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Abstract 

Background  As an emerging food crop with high nutritional value, quinoa has been favored by consumers in recent 
years; however, flooding, as an abiotic stress, seriously affects its growth and development. Currently, reports 
on the molecular mechanisms related to quinoa waterlogging stress responses are lacking; accordingly, the core 
genes related to these processes were explored via Weighted Gene Co-expression Network Analysis (WGCNA).

Results  Based on the transcriptome data, WGCNA was used to construct a co-expression network of weighted 
genes associated with flooding resistance-associated physiological traits and metabolites. Here, 16 closely related co-
expression modules were obtained, and 10 core genes with the highest association with the target traits were mined 
from the two modules. Functional annotations revealed the biological processes and metabolic pathways involved 
in waterlogging stress, and four candidates related to flooding resistance, specifically AP2/ERF, MYB, bHLH, and WRKY-
family TFs, were also identified.

Conclusions  These results provide clues to the identification of core genes for quinoa underlying quinoa water-
logging stress responses. This could ultimately provide a theoretical foundation for breeding new quinoa varieties 
with flooding tolerance.
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Background
Quinoa is a dicot herb of the amaranth family 
(Amaranthaceae) and Chenopodium genus and is one of 
the oldest crops in the Andean region of South America; 
moreover, it is known as a “false cereal crop” because of 

its cereal properties [1, 2]. Quinoa has an excellent amino 
acid composition and is cholesterol- and gluten-free [3]
but contains a variety of biologically active substances, 
such as proteins, phenolic acids, flavonoids, and 
saponins, among others. These substances are important 
for promoting human health by lowering blood lipids 
or exerting antidiabetic and antioxidant effects, among 
others [4–6]. In addition, this crop can adapt to a wide 
range of ecological conditions and is highly tolerant to 
drought, cold, and frost [7].

Flooding is a common abiotic stressor, in which 
excessive precipitation or poor soil drainage leads to 
crop flooding, severely affecting plant physiological 
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performance and yields [8]. Flooding reduces water 
absorption by plant root [9]saerobic respiration [10], 
and high-energy phosphorylated ATP [11], in addition 
to disrupting the structure of biofilms, mitochondria, 
and the internal structure of chloroplasts [12]. It also 
suppresses photosynthesis, transpiration, and stomatal 
conductance in plants [13], and the physiological and 
biochemical characteristics of plants are altered under 
waterlogging stress conditions. Jain et  al. [14], in their 
study on the foliar application of nitrogen in response 
to waterlogging stress and its effects on sugarcane 
growth, found that the proline content was increased 
after flooding. Meanwhile, Thomas et al. [15] found that 
superoxide dismutase (SOD) and catalase activities were 
increased in soybean roots after flooding. Men et al. [16], 
in their study on the effect of waterlogging stress on the 
physiological characteristics of oilseed rape, found that 
the chlorophyll content and activities of antioxidant 
enzymes, such as peroxidase (POD), were elevated after 
flooding. Finally, Kumar et  al. [17] found a decrease in 
soluble sugars in mung bean after flooding treatment. 
These results indicate that plants can regulate their 
physiological state in response to waterlogging stress.

A Weighted Gene Co-expression Network Analysis 
(WGCNA) is a tool used to identify the relationship 
between co-expression modules and traits, as well as 
highly relevant specific modules and core genes involved 
in plant growth and development [18]. It has also been 
widely used to mine pivotal genes in plants that are 
involved in the response to abiotic stresses. Zhang et al. 
[19] utilized quinoa WGCNA to identify core genes 
related to phosphorus levels in seedlings, finding two 
specific related modules and identifying 10 core genes. 
Moreover, Wang et  al. [20] used WGCNA to identify 
hub genes related to heat stress responses in rice 
seedlings, and four modules were recognized. Yu et  al. 
[21] identified and investigated 12 modules significantly 
associated with low temperature, after mining hub 
genes related to low-temperature responses in maize 
seedlings; they identified multiple hub genes associated 
with low-temperature stress from the four modules 
with the highest correlations. Further, Shen et  al. [22] 
studied candidate genes related to heavy metal contents 
in the peel and pulp of ripe melons and identified five 
candidate related genes. However, there are fewer studies 
on the identification of core genes under waterlogging 
stress in quinoa. Based on WGCNA can identify gene 
collections with similar expression patterns, find out the 
links between gene collections and sample phenotypes, 
map the regulatory networks among genes and identify 
key regulatory genes. Meanwhile, it has been widely 
applied to other crops phased success. Therefore, in this 
study, we used Dianli-STZH (highly resistant), Dianli-60 

(sensitive) and Yuncaili-2 (sensitive) as materials; and 
physiological indexes and significant accumulation of 
metabolites were made as correlation traits, and gene 
co-expression networks were generated and analyzed 
using WGCNA. In order to identify the coexpression 
modules closely related to flooding resistance and the 
core genes responding to waterlogging stress, and to 
provide valuable references and strong clues for the 
research of quinoa waterlogging stress.

Results
Quinoa physiological response to waterlogging stress
To study the physiological response of quinoa seedlings 
to waterlogging stress, SOD, POD, soluble sugars, solu-
ble proteins, proline, and T-AOC physiological indices 
were determined. Under waterlogging stress, the soluble 
sugar content was significantly higher in all three plant 
material treatment groups, compared to that in the con-
trol group, and that in TR2 was significantly higher than 
that in TR1 and TR3 (Fig. 1A). Moreover, the content of 
soluble proteins in CR1 was significantly higher than that 
in TR1 for Dianli-STZH, whereas the content of soluble 
proteins in CR2 and CR3 was significantly lower than 
that in TR2 and TR3 (Fig. 1B). SOD and POD activities 
in the three lines showed different changes in the treat-
ment and control groups; for example, the SOD activity 
in Dianli-STZH was higher than that in Dianli-60 and 
Yuncaili-2 and significantly lower than that in its own 
control group, whereas the SOD activities in CR2 and 
CR3 were significantly higher than those in the respective 
controls (Fig. 1C). POD activities in the three lines were 
all higher in the treatment groups than in the controls; 
here, TR2 had the lowest and TR1 had the highest POD 
activity (Fig. 1D). For Dianli-60, there was no significant 
difference in the proline content between treatment and 
control groups, but for Yuncaili-2, the proline content in 
CR3 was significantly higher than that in TR3, for Dianli-
STZH the proline content in TR1 was significantly higher 
than that in CR1. In the treatment groups for the three 
materials, TR1 proline content was lowest, whereas that 
of TR3 was highest (Fig. 1E). Moreover, the T-AOC con-
tent in the treatment groups for the three materials was 
significantly higher than that in the controls, with the 
lowest T-AOC content observed in Yuncaili-2 and the 
highest in Dianli-60 (Fig. 1F). The lowest T-AOC content 
was found in Yuncaili-2 and the highest was in Dianli-60 
(Fig. 1F).

Construction of weighted gene co‑expression network
In total, 8630 genes were used to construct a weighted 
gene co-expression network after filtering genes with 
low expression. Cluster analysis was performed based 
on gene expression (Fig.  2), and there were no outlier 
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samples. The pickSoftThreshold function was utilized to 
calculate a suitable soft threshold for the weighting coef-
ficient, and the selection criteria for the soft threshold 
(i.e., to satisfy an R2 value close to 0.8, and at the same 
time to ensure a certain degree of gene connectivity). 
We selected a soft threshold of 12 to construct the co-
expression network (Fig.  3). Subsequently, the dynamic 
cutting method was used to divide the network modules, 
and the small modules with high similarity were merged; 
finally, 16 modules were constructed (Fig. 4), with differ-
ent colors indicating different modules.

Identification of specificity modules
Physiological indicators as trait data were correlated with 
the filtered genes, and a correlation heatmap was gener-
ated (Fig. 5A); in total, 16 modules were identified based 
on the correlation, among which the red module had the 
highest correlation coefficient with the soluble sugar con-
tent (r =  − 0.75, p = 0.00033), and it showed a high nega-
tive correlation with A, B, and CD indicators. Further, 
the purple module showed a highly significant positive 
correlation with POD (r = 0.77, p = 0.00017), indicating 
that the accumulation of purple module transcripts was 
associated with an increase in POD activity. Meanwhile, 

Fig. 1  Physiological changes in three quinoa seedling types under waterlogging stress. A soluble sugar content; (B) soluble protein content; (C) 
superoxide dismutase (SOD) activity; (D) peroxidase (POD) activity; (E) proline content; (F)Total antioxidant capacity (T-AOC) activity. Different letters 
(a-e) indicate significant differences (P < 0.05) and the same letter indicates no significance (P > 0.05)



Page 4 of 16Wang et al. BMC Genomics          (2024) 25:728 

we screened the core genes (|MM|> 0.8 and |GS|> 0.6) in 
the purple module (Table  S3), and we found that some 
of these core genes belonged to the WRKY, HB-BELL, 
bHLH, and AP2/ERF-ERF gene families.

After screening for differential metabolites with 
higher accumulation in each subgroup and noting 
that flavonoids were significantly accumulated in the 
treatment group, it was hypothesized that flavonoids 
have a potential role in coping with waterlogging stress. 
Therefore, the differentially accumulated flavonoids and 
genes were analyzed via WGCNA (Fig. 5B). Most of the 
flavonoid metabolites of the black module showed highly 
significant negative correlations (P < 0.001), whereas most 
of the flavonoid metabolites of the brown module showed 

highly significant positive correlations, with pmp001288 
(flavonoids) showing the highest and most significant 
correlation with the brown module (P < 0.001). Finally, 
some of the core genes (|MM|> 0.8 and |GS|> 0.6) in the 
brown module were screened (Table  S4), and some of 
these belonged to the MYB, bHLH, Alfin-like, and GNAT 
gene families. In total, four modules were constructed 
based on the correlations between the differential 
metabolite flavonoids and physiological indicators 
(Fig. 5C), with the highest correlation observed between 
POD and the brown module (r = 0.71, p = 0.0009), 
indicating that the accumulation of metabolites in the 
brown module was associated with elevated POD activity. 
Considering the high correlations among these data, we 

Fig. 2  Sample clustering diagram.The horizontal coordinate represents sample clustering, one column represents one sample, and the clustering 
is based on the similarity of gene expression between samples, the closer the gene expression between samples, the closer they are to each other

Fig. 3  Topology of quinoa seedling networks with different soft threshold powers.x-axis indicates the weight parameter β. y-axis in the left panel 
indicates the square of the correlation coefcient between log(k) and log(p(k)) in the corresponding network. The y-axis of the right panel represents 
the average of all gene adjacency functions in the corresponding gene module. The approximate scale-free topology is obtained at a soft threshold 
power of 12 for both genotypes
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therefore analyzed the metabolites of the brown module 
(Table  S5), which had a high percentage of flavonoids, 
amino acids and their derivatives, phenolic acids, and 
organic acids, suggesting that these substances might 
have a role in response to waterlogging stress. Finally, the 
purple and brown modules (metabolite-associated genes) 
were used for follow-up analyses to further explore their 
candidate genes.

Analysis of GO and KEGG enrichment for relevant 
specificity modules
To investigate the functional and metabolic classifica-
tion of genes involved in the response to waterlogging 
stress, we conducted GO analysis all genes in the pur-
ple and brown modules, and the results are divided into 
three categories(Fig. 6A,B), namely biological processes 
(BPs), molecular functions (MFs), and cellular compo-
nents (CCs). For genes in the purple module, BPs were 
mainly enriched in ionic homeostasis (GO:0050801) 
and inorganic ionic homeostasis (GO:0098771), MFs 
were mainly enriched in cysteine-type peptidase activ-
ity (GO:0008234) and drug transmembrane trans-
porter protein activity (GO:0015238), and CCs were 
mainly enriched in the cytoplasmic vesicle fraction 
(GO:0044433), endosomal part (GO:0044440), and 

extracellular region part (GO:0044421) (Fig.  6C). For 
genes in the brown module, BPs were mainly enriched 
in the production of precursor metabolites and energy 
(GO:0006091) and in the processes of ribose phos-
phate metabolism (GO:0019693) and the metabolism 
of purine-containing compounds (GO:0072521), MFs 
were mainly enriched in the activity of oxidoreductases 
acting on NAD(P)H (GO:0016651) and threonine-type 
endopeptidase activity (GO:0004298), and CCs were 
mainly enriched in the mitochondrial inner membrane 
(GO:0005743), respiratory chain (GO:0070469), and 
mitochondrial protein complex (GO:0098798) (Fig. 6D). 
This suggests that flooding might trigger a response to 
waterlogging stress that is based on enzyme activities, 
signal transduction, and metabolic processes. These 
results also suggest that genes in the purple and brown 
modules that play important roles in the response to 
waterlogging stress are latent.

Annotating genes in the specificity module to the 
KEGG database provides insight into the primary func-
tions of the genes in the module. KEGG enrichment 
analysis indicated that the genes in the purple module 
were mainly involved in metabolic pathways (ko01100), 
secondary metabolite biosynthesis (ko01110), purine 
metabolism (ko00230), and amino acid biosynthesis 

Fig. 4  gene clustering tree and division of modules. Gene tree maps obtained by color clustering dissimilarity of the corresponding modules based 
on consistent topological overlap and color row indications. Each row represents a color-coded module containing a set of highly linked genes
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(ko01230) (Fig.  6E). Moreover, the genes in the brown 
module were mainly involved in protein processing in 
the endoplasmic reticulum (ko04141), the proteasome 
(ko03050), metabolic pathways (ko01100), oxidative 

phosphorylation (ko00190), the tricarboxylic acid cycle 
(ko00020), carbon metabolism (ko01200), glycolysis/glyc-
olytic isomerization (ko00010), biosynthesis of secondary 

Fig. 5  Weighted correlation network analysis plots. A Heat map 
of gene co-expression network modules with physiological 
associations; B heat map of gene co-expression network 
with metabolite associations; C. metabolite co-expression network 
with physiological associations

Fig. 6  Functional analysis of relevant specificity modules. Gene 
Ontology (GO) annotation (A, B), GO enrichment analysis (C, D), 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 
(E, F) analysis of candidate genes in purple (A, C, E) and brown (B, 
D, F) modules. x-axis of GO annotation shows GO terms for BP, CC 
and MF. y-axis shows the number of genes associated with GO terms. 
x-axis of GO enrichment shows the percentage of genes in GO terms 
and y-axis shows the percentage of genes in KEGG terms. The y-axis 
shows GO enrichment terms. x-axis for KEGG enrichment shows 
the percentage of genes in KEGG terms, and the y-axis shows KEGG 
enrichment terms
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metabolite synthesis (ko01110), and amino acid biosyn-
thesis (ko01230) (Fig.  6F). This suggests that the genes 
in these modules might play key roles in the response 
of quinoa seedlings to waterlogging stress via altera-
tions to metabolic pathways, biosynthesis, and energy 
metabolism.

Identification of core genes in the significant co‑expression 
module associated with waterlogging stress in quinoa 
and construction of gene interaction network
Considering the high correlation between the aforemen-
tioned two modules and the associated shapes, combined 
with the GO and KEGG analysis results, it was speculated 
that they might have potential genes related to inunda-
tion stress. Therefore, these two modules were utilized 
to construct a gene interaction network and mine poten-
tial core genes. The genes with KME values in the top 20 
were selected as preliminary candidate genes (Table S6), 
and the five core genes for each module were identified 
separately by calculating the BC using the cytoNCA 
plug-in in Cytoscape 3.9.1 software (Fig. 7 and Table 2). 
Through transcription factor identification, it was found 
that the core genes LOC11068206 and LOC110682343 
in the purple module belong to the WRKY gene family, 
LOC110682050 belongs to the AP2/ERF gene family, and 
LOC110690303 and LOC110687865 are structural genes. 
Moreover, in the brown module, it was determined that 
LOC110681615 and LOC110682220 belong to the MYB 
gene family, LOC110681724 belongs to the bHLH gene 
family, and LOC110683180 and LOC110688261 belong 
to structural genes in the brown module. In addition, 

we performed promoter analysis of structural genes 
(Table S6) and found that 39 structural genes have home-
ostatic elements that bind to the MYB family of tran-
scription factors, of which four structural genes have 
MYB-binding sites involved in the regulation of flavonoid 
biosynthesis genes, 15 have MYB-binding sites involved 
in the response to light, and 20 have MYB-binding sites 
involved in the drought-inducible sites.

Transcription factors activated under waterlogging stress
To understand the expression of transcription factors 
in response to waterlogging stress, Table  S7 shows the 
top 10 transcription factors in terms of numbers; these 
were mainly concentrated in the AP2/ERF, bHLH, WRKY, 
NAC, MYB, FAR1, and C3H families, with the coding 
genes with the highest numbers being FAR1 and bHLH. 
Of note, the most highly expressed genes belonged to the 
MYB, bZIP, AP2/ERF-ERF, and bHLH families; seven of 
the top 30 expressed genes belonged to the AP2/ERF fam-
ily of transcription factors, and the expression of genes in 
flood-resistant varieties was significantly higher than that 
in sensitive varieties. Because the AP2/ERF family of tran-
scription factors has been reported to confer resistance 
to waterlogging in maize (ZmEREB180), rice (OsSub1A), 
and Arabidopsis (AtRAP2.2 and AtERF72), we used these 
genes to identify motifs based on the screened AP2/ERF 
family core gene LOC110682050(Fig.  8A). Five motifs 
were identified from five AP2/ERF-encoding genes, and 
LOC110682050 was determined to share three motifs 
with them, with all of the genes encoding proteins with 
AP2 domains. We therefore suspect that the mechanism 

Fig. 7  Candidate hub genes for purple (A) and brown (B) modules obtained from the interaction network analysis of known core genes. Orange 
color represents the screened core genes, and larger dots represent larger BC values
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underlying the response to waterlogging stress is related 
to the expression of transcription factors, especially with 
respect to ethylene signaling.

Real‑time fluorescence quantitative PCR validation
Ten the core genes for real-time fluorescence quantitative 
PCR, and three replicates were set up for each reaction. 
2 − ∆∆Ctwas used to analyze the normalized expression 
of each sample, so as to calculate 2 − ∆∆Ct and SD, and 
the FPKM and SD of the validation genes were also calcu-
lated. based on the 2 − ∆∆Ct of the validation genes and 
the FPKM of the sequenced genes, the results showed 
that the expression trends detected by RT-qPCR matched 
well with the RNAseq data, which proved the reliability 
of core gene expression (Fig. 9A-J and Tables 1 and 2).

Discussion
Quinoa, as an emerging pseudocereal crop, has attracted 
much attention in recent years; however, flooding 
severely affects its growth and development. Plant roots 
are injured under waterlogging stress, leading to changes 
in plant physiology and metabolism that affect plant 
growth [23]. However, osmoregulation, as a mecha-
nism of defense against adversity and stress, can reduce 

cellular water potential and ensure normal plant growth 
[24], and the increase in osmoregulatory substances (sol-
uble sugars, proline, and soluble proteins) can be used to 
cope with waterlogging stress in plants [25]. Barickman 
et al. [8] found elevated proline levels and differences in 
soluble sugar contents in cucumbers under waterlogging 
stress. Fante et al. [26] also found an increase in the solu-
ble sugar content in the leaves of soybean after flooding. 
This is in general agreement with the results of the pre-
sent study. Because we found that the soluble sugar con-
tent of quinoa seedlings after flooding was significantly 
higher in the treated group than in the control group and 
the proline content was significantly higher in the highly 
resistant materials after waterlogging stress, it was spec-
ulated that quinoa could respond to waterlogging stress 
by regulating the contents of osmotic substances after 
flooding, thus improving resistance to flooding. Flood-
ing reduces reactive oxygen species in plants, which 
in turn disrupts the redox balance and causes damage 
to plant growth [27]. To reduce the damage caused to 
plants, plants produce many ROS-scavenging enzymes, 
such as POD and SOD. In a previous study, Zhang et al. 
[28] found that after flooding, the damage to barley was 
reduced through an increase in antioxidant enzyme 

Fig. 8  Comparative analysis of the five genes of the AP2/ERF family. A Structural domain analysis. B Conserved structural domain sequence tags
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activities. Moreover, Zhu et  al. [29] obtained the same 
conclusion using grapes, where the antioxidant enzyme 
activities of SOD and POD were elevated in the leaves 

after flooding. In this study, we also found that the POD 
and SOD enzyme activities of quinoa seedlings were sig-
nificantly higher under waterlogging stress than under 

Fig. 9  (A-J) Validation of gene expression levels of core genes by RT-qPCR
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Table 1  Functional annotation of core genes in the waterlogging stress-related specificity module

Module Module candidate hub genes Transcription factor family Gene function

Purple gene-LOC110690303 - Early nodular protein-like protein 2

gene-LOC110682067 WRKY family protein Possible WRKY transcription factor 13, which regulates flowering time, 
is involved in adversity stress

gene-LOC110682343 WRKY family protein Possible WRKY transcription factor 15 that regulates plant growth and salt/
osmotic stress responses

gene-LOC110687865 - Histone B-like protease 2

gene-LOC110682050 ERF family
protein

Ethylene-responsive transcription factor ERF113-like, transcriptional activator 
involved in the regulation of plant development and tolerance to abiotic 
stress, acts as a positive regulator of tolerance to Waterlogging stress. 
Delaying flooding-induced premature senescence by regulating stomatal 
closure and antioxidant enzyme activities

Brown gene-LOC110681615 MYB family protein The transcription factor MYB35, a positive regulator of abscisic acid (ABA) 
responses, causes growth arrest during seed germination and is involved 
in the regulation of leaf morphogenesis and pollen grain development

gene-LOC110682220 MYB family protein The transcription factor, MYB16-like, is highly expressed in roots and at lower 
levels in stems and flowers

gene-LOC110683180 - ATP synthase subunit d, mitochondria

gene-LOC110688261 - Peptidyl-prolinyl cis–trans isomerase CYP20-1-like

gene-LOC110681724 bHLH family protein Transcription factor bHLH18-like, symbiotic interactions with endophytes 
of the Sebacinaceae family of fungi, transcriptional activators that regulate 
the expression of NAI2, PYK10, and PBP1, mediate the formation 
of endoplasmic reticulum bodies

Table 2  Primer sequences to validate genes

Quantity gene-ID NCBI-Gene ID Primer 5’ to 3’

1 gene-LOC110690303 110,690,303 Forward Primer TTT​ATC​GTC​TTT​GCC​TTT​

Reverse Primer CTT​GCC​TAC​CAT​TAA​CAT​

2 gene-LOC110682067 110,682,067 Forward Primer TGT​AGA​GTG​AAG​AAG​AGA​

Reverse Primer CAG​AAG​AAG​TTG​TTA​AGC​

3 gene-LOC110682343 110,682,343 Forward Primer ATC​TTC​TTC​AAA​CCT​CTC​

Reverse Primer CAC​TCT​CCA​TAT​TAC​TAT​TATC​

4 gene-LOC110687865 110,687,865 Forward Primer AGA​GTG​AGA​AGA​GGA​ATA​

Reverse Primer ATA​GTG​CTA​CAT​TGA​GAC​

5 gene-LOC110682050 110,682,050 Forward Primer ATT​GAA​GAA​GAA​GAA​GGA​A

Reverse Primer ACC​ACA​GGC​TAT​AAT​AAT​C

6 gene-LOC110681615 110,681,615 Forward Primer GTG​TTG​TTG​GTT​CTT​ATA​C

Reverse Primer TTG​TTC​TGT​TGA​GTT​GAT​

7 gene-LOC110682220 110,682,220 Forward Primer TAC​CAA​GGA​TAA​CAA​CAA​T

Reverse Primer ACT​AAC​CAA​ACT​AAT​ACC​AT

8 gene-LOC110683180 10,683,180 Forward Primer AAG​AAG​CAG​AAC​AAC​AAT​

Reverse Primer ATA​GTC​ATT​GCG​AAT​CTC​

9 gene-LOC110688261 110,688,261 Forward Primer TAT​CAC​AAC​CGT​AAC​AAC​

Reverse Primer GTC​AGC​AAT​AAC​AAC​CTT​

10 gene-LOC110681724 110,681,724 Forward Primer TTC​CAA​TCA​TTC​CTT​GTC​

Reverse Primer CGT​TAT​CGT​TAT​CAT​TAC​TG

Internal reference gene TUB-6 831,100 Forward Primer TGA​GAA​CGC​AGA​TGA​GTG​TATG​

Reverse Primer GAA​ACG​AAG​ACA​GCA​AGT​GACA​
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control conditions. This suggests that the increase in 
antioxidant enzyme activities under waterlogging stress 
results in free radical scavenging to cope with waterlog-
ging stress, as the growth status of the highly resistant 
varieties in this study was significantly better than that of 
the sensitive varieties.

Metabolites comprise the hub of genes and pheno-
types, and plants can be studied based on a combina-
tion of metabolites and physiological changes [30]. A 
WGCNA of metabolites with physiological indices 
revealed that the core metabolites under waterlog-
ging stress were flavonoids, organic acids, and phe-
nolic acids. Xuan et al. [31] found that phenolic acids 
are involved in the response to waterlogging stress 
through improvements in the antioxidant capacity of 
rice seedlings. Meanwhile, Wang et  al. [32] revealed 
that waterlogging stress significantly increases the 
total flavonoid content and affects secondary meta-
bolic biosynthesis in Chrysanthemum officinale. Fur-
ther, the results of promoter analysis also showed that 
many structural genes have cis-acting elements that 
bind to the MYB family of transcription factors, and 
some of these structural genes also have MYB-binding 
sites involved in the regulation of flavonoid biosyn-
thesis genes, which indirectly suggests that flavonoids 
might be regulated by the MYB family and play an 
important role in the response to flooding stress. An 
analysis of the relevant specificity modules identified 
using WGCNA revealed that these differential genes 
were mainly enriched in ribose phosphate metabolism, 
the metabolism of purine-containing compounds, pro-
tein processing in the endoplasmic reticulum, carbon 
metabolism, glycolysis/glycolysis, and amino acid bio-
synthesis. Guo et  al. [33] found that quinoa responds 
to waterlogging stress mainly through sugars, as well 
as alcohols, and Zhu et al. [29] identified differentially 
regulated genes associated with amino acid and sugar 
metabolism that can reduce the damage to grapes in 
response to waterlogging stress, which is similar to 
our differential gene enrichment results under flood-
ing conditions. Regarding the grape flooding response, 
differentially expressed genes associated with amino 
acid and sugar metabolism were found to be activated 
to reduce damage under waterlogging stress, which 
is similar to our differential gene enrichment results 
under flooding conditions.

Most of the subsequent core genes screened encoded 
members of the WRKY, MYB, AP2/ERE, and bHLH tran-
scription factor families, which have been shown to have 
important roles in waterlogging stress [34]. For exam-
ple, AP2/EREBP and MYB are significantly expressed 
and increase plant tolerance under waterlogging stress 

[35, 36]. Moreover, Zhao et al. [37] found the significant 
upregulation of ERF, bHLH, and MYB family expression 
in sensitive and flood-tolerant Chrysanthemum varie-
ties. Our core gene annotation results revealed that 
these proteins are mainly encoded by AP2/ERE, bHLH, 
and MYB, which is in general agreement with previous 
studies on transcription factors involved in the flood-
ing response under waterlogging stress. The core genes 
LOC110682067 and LOC110682343 encode proteins 
of the WRKY transcription factor family. Meng et  al. 
[38] found that some WRKY genes are involved in the 
waterlogging stress response. Further, Campbell et  al. 
[39] reported upregulation of the expression of WRKY 
transcription factors after 24, 48, and 72  h of submer-
gence, and Viana et  al. [40] also demonstrated that 
under waterlogging stress, WRKY transcription factors 
can regulate the development of aeration tissues in rice. 
LOC110682050 belongs to the AP2/ERF family of tran-
scription factors, and AP2/ERF has a key role in the eth-
ylene response, which can broadly regulate the response 
of plants to adversity and stress. Du et al. [41] analyzed 
20 ERF-B2 subfamily genes in the maize genome under 
waterlogging stress and found that nine of them were 
responsive to waterlogging stress. Wang et al. [42] also 
found that ERF transcription factors are involved in the 
flooding-response process in sesame. LOC110681615 
and LOC110682220 belong to the MYB gene family, 
which plays an important role in regulating plant devel-
opment, metabolism, and abiotic stress tolerance [36]. 
Zhang et  al. [28] found that in Arabidopsis thaliana, 
the transcription factor MYB30 represses the synthe-
sis of ethylene through 1-aminocyclopropane-1-car-
boxylic acid synthetase 7, which is then involved in the 
response to waterlogging stress. Similarly, Owusu et al. 
[43] found that the MYB transcription factor gene in 
cotton is highly sensitive to flooding under waterlogging 
stress. These results suggest that the core genes that we 
identified also play important roles in the response of 
quinoa to waterlogging stress.

Conclusion
In this study, we found that quinoa responds to 
waterlogging stress through the regulation of antioxidant 
enzyme (SOD, POD) activities, the soluble sugar content, 
and the accumulation of flavonoids and phenolic acids. 
Moreover, WGCNA identified two key modules, and 
10 core genes involved in response to inundation stress, 
mainly belonging to the WRKY, AP2/ERF, MYB and 
bHLH gene families, were identified. Through functional 
annotation, some of the core genes were found to be 
closely related to the reported abiotic stress regulatory 
pathways, among which the core genes encoded by 
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AP2/ERF were highly homologous to different reported 
genes that are involved in the response to inundation 
stress. The results of this study could provide clues for 
further studies on the search for core genes underlying 
flooding resistance in quinoa and also provide theoretical 
support for the breeding of new quinoa varieties with 
flooding tolerance.

Materials and methods
Material planting and growth conditions
The high-generation cultivars Dianli-STZH, Dianli-60, 
and Yuncaili-2, which were independently selected and 
bred by Yunnan Agricultural University, were planted in 
a glass greenhouse at the Modern Agricultural Educa-
tion and Research Base of Yunnan Agricultural Univer-
sity, Xundian County, Kunming (E 102°41′, N 25°20′, 
Kunming, China). Uniform seeds were selected and hole-
sown in 50-hole seedling trays (54 cm × 28 cm × 12 cm) to 
ensure 2–3 seedlings per hole, and six trays were planted 
for each material and divided into treatment and control 
groups. During the growth period, the average tempera-
ture was 23.6℃ and the sunshine duration was approxi-
mately 10 h. When the seedlings reached 6–8 true leaves, 
the treatment group was flooded by submerging the 
seedling trays in water, and the water surface was always 
kept at approximately 1–2  cm above the soil surface, 
whereas the control group was subjected to normal cul-
tivation management. A previous study showed that after 
240  h of flooding treatment, for the sensitive materials, 
the biggest morphological difference between the control 
and treated groups was related to the phenomenon of 
rigidity, and leaf yellowing was extremely serious; how-
ever, the highly resistant materials always maintained 
normal growth [33](Fig. 10). The greatest phenotypic dif-
ferences between the treatment groups and the control 

were observed at this stage, and therefore, 240  h was 
determined to be the optimal sampling time in this study, 
at which time the aboveground parts of the three quinoa 
lines were sampled. For three biological replicates, with 
18 samples in total, the specimens were flash frozen in 
liquid nitrogen at stored at − 80℃. Sample information is 
shown in Table 3:

Measurement of physiological and biochemical indicators
The soluble sugar content was determined based on 
the method of Kim et  al. [44]; antioxidant enzymes 
(POD,SOD) were assessed according to the method 
of Tang et  al. [45]. The soluble protein content was 
determined through staining [46], and the proline 
content was determined referring to the method of 
Elasad et  al. [47]. Finally, T-AOC determination was 
performed according to the instructions of the kit 
(colorimetric method), which was obtained from Nanjing 
Jianjian Biological Engineering Research Institute Co. 
(Nanjing, China).

Data acquisition
Eighteen samples were sent to Wuhan Metware 
Biotechnology Co. Ltd. (www.​metwa​re) for transcriptome 
and metabolome assays. The transcriptome analysis 
process included RNA extraction, detection, and library 
construction. RNA extraction was performed using the 

Fig. 10  Morphological map of the three materials after 240 h of flooding treatment. Dianli-STZH (A), Dianli-60 (B), and Yuncaili-2 (C), where the top 
of the picture is the treatment and the bottom is the control

Table 3  Sample information

Sample Treaments CK

Dianli-STZH TR1 CR1

Dianli-60 TR2 CR2

Yuncaili-2 TR3 CR3

http://www.metware
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method of Zeng et  al. [48], and it was analyzed using 
agarose gel electrophoresis to determine RNA integrity 
and the presence of DNA contamination. The RNA 
concentration was accurately determined using a Qubit 
2.0 fluorometer, and the integrity of the detected RNA 
was analyzed using an Agilent 2100 Bioanalyzer. Library 
construction was accomplished using the method of 
Zhu et  al. [29]. After sequencing was completed, the 
available clean data were analyzed, and gene annotations 
were performed using Tophat2 (v2.1.0) software [49]. 
After annotation, the results were compared and 
counts were enumerated using RSEM [50] to compare 
the number of reads in the samples and transcripts; 
the FPKM (fragments per kilobase of exon model per 
million mapped fragments) [49] conversion was used to 
determine the expression levels of transcripts and genes. 
Metabolite extraction was performed using the method 
of Chen et  al. [51]. Characterization of the metabolites 
was performed using secondary spectral information 
from the MWDB (Metware Database), and quantitative 
analysis of the metabolites was performed using the 
multiple reaction monitoring mode of triple quadrupole 
mass spectrometry. Metabolites were further analyzed 
using orthogonal partial least squares discrimination and 
multivariate statistical analysis with supervised pattern 
recognition to screen for differential metabolites with a 
VIP value > 1 and fold-change ≥ 2 or ≤ 0.5 [52].

Construction of weighted gene co‑expression network
Gene co-expression networks were constructed using 
the WGCNA (version 1.6.1) package in R software [18]. 
The expression profile matrices of the genes were derived 
from the gene expression in all samples. Genes with an 
FPKM value less than 10 were filtered out, and those 
remaining were used for WGCNA. To make the network 
conform to the scale-free network distribution, the 
pickSoftThreashold computational weights were chosen 
to have a value of power of 12, and the blockwiseModules 
were utilized to construct the scale-free network, with 
the parameters set according to the default settings. The 
metabolomic abundance data of physiological indicators 
and flavonoids were used as the associated traits 
(Table S1), which were correlated with the filtered 8,630 
genes (Table S2). Then, the core genes were categorized 
into 16 modules using WGCNA, and the correlation 
of each module with the trait was calculated; a higher 
correlation coefficient was indicative of a higher the 
correlation between the module and the trait, whereas 
a lower correlation coefficient was indicated of a lower 
correlation.

Screening specificity modules and GO (Gene Ontology) 
and KEGG (Kyoto Encyclopedia of Genes and Genomes) 
functional enrichment analysis
The correlation coefficients (r-values) and corresponding 
p-values between the eigenvectors (module eigengene) 
of each module and the different traits were calculated 
separately to determine the specificity of modules. 
Modules with an |r| value > 0.7 and p < 0.01 were selected 
as specific modules, and these were analyzed via KEGG 
and GO analyses. GO and KEGG enrichment analyses 
were performed using the clusterProfile package in the 
R program [21], with corrections based on multiple 
hypothesis testing, with a corrected p < 0.05 considered 
significantly enriched.

Screening core genes for specific modules 
and construction of gene interaction networks
The connectivity of a gene in a module represents the 
regulatory relationship between that gene and other 
genes, and it reflects the role of the gene in the module; 
higher connectivity indicates a stronger regulatory role 
for the gene in the module and a potential core gene 
[53].Therefore, the first 20 genes were initially screened 
as candidate core genes by calculating the KME (module 
eigengene-based connectivity) value within the module, 
and the core genes were subsequently screened by 
calculating the BC (betweenness) value using the cytonca 
plugin in Cytoscape 3.9.1 software [54]. In conjunction 
with promoter analysis, structural gene promoter regions 
(2,000  bp upstream) were identified, cis-acting element 
information was obtained, and gene interaction network 
maps were generated with reference to Wang et al. [55].

Transcription factor identification analysis
Transcription factor families were identified and 
annotated using ITAK (IAITAM, Canton, OH, USA) 
software [56, 57]. The core genes were subjected to 
protein sequence extraction using the NCBI website, 
and blast were selected from the plantTFDB database 
[58] for transcription factor analysis and prediction to 
obtain transcription factor families in each module and 
to further understand the functions of the core genes. 
The conservation of core genes was predicted using 
the motif-inspired Multiple Expectation Maximization 
(MEME, http:// meme-suite.org/tools/meme) tool [59].

Real‑time fluorescence quantitative PCR validation
To verify the reliability of gene expression, all samples 
of the ten core genes were selected and three biological 
replicates were set up for RT-qPCR verification.The 
primers for the related genes used for RT-qPCR analysis 
were designed in Beacon Designer7.9.and the TUB-6 
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gene was selected as the internal reference gene. Then 
RT-qPCR was performed using PerfectStart SYBR 
qPCR Supermix (TransGen Biotech, Beijing, China).the 
reaction volume was 20 uL (Table  3), and the thermal 
cycling conditions were set to 94℃ (30 s), 94℃ (5 s), 60℃ 
(30 s), and 40 cycles, and finally, the reaction volume was 
20 uL (Table 4). 2 − ∆∆Ct method to calculate the relative 
gene expression levels [60].
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