRNA transcripts quickly and accurately, we upgraded the PLEK alignment-free tool to its next version, PLEKv2, 
and constructed models tailored for both animals and plants.

Results  PLEKv2 can achieve 98.7% prediction accuracy for human datasets. Compared with classical tools and 
deep learning-based models, this is 8.1%, 3.7%, 16.6%, 1.4%, 4.9%, and 48.9% higher than CPC2, CNCI, Wen et al.’s 
CNN, LncADeep, PLEK, and NcResNet, respectively. The accuracy of PLEKv2 was > 90% for cross-species prediction. 
PLEKv2 is more effective and robust than CPC2, CNCI, LncADeep, PLEK, and NcResNet for primate datasets (including 
chimpanzees, macaques, and gorillas). Moreover, PLEKv2 is not only suitable for non-human primates that are closely 
related to humans, but can also predict the coding ability of RNA sequences in plants such as Arabidopsis.

Conclusions  The experimental results illustrate that the model constructed by PLEKv2 can distinguish lncRNAs and 
mRNAs better than PLEK. The PLEKv2 software is freely available at https://sourceforge.net/projects/plek2/.
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Recent studies have shown that lncRNAs can play 
roles in the development of cancers. lncRNAs interact 
with DNA, other RNAs, and protein molecules and act 
as important regulatory factors at the epigenetic, tran-
scriptional, and post-transcriptional levels [5]. Aber-
rant lncRNA expression can affect the initiation, growth, 
and metastasis of cancer cell tumors. For example, the 
lncRNA HOTAIR (HOX transcript antisense RNA) can 
promote the proliferation, survival, invasion, metastasis, 
and drug resistance of lung cancer cells [6].

As sequencing technology develops, many novel ani-
mal and plant transcripts have been sequenced [7]. The 
rapid and effective identification of lncRNAs among 
these transcripts is the basis for subsequent gene func-
tion analysis and evolution, requiring an efficient tool 
for identifying lncRNAs in animals and plants [8]. The 
performance of the alignment-free tool we developed 
previously, PLEK, could be improved in some species. 
For example, the accuracy of PLEK for mouse datasets 
is < 90% [9], while the accuracy of PLEK for the Arabi-
dopsis protein-coding dataset is < 65%. Therefore, in this 
study, to solve these shortcomings, we upgrade PLEK to 
PLEKv2, and constructed models tailored for both ani-
mals and plants.[1] Here, we develop a novel deep learn-
ing classification model, called the “Coding-Net model”, 
which fuses features of the calibrated open reading frame 
(ORF) lengths and multiple k-mer frequencies, and then 
use this Coding-Net classification model to identify 
lncRNAs and mRNAs.

Compared with traditional machine learning mod-
els, deep learning classification models do not require 
manual intervention. The intrinsic characteristics of 
the sequences can be learned independently and useful 
information extracted to improve the accuracy of pre-
diction. The latest deep learning-based methods include 
the deep neural network (DNN) [10], convolutional 
neural network (CNN) [11], recurrent neural network 
(RNN) [12], deep belief network (DBN) [13], and resid-
ual neural network (ResNet) [14]. Deep learning-based 
classification tools include lncRNAnet [15], which uses 
one-dimensional CNNs to detect ORFs that are candi-
dates for coding transcripts and an RNN as the classifier. 
Fan et al. proposed the LncRNA_Mdeep model [16] to 
predict lncRNAs by fusing a CNN and DNNs. Although 
these two deep learning-based methods perform better 
than previous conventional machine learning algorithms, 
they still depend on one-hot encoding for feature extrac-
tion, which will lead to sparse coding and a high com-
putational cost. LncADeep, a recently developed deep 
learning-based method, can predict lncRNAs by fusing 
multiple features with a DBN as the classifier [17].

Compared with PLEK, PLEKv2 gives a high accuracy 
rate for both human (PLEK, 93.8%; PLEKv2, 98.7%) and 
mouse (PLEK, 88.3%; PLEKv2, 94.6%) datasets. This 

is partly because PLEKv2 includes the calibrated ORF 
lengths and uses the Coding-Net model for classifica-
tion. PLEKv2 is particularly suitable for evaluating the 
coding ability of primate and plant transcriptomes. For 
additional validation, PLEKv2 was compared with the 
classical tools, CPC2 [18] and CNCI [19], and the deep 
learning-based models, Wen et al.’s CNN [20], LncADeep 
[17], and NcResNet, for human datasets. We found that 
PLEKv2 shows the highest accuracy of all the tools, with 
an accuracy of 98.7%. The open-source code of PLEKv2 
is available online at https://sourceforge.net/projects/
plek2/.

Implementation
Data description
We downloaded human lncRNA (Release 38) and mRNA 
(Release 206) transcript data from the GENCODE [21] 
and RefSeq [22] databases to construct human models. 
From these two datasets, equal numbers of transcripts 
were divided randomly into the training, validation, and 
test sets at a ratio of 8:1:1. The validation set was used to 
check the quality of the model and constantly upgrade 
the parameters of the iterative model. In addition, we 
also constructed a plant model using lncRNA and mRNA 
sequences downloaded from the Ensembl Plants data-
base (v101) [23].

To evaluate the performance of PLEKv2 across species, 
we further constructed independent testing sets for both 
vertebrates and plants. The protein-coding transcripts 
were obtained from the RefSeq and Ensembl Plants 
databases, respectively, and sequences with ‘putative’, 
‘predicted’, or ‘pseudogene’ annotations were excluded. 
Non-coding transcripts were obtained from the Ensembl 
[24] and Ensembl Plants databases.

Data pre-processing
RefSeq and GENCODE are widely used to provide bio-
logically non-redundant and well-annotated sets of 
sequences. The two databases have different data col-
lection and annotation strategies. The RefSeq database 
is considered the authority for annotating mRNA, while 
the GENCODE database is highly esteemed for lncRNA 
annotation because of its expertise and accuracy. Using 
both databases in combination provides a more com-
prehensive coverage of transcript information to build 
high-quality training and test datasets. The data pre-pro-
cessing is described here in brief and shown in Fig. 1.

First, we removed sequences of less than 200 nucleo-
tides from the original files, obtaining 48,471 human 
lncRNAs and 60,246 mRNAs. Then, we replaced all 
occurrences of ‘U’ with ‘T’ and replaced all the various 
mixed-base symbols with the mixed-base N. Mixed-base 
symbols indicate bases that are not completely deter-
mined, such as the R, Y, M, K, S, W, H, B, V, D, and N 
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bases. Then, to balance the transcript numbers, we ran-
domly sampled the larger mRNA sample set to equalize 
the transcript numbers of lncRNAs and mRNAs, select-
ing 48,471 mRNA transcript sequences randomly. This 
step is key, as if the number of samples in one category 
differs significantly from other categories, the model may 
be more inclined to the dominant category. Finally, the 
weighted k-mer feature and ORF lengths were computed 
for the final set of sequences.

Open reading frames
ORFs contain a start codon (ATG) and one of the stop 
codons, and indicate the potential of a transcript 
sequence to encode protein. The ORF is therefore one of 
the most important basic characteristics for identifying 
protein-coding sequences, and is the main criterion for 
predicting the potential coding ability [25]. Prior stud-
ies have shown that lncRNAs have little or no ORF [26]. 
Thus, we added the ORF lengths to the feature vectors.

We used regular expressions to search for start codons 
(ATG) within the transcript to determine the ORF start-
ing position. Then, starting from this position, we trans-
lated the sequence until we encountered a stop codon. 
If a complete ORF was found, including both start and 
stop codons, we calculated the length of this ORF, l, and 
processed and normalized it to balance the weight of the 
ORFs and k-mers. The process of calculating the ORF 

lengths was as follows. We obtained li, the logarithm 
(base 10) of the length of each peptide chain (l), and then 
normalized this with the min–max method to give the 
corrected ORF length value, XORF. The formulae were as 
follows:

	 li = lg l � (1)

	
XORF =

li − lmin
lmax − lmin

� (2)

where lmin is the minimum value of the peptide chain 
after taking the logarithm, and lmax is the maximum value 
of the peptide chain after taking the logarithm.

k-mers
lncRNAs are poorly conserved and have poor coding 
ability [27]. Our previous research has shown that the k-
mer frequency may distinguish lncRNAs from mRNAs. A 
k-mer pattern is a specific string of k nucleotides, where 
each sequence can contain A, T, G, and C. When k = 1 to 
6, there are 4 + 16 + 64 + 256 + 1024 + 4096 = 5460 different 
k-mer patterns: four monomer patterns, 16 two-mer pat-
terns, 64 three-mer patterns, 256 four-mer patterns, 1024 
five-mer patterns, and 4096 six-mer patterns. Figure  2 
shows the sliding window process whereby we moved a 
sliding window along the transcript. For example, when 

Fig. 1  Data pre-processing flowchart
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k is three, the length of the window is three and the step 
length is one.

Here, we used the feature vector Xk−mer, defined below, 
to represent the k-mer (k = 1, 2, 3, 4, 5, 6) weighted fre-
quencies in the transcript sequences, f. The calculation 
process was the same as in our previous study [9].

	Xk− mer = [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11 . . . f5460]� (3)

Construction of feature vectors
Feature fusion can obtain the most discriminatory infor-
mation from an original multi-feature set and eliminate 
redundant information caused by correlations between 
different feature sets, improving the final outcome. Here, 

two types of feature sets for the ORFs and k-mers were 
concatenated into one set of feature vectors to repre-
sent the transcript sequences, as shown by the following 
formula:

	 X = [Xk−mer, XORF] � (4)

Classification using coding-net architecture
In this study, the Coding-Net model for predicting the 
transcript coding ability based on feature vectors was 
constructed from the k-mer frequencies and ORF lengths 
using convolutional neural network algorithms. The net-
work structure of the model is shown in Fig. 3. The con-
volution layer is used for local perception, which uses a 
convolution kernel for feature extraction and feature 
mapping. The pooling layer is used for down sampling, 
sparse processing of feature maps, and reducing the 
amount of data computation. Concurrently, the dense 
layer is used to classify sequences.

Fig. 3  The network structure of the Coding-Net model, which includes the input and deep neural networks. The input contains the k-mer frequency 
and calibrated ORF length derived from the sequence, and the deep neural network consists of three parts, including the convolution, max pooling, and 
dense layers

 

Fig. 2  The 6-mer sliding window showing the process of taking a k-mer in 
sliding window mode from a sequence when k = 6
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As shown in Fig. 3, the Coding-Net classification model 
includes the input and deep neural networks. The input 
contains the k-mer frequency and calibrated ORF length 
derived from the sequence, which are constructed into a 
feature vector. In previous studie, to apply convolutional 
neural networks to sequence data, one-dimensional 
sequence vectors have been randomly shuffled into high-
dimensional matrices [20]. This approach may destroy 
the positional information of the sequence, and is not 
conducive to the extraction of classification features. 
To solve this problem, the Coding-Net model uses one-
dimensional feature vectors as inputs with no reshaping 
of the dimension.

The deep neural network consists of three parts. First, 
it consists of two convolutional neural network layers. In 
the k-mer and ORF feature extraction layers, the input 
of each neuron was connected to the local region of the 
previous layer, and the local features were extracted using 
a 1 × 3 receptive field. The receptive field of each feature 
map was a plane, and all neurons used the same weight 
value. Second, maximum pooling was used to retain the 
main features while reducing the number of parameters 
in the network. This can also effectively reduce the occur-
rence of overfitting and the cost of computing resources. 
In addition, both the convolution and pooling layers were 
mapped to a hidden layer feature space by feature vec-
tors. Finally, the three fully connected layers were used to 
classify lncRNAs and mRNAs, combine all local features 
into a complete feature map, and map the learned distrib-
uted features into the sample marker space.

During training of Coding-Net, five hyper-parameters 
(the convolution kernel size, the number of kernels, the 
pooling method, the number of units in the hidden layer, 
and the learning algorithm) were tuned. Table 1 lists the 
specific settings for each hyper-parameter. Hyper-param-
eters cannot be learned from the data in the standard 
model training process directly and need to be defined in 
advance.

This model was implemented using Keras [28]. We 
applied ReLU as the activation function. In all cases, we 
used a batch size of 128, and the cross-entropy loss was 
optimized using Adam.

Feature extraction by asymmetric convolution kernel
The asymmetric convolution kernel is a new structure 
to replace the standard convolution layer widely used in 

modern convolutional neural networks, the 3 × 3 convo-
lution kernel. Specifically, a 1 × d kernel is used to replace 
the d × d kernel [29]. This can greatly reduce the amount 
of computation required and enhance the robustness of 
the model, allowing an increased amount of significant 
information to be extracted.

In this study, a 1 × 3 asymmetric convolution kernel was 
used to enhance the key differential features of the fea-
ture vectors and weaken the influence of irrelevant fea-
tures. The 1 × 3 convolution kernel can be regarded as a 
codon, which is composed of three adjacent nucleotides 
in mRNA, and can more effectively extract and identify 
lncRNA features from the sequences. The workflow of 
the PLEKv2 tool is shown in Fig. 4.

Evaluation metrics.
To evaluate the predictive performance of PLEKv2, we 

used four evaluation indicators: precision, recall, the F1 
score, and accuracy. To highlight the importance and 
characteristics of ncRNA, for a better understanding of 
its role in biological processes, we defined non-coding 
as ‘positive’ and protein-coding proteins as ‘negative’. 
The precision measures the ratio of true positives to all 
predicted positives, the recall measures the ratio of true 
positives that are correctly identified, and the F1 score is 
a composite measure used as an aggregated performance 
score for the evaluation of algorithms.

Results
Optimal feature vectors for the coding-net classification 
model
Considering different k-mers as features will affect the 
accuracy of identification of lncRNAs and mRNAs. 
For the human dataset, we constructed a feature vector 
with only the weighted k-mer frequencies and fed it into 
the deep learning classification model. When k takes a 

Table 1  The range of each hyper-parameter
Hyper-parameters Range
Kernel size for convolution 1*3
Number of kernels 32
Pooling method Max pooling
Number of units in hidden layer 265, 64 ,64
Optimizer Adam

Fig. 4  The workflow of PLEKv2 tools
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different value (k = 5–6), the accuracy will increase as k 
increases. When k = 5, the model achieved an accuracy 
of 95.4% with a size of 1 × 1364, and took 1.5 h to train. 
When k = 6, the accuracy increased to 96.7%, with a larger 
size of 1 × 5460 (Table 2), and the training time extended 
to 5.2 h. If k = 7, there would be 16,384 different k-mers, 
four times the number of 6-mers. This not only implies 
a significant increase in computational resource require-
ments but also indicates an increase in model complexity.

The ORF length is an effective differential feature for 
distinguishing between lncRNAs and mRNAs. To fur-
ther understand the influence of the ORF on the internal 
decision of the model, the ORF alone gave an accuracy 
of 93.8% (Table  2). However, by fusing the k-mer (k = 6) 
with the ORF features, the size of the feature vector was 
1 × 5461. Compared with the unfused feature vectors, the 
accuracy rate increased from 96.7 to 98.5% for human 
datasets.

In conclusion, we used the k-mer (k = 6) and normal-
ized ORF length to construct feature vectors to train the 
Coding-Net model. Here, the size of the feature vector 
was 1 × 5461.

Performance of PLEKv2
Having determined the accuracies of our PLEKv2 model, 
we compared PLEKv2 with other state-of-the-art tools 
and models using human datasets (Table 3), including the 
ab initio tools CPC2, CNCI, and PLEK, and deep learn-
ing models such as Wen et al.’s CNN, LncADeep, and 
NcResNet.

As shown in Table 3, compared with other tools on the 
same test sets, PLEKv2 had the highest F1 score (while 
the F1 scores for CPC2, Wen et al.’s CNN, and NcResNet 
were all lower than 0.9), the highest precision of 0.986 
(with the precision of Wen et al.’s CNN and NcResNet 
much lower), and the highest recall of 0.986 (with the 
recall of CPC2 and NcResNet much lower). Our method 
also showed the highest accuracy of these lncRNA identi-
fication tools, and clearly outperforms existing tools.

These results show that PLEKv2 performs better on 
human data than PLEK and other tools.

Cross-species prediction
At present, the genome sequences of most organisms are 
incomplete, and annotations are poor quality or unavail-
able. To solve this problem, well-annotated species can 
be used to make cross-species predictions for other non-
model organisms. In this study, we used human data to 
analyze data from other organisms that have not been 
explored in depth.

We used eight organisms to test the cross-species pre-
dictive performance of CPC2, CNCI, PLEK, PLEKv2, 
LncADeep, and NcResNet (Table  4). The results show 
that the overall performance of PLEKv2 was better than 
that of PLEK. PLEKv2 performed best on three species. 
While the accuracies of PLEKv2 and LncADeep were 
> 90%, LncADeep demonstrated a higher average accu-
racy, but with a run time 11 times longer than PLEKv2. 
The accuracy of NcResNet was < 80% on all datasets. The 
accuracy of CPC2 was 85.5% for Pan troglodytes, while 
the accuracy of CNCI was 89.4% for Rattus norvegicus. 
These examples clearly demonstrate the poor predic-
tive performance of CPC2 and CNCI for specific spe-
cies. These results indicate that PLEKv2 and LncADeep 
exhibit good performance for cross-species prediction.

Table 2  The influence of feature vectors of different sizes on 
model accuracy
k value Number of k-mers ORF Matrix form Model accuracy
0 0 Yes 1*1 93.8%
5 1364 No 1*1364 95.4%
5 1364 Yes 1*1365 97.2%
6 5640 No 1*5460 96.7%
6 5640 Yes 1*5641 98.7%

Table 3  Performance of CPC2, CNCI, Wen et al.’s CNN, LncADeep, 
PLEK, NcResNet and PLEKv2 for human datasets
Models Precision Recall F1score Accuracy
CPC2 0.942 0.856 0.897 0.906
CNCI 0.914 0.975 0.944 0.950
CNN 0.792 0.821 0.806 0.821
LncADeep 0.960 0.980 0.970 0.973
PLEK 0.962 0.941 0.938 0.938
PLEKv2 0.986 0.986 0.986 0.987
NcResNet 0.492 0.498 0.496 0.498

Table 4  The accuracy of CPC2, CNCI, PLEK, PLEKv2, LncADeep, and NcResNet for cross-species prediction
Species Number of transcripts CPC2 CNCI LncADeep PLEK PLEKv2 NcResNet
Bos taurus 64,906 92.3% 93.6% 96.8% 91.3% 93.8% 52.7%
Gorilla gorilla 33,667 91.8% 87.4% 90.5% 83.8% 92.2% 52.5%
Macaca mulatta 12,006 92.6% 94.5% 93.2% 87.3% 95.2% 50.3%
Mus musculus 41,588 94.1% 95.1% 97.1% 88.3% 94.6% 70.0%
Pan troglodytes 4,506 87.9% 91.3% 93.4% 90.4% 93.5% 51.1%
Rattus norvegicus 20,903 91.3% 89.4% 95.5% 88.8% 91.3% 51.3%
Sus scrofa 13,379 93.4% 94.6% 95.6% 75.7% 91.5% 50.9%
Xenopus tropicalis 8,669 98.5% 96.6% 98.7% 96.8% 97.3% 51.4%



Page 7 of 10Li et al. BMC Genomics          (2024) 25:756 

Performance comparison for primate datasets
We compared the performance of PLEKv2 with that of 
PLEK, CPC2, CNCI, LncADeep, and NcResNet for pri-
mates, including Pan troglodytes and Macaca mulatta. 
For chimpanzee (Pan troglodytes) datasets, 1485 pro-
tein-coding transcripts and 3021 non-coding transcripts 
were selected. For the macaque (Macaca mulatta) data-
set, 5515 protein-coding transcripts and 6491 non-
coding transcripts were selected from the RefSeq and 
Ensembl datasets. For the dataset for Gorilla gorilla, 

33,025 protein-coding transcripts and 642 non-coding 
transcripts were selected from the RefSeq and Ensembl 
datasets.

On primate datasets, PLEKv2 achieved the highest 
accuracies (93.5% for chimpanzees, 95.2% for macaques, 
and 92.2% for gorillas), surpassing PLEK (90.4%, 87.3%, 
and 83.8%, respectively), CPC2 (87.9%, 92.6%, and 
91.8%, respectively), CNCI (91.3%, 94.5%, and 87.4%, 
respectively), LncADeep (93.4%, 93.2%, and 90.5%, 
respectively), and NcResNet (51.1%, 50.3%, and 52.5%, 
respectively) (Table 5). Although LncADeep achieved the 
highest precision for the macaque dataset (96.8%) and 
CNCI achieved the highest recall for the macaque dataset 
(96.6%), the differences between PLEKv2, LncADeep, and 
CNCI were all within 2%. These results indicate that the 
PLEKv2 tool is particularly suitable for use in primates.

Performance comparison for mouse datasets
Mice are evolutionarily close to humans, and they also 
possess a relatively abundant supply of experimentally 
validated lncRNAs and mRNAs [17]. The accuracy of 
PLEK for identifying protein-coding transcripts and non-
coding transcripts was < 90% in mouse datasets, while 
PLEKv2 has a total accuracy of 94.6%.

To further evaluate the performance of PLEKv2 on 
mouse datasets, we compared PLEKv2 with PLEK, CPC2, 
CNCI, LncADeep, and NcResNet on the same datasets 
(consisting of 35,999 mRNAs and 5589 lncRNAs). Fig-
ure 5 shows the fraction of coding and non-coding tran-
scripts marked by each tool, revealing that the accuracy 
of PLEKv2 was much higher than that of PLEK for mouse 
datasets.

Table 5  Performance comparison for primate datasets, with 
the best performances (precision, recall, F1 score, and accuracy) 
between CPC2, CNCI, PLEK, LncADeep, NcResNet, and PLEKv2 
shown in bold
Species Tool Precision Recall F1score Accuracy
Pan troglodytes CPC2 0.755 0.938 0.837 0.879

CNCI 0.849 0.899 0.873 0.913
LncADeep 0.870 0.939 0.903 0.934
PLEK 0.842 0.872 0.856 0.904
PLEKv2 0.873 0.940 0.905 0.935
NcResNet 0.343 0.532 0.417 0.511

Macaca mulatta CPC2 0.954 0.902 0.927 0.926
CNCI 0.937 0.966 0.951 0.945
LncADeep 0.968 0.913 0.944 0.932
PLEK 0.882 0.885 0.883 0.873
PLEKv2 0.948 0.957 0.952 0.952
NcResNet 0.544 0.489 0.516 0.503

Gorilla gorilla CPC2 0.998 0.917 0.955 0.918
CNCI 0.998 0.874 0.932 0.874
LncADeep 0.999 0.905 0.950 0.905
PLEK 0.999 0.838 0.911 0.838
PLEKv2 0.999 0.922 0.959 0.922
NcResNet 0.981 0.525 0.684 0.525

Fig. 5  Results of PLEKv2, PLEK, CPC2, and CNCI for mouse datasets. (a) The fraction of the protein-coding transcripts classified as coding or non-coding. 
(b) The fraction of the non-coding transcripts classified as coding or non-coding. This shows that the accuracy of PLEKv2 is much higher than that of PLEK 
for mouse datasets. CPC2 and PLEKv2 outperformed CNCI and PLEK for protein-coding transcripts, while PLEKv2 and CNCI outperformed CPC2 and PLEK 
for non-coding transcripts
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CPC2, PLEKv2, and LncADeep outperformed CNCI, 
PLEK, and NcResNet for protein-coding RNAs. PLEKv2, 
CNCI, and LncADeep outperformed CPC2, PLEK, and 
NcResNet for non-coding transcripts. LncADeep gave 
the highest accuracy for the mouse dataset.

It was of note that CNCI took two hours to predict the 
protein-coding transcripts of mouse, LncADeep took 
one hour to predict protein-coding transcripts in mice, 
and PLEKv2 only needed a few minutes for the mouse 
datasets. These results all indicate that PLEKv2 is a more 
efficient tool, able to identify lncRNAs and mRNAs more 
quickly.

Comparison with plant datasets
To make the application range of PLEKv2 wider, we used 
Arabidopsis thaliana to build a model for prediction in 
other plants that have not been explored in depth. We 
obtained Arabidopsis thaliana protein-coding and non-
coding transcripts from the RefSeq and Ensembl Plants 
databases. Using the same pre-processing methods as for 
the human dataset, we obtained 3878 mRNAs and 3878 
lncRNAs. These transcripts were randomly divided into 
training, validation, and test sets at a ratio of 8:1:1. We 
trained the Coding-Net model using the same hyper-
parameter settings as for training the human dataset. The 
accuracy rate was 95.7%. To further explore the perfor-
mance of PLEKv2, we also ran PLEK and CPC2, and the 
results are shown in Table  6. PLEKv2 gave an accuracy 
rate of > 95.7% (average of coding and non-coding tran-
scripts) on all plants, and showed a great improvement 
over PLEK in identifying protein-coding transcripts, 
from 62.9 to 96.9% in the Arabidopsis lyrata dataset, and 
78.9–95.3% in Oryza sativa.

Although CPC2 performed better on both datasets, the 
difference between the accuracies of PLEKv2 and CPC2 
was only about 2%, and on the Arabidopsis protein-cod-
ing dataset, PLEKv2 was 9.8% higher than CPC2. These 
results indicate that PLEKv2 maintains a high accuracy 
rate for predicting plant lncRNAs and mRNAs.

Predicting human RNAs containing short ORFs
Many molecules previously considered to be ncRNAs 
have been discovered to contain short peptides or small 
open reading frames (sORFs), which may play cru-
cial roles in cellular functions and gene regulation [30]. 
Therefore, we used PLEKv2 to predict human RNAs con-
taining short ORFs. The data we used came from CPPred 
[25], consisting of 641 coding RNAs and 641 lncRNAs. 
The results showed that PLEKv2 achieved a prediction 
accuracy of 89.2%, significantly higher than CPPred 
(accuracy = 80.66%) [25]. This indicates that PLEKv2 
maintains a high performance even when dealing with 
complex RNA structures.

Computational performance
We measured the computational performance of CPC2, 
CNCI, PLEK, PLEKv2, LncADeep, and NcResNet on 
a sample of 1000 protein-coding sequences and 1000 
long non-coding sequences, randomly selected from 
the human RefSeq and GENCODE databases (Table  7), 
respectively. All the tools were run in a single-threading 
manner on an AMD Ryzen 7 4800U (16 cores @ 1.8 GHz) 
and 16 GB of RAM. PLEKv2 took 116  s to process the 
data, which was approximately 23 times faster than CNCI 
(2976  s), threefold faster than Wen et al.’s CNN (472  s), 
11 times faster than LncADeep (1372 s), and four times 
faster than NcResNet (482 s). PLEKv2 also only requires 
600 megabytes of memory to run.

Discussion
PLEKv2 uses two intrinsic sequence characteristics, the 
k-mer usage and calibrated ORF length, which are eas-
ily comprehensible and biologically meaningful. First, 
we constructed a feature vector with different weighted 
k-mer frequencies, and the accuracy of the Coding-Net 
model with just 6-mers was the highest, with an accu-
racy of 96.7% (Table  2). Next, we added the calibrated 
ORF length, and the accuracy rate increased from 96.7 to 
98.7% for human datasets. These results indicate that the 
k-mer and ORF fused vectors are suitable classification 
features.

Table 6  Accuracies of CPC2, PLEK, and PLEKv2 for plant datasets, 
with the highest accuracy between CPC2, PLEK, and PLEKv2 
shown in bold
Species Dataset type Number of 

transcripts
CPC2 PLEK PLEKv2

Arabidop-
sis thaliana

Coding 388 85.90% 60.2% 95.7%

Non-coding 388 97.30% 91.20% 95.7%
Arabidop-
sis lyrata

Coding 37,026 94.20% 62.90% 96.9%

Non-coding 795 95.60% 100% 98.2%
Oryza 
sativa

Coding 37,389 96.50% 78.90% 95.30%

Non-coding 1011 100% 100% 100%

Table 7  Comparison of the computational performances of CPC2, CNCI, Wen et al.’s CNN, PLEK, PLEKv2, and LncADeep
Performance CPC2 CNCI CNN PLEK PLEKv2 LncADeep NcResNet
Run time (seconds) 17 2976 472 128 116 1372 482
Memory (MB) 1080 24 819 300 660 90 2688
Online running Yes No No No No No No



Page 9 of 10Li et al. BMC Genomics          (2024) 25:756 

We used one-dimensional sequence vectors as inputs, 
preserving the positional information of sequences. 
Compared with the random shuffling of sequence fea-
tures into high-dimensional matrices, one-dimensional 
input is more beneficial for the extraction of classifica-
tion features. The range of the receptive field is related 
to the kernel size. The smaller the receptive field is, the 
more local and detailed its features tend to be. Here, we 
used 1 × 3 convolution kernels, which may have some 
biological significance and were regarded as codons, to 
enhance the differential feature information of neighbor-
ing nucleotides.

Compared with the established lncRNA and mRNA 
classification models, such as CPC2 and CNCI (machine 
learning algorithms), and Wen et al.’s CNN, LncADeep, 
and NcResNet (deep learning algorithms), the PLEKv2 
model is excellent for human datasets. Meanwhile, 
PLEKv2 performs better than CPC2 at predicting 
ncRNAs in mice (Mus musculus), and also demonstrates 
superior performance for primate datasets.

There remain several limitations to our research. For 
example, other features aside from the ORF size, such as 
the ORF coverage and the ORF integrity, are not consid-
ered. Moreover, PLEKv2 exhibits relatively lower discrim-
inative ability in determining the translational potential 
of transcripts. In addition, CPC2 exhibits more efficient 
performance than PLEKv2 in terms of run time. As an 
online web server, CPC2 is not only more user-friendly 
but can also be used as a stand-alone tool [18]. However, 
it is worth noting that CPC2 requires more memory 
resources during run time. Finally, The model was tested 
only on fully assembled and currently annotated datasets, 
without including more types of data such as incomplete 
transcripts.

Conclusions
Employing a novel classification model, we have 
upgraded our PLEK tool to its next version, PLEK version 
2 (PLEKv2), based on deep learning algorithms. PLEKv2 
is more accurate than PLEK, especially for primates and 
plants. More significantly, the accuracy of the PLEKv2 
classification model was 98.7%, while CPC2 was 90.6%, 
CNCI was 95%, Wen et al.’s CNN was 82.1%, LncADeep 
was 97.3%, PLEK was 93.8%, and NcResNet was 49.8%. A 
very small improvement in accuracy is not a trivial mat-
ter: as there are very many lncRNAs, a 1% improvement 
in accuracy indicates the correct identification of hun-
dreds more lncRNAs. With the development of third-
generation sequencing technologies, increasing numbers 
of full transcripts are emerging, and PLEKv2 achieved 
high accuracy for lncRNA identification. Furthermore, 
PLEKv2 exhibits good performance in cross-species 
prediction, as do CPC2 and CNCI. The future scope of 
PLEKv2 will include further upgrades to higher versions, 

incorporating additional features and benefits that will 
greatly aid researchers worldwide.

Availability and requirements
Project name: PLEKv2.

Project home page: https://sourceforge.net/projects/
plek2/.

Operating system: Linux/Unix.
Programming language: Python.
Other requirements: Python 3.8.5 or later versions.
install regex = 2023.10.3 package.
install keras = 2.4.3 package.
install pandas = 2.0.3 package.
install tensorflow = 2.4.1 package.
install bio > = 1.3.2 package.
install numpy == 1.19.2 package.
License: MIT.
Any restrictions to use by non-academics: None.
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