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Abstract 

In order to explore the role of topological indices for predicting physio-chemical properties of anti-HIV drugs, this 
research uses python program-based algorithms to compute topological indices as well as machine learning algo-
rithms. Degree-based topological indices are calculated using Python algorithm, providing important information 
about the structural behavior of drugs that are essential to their anti-HIV effectiveness. Furthermore, machine learning 
algorithms analyze the physio-chemical properties that correspond to anti-HIV activities, making use of their ability 
to identify complex trends in large, convoluted datasets. In addition to improving our comprehension of the links 
between molecular structure and effectiveness, the collaboration between machine learning and QSPR research 
further highlights the potential of computational approaches in drug discovery. This work reveals the mechanisms 
underlying anti-HIV effectiveness, which paves the way for the development of more potent anti-HIV drugs. This work 
reveals the mechanisms underlying anti-HIV efficiency, which paves the way for the development of more potent 
anti-HIV drugs which demonstrates the invaluable advantages of machine learning in assessing drug properties 
by clarifying the biological processes underlying anti-HIV behavior, which paves the way for the design and develop-
ment of more effective anti-HIV drugs.
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Introduction
Human Immunodeficiency Virus (HIV) was firstly identi-
fied in the early 1980s as a consequence of the appearance 
of an immune system-damaging disease [1]. Later on, the 

illness was identified as Acquired Immunodeficiency Syn-
drome (AIDS). In 1983–1984, French scientists Francoise 
Barre-Sinoussi and Luc Montagnier became essential in 
discovering the virus. HIV caused a global pandemic that 
has killed countless people and infected millions of peo-
ple globally. Its impact on global health is immense, as it 
not only threatens human health but also affects econo-
mies and healthcare systems around the globe [2]. There 
are two primary types of HIV: HIV-1, which is common 
surrounding the world, and HIV-2, which is primarily 
linked to West Africa. Here we focus on HIV-1, HIV-1 
target CD4 cells by engaging to their surface receptors, 
which starts the process of the virus entering and tak-
ing control of the cell’s functions as shown in Fig. 1. New 
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viruses are created as a result, ultimately the CD4 cells 
are destroyed HIV causes the immune system to become 
extremely weakened by destroying CD4 cells, which sets 
off a series of immune issues. Gradually, this causes CD4 
cell depletion. The immune system’s capacity to mount 
effective defenses against infections is weakened by a 
decrease in CD4 cells [1, 3–5]. Breast milk, vaginal fluids, 
rectal fluids, semen and blood represent some of the bod-
ily fluids that may transmit the virus. These bodily flu-
ids can spread HIV when persons engage in risky sexual 

behavior, share needles with injecting drug users, or are 
pregnant, giving birth, or nursing a kid [6]. The goal of 
antiviral therapy is to stop HIV-1 replication in order 
to protect CD4 cell levels and immune system health 
[7]. An extensive variety of drugs, including Rilpivirine, 
Nevirapine, Emtricitabine, Delavirdine, Elvitegravir, Rito-
navir, Saquinavir, Indinavir, and Bictegravir (these drugs 
are referred to as a, b, c,…., i respectively, as shown in 
Fig.  2 and their molecular graphs represented in Fig.  3) 
are required to cure HIV-1. These drugs are used to treat 
HIV-1 infection and stop the HIV virus from growing 
and from spreading throughout the body by a number 
of distinct mechanisms. By doing this, these drugs con-
tribute to the regulation of HIV levels in the blood, which 
protects CD4 cells. In the area of HIV-1 analysis, graph 
theory provides a fundamental statistical application par-
ticularly in the field of chemistry and drugs development. 
Some embedding’s of drugs and diseases through the 
dual-channel network are characterized in [8–11]. On 
the other hand, the bridges between largest herbal medi-
cines, chemical ingredients, target proteins, and associ-
ated diseases with respect to the neural network and 
deep learning-based invariants are discussed in [12–17].

Graph theory is essential to the analysis of biochemi-
cal networks in medicine, including drug-target relation-
ships and protein–protein interactions [18–22]. To aid 
in the identification of possible drug candidates and the 

Fig. 1 Virus entering and functioning

Fig. 2 Molecular structure of antiviral HIV-1 drugs
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optimization of drug design, graphs depict pharmaceuti-
cals as nodes and their interactions with targets as edges. 
Furthermore, proteins are shown as nodes in graphs that 
represent protein–protein interactions as edges. This 
makes it possible to identify important protein hubs 
and pathways that are connected to disease causes and 
potential treatment approaches. Topological indices 
(TIs) from graph theory are essential for drugs discovery 
[23–25].

Our main goal is to conduct an extensive review of 
nine selected antiviral drugs for HIV-1. Using Python 
algorithm, which involves finding their degree base TIs 
such as (Randic, Sum Connectivity, First Zagreb, Sec-
ond Zagreb) Indices which shown in Table 1 by devel-
oping python algorithm based on graph theory. Python 
programs are essential resources for researchers exam-
ining the chemical properties of drugs and computing 
topological indices. In addition to improving analyti-
cal efficiency by automating repetitive processes and 
quickly processing enormous data sets, the computa-
tional approach offers substantial benefits in the simul-
taneous research of many drugs. By revealing complex 
links between molecular descriptors and biological 
activities, the integration of physio-chemical charac-
teristics such as molecular weight (MW), complexity 
(Comp), density (Den), flash point (FP), molar volume 
(MV), surface tension (ST), polarizability (Pol), boiling 
point (BP) and enthalpy of vaporization (EV) into the 
study through machine learning algorithms, contrib-
utes to our understanding of the potential efficacy and 
safety profiles of drugs against HIV. In order to provide 
a thorough understanding of the molecular character-
istics of HIV drugs and to provide insights into their 
modes of action and potential side effects, it is impera-
tive to combine topological indices with physio-chem-
ical parameters. It is essential to combine topological 
indices with physio-chemical parameters to provide a 
comprehensive understanding of the molecular proper-
ties of HIV drugs, as well as insights into their modes of 
action and potential adverse effects. In order to predict 
drug efficacy based on molecular features, researchers 
utilize supervised machine learning models to establish 
quantitative correlations between calculated molecu-
lar descriptors and observed biological activity. Super-
vised machine learning predictive models offer valuable 

Fig. 3 Molecular graph of emtricitabine, nevirapine and elviteravir

Table 1 Topological indices with notations and formula

Notation Formula

First Zagreb Index [34] M1 (G)
∑

rj∈E(G)
(dr + dj)

Second Zagreb Index [34] M2 (G)
∑

rj∈E(G)
(dr × dj)

Harmonic Index [35] H (G)
∑

rj∈E(G)

2

(dr+dj)

Forgotton Index [36] F (G)
∑

rj∈E(G)
[(dr)2 + (dj)2]

Shilpa-Shanmukha Index [37] SS (G) ∑

rj∈E(G)

√

dr×dj
dr+dj

Atom Bond Connectivity Index [38] ABC (G) ∑

rj∈E(G)

√

dr+dj−2

dr×dj

Randic Index [39] RI (G) ∑

rj∈E(G)

√

1

dr×dj

Sum Connectivity Index [40] SC (G) ∑

rj∈E(G)

√

1

dr+dj

Geometric Arithmetic Index[38] GA (G) ∑

rj∈E(G)
2

√
dr×dj

dr+dj

Hyper Zagreb Index [41] HZ (G)
∑

rj∈E(G)
(dr + dj)2

Redefined First Zagreb Index [42] ReZ1 (G) ∑

rj∈E(G)

(dr×dj)
(dr+dj)

Redefined Second Zagreb Index 
[42]

ReZ2 (G)
∑

rj∈E(G)
(dr × dj)(dr + dj)
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insights into the potential efficacy of anti-HIV drug by 
analyzing their molecular properties and estimating 
their effectiveness against the illness. The utilization of 
Quantitative Structure–Property Relationship (QSPR) 
analysis is becoming increasingly important in under-
standing the relationships between drug structures and 
biological behavior [26–30]. QSPR analysis provides a 
rational framework for drug design and optimization 
[31–33]. By combining computational methods and 
QSPR analysis, researchers hope to obtain a deeper 
understanding of the molecular mechanisms underly-
ing anti-HIV drugs, which will help in the development 
of more focused and efficient treatment options.

Material and method
We initially determined the edge partition based on 
graph connectivity was adopted to define molecular 
graphs, which is an important step in recognizing the 
structural properties. Then, degree-based TIs were cal-
culated through analyzing the molecular graph’s node 
degree variation. To make this process easier, a unique 
Python algorithm was developed. After that, Python pro-
grams were used to develop machine learning methods 
for the analysis of physiochemical properties. Further-
more, using Statistical Package for the Social Sciences 
(SPSS) software to analyze relationships between the 
computed indices and experimental features, we also 
performed graphical comparison analysis between actual 
and computed drug property, ensuring the accuracy and 
credibility of our results.

Data acquisition and preparation

• We utilized the latest version of python 3.12 to com-
pute topological indices and sourced physiochemical 
properties from online database Chemspider (https:// 
www. chems pider. com) and Pubchem (https:// pubch 
em. ncbi. nlm. nih. gov). The topological descriptors 
were employed as feature variables (input variables), 
while the physiochemical properties served as target 
variables. Our analysis covered a dataset composed 
of multiple feature variables and target variables, rep-
resenting a considerable amount of data points.

• Given that our dataset is labeled, we opted for super-
vised machine learning algorithms, specifically Ran-
dom Forest and XGBoost, to analyze the data and 
derive insights. RF is chosen for its proficiency in 

handling overfitting through its ensemble approach, 
where multiple decision trees contribute to a more 
stable and accurate prediction while XGBoost is 
based on the gradient boosting framework, which 
builds one tree at a time. Each new tree helps to cor-
rect errors made by previously trained tree models. 
By averaging several trees, Random Forest reduces 
the risk of overfitting, which is common with single 
decision trees while XGBoost is based on the gradi-
ent boosting framework, which builds one tree at a 
time. Each new tree helps to correct errors made by 
previously trained tree models.

• The primary libraries utilized for Random Forest and 
XGBoost are:

• “pandas” for data manipulation,
• “numpy” for numerical operations,
• “scikit-learn” for machine learning algorithms, 

including Random Forest and XGBoost,
• “matplotlib” and “seaborn” for data visualization,
• Computational resources: the computations were 

performed on a machine with an Intel core i7 pro-
cessor and 16 GB of RAM.

Results and discussion

Theorem 1 Let G be a graph and G1 denotes the elvite-
gravir, then the following axioms holds for the graph G1:

(a) M1 (G1) = 162; (b) M2 (G1) = 195; (c) H (G1) = 13.966; 
(d) F (G1) = 432; (e) SS (G1) = 35.088; (f) ABC 
(G1) = 23.695; (g) RI (G1) = 14.688; (h) SC (G1) = 15.1037; 
(i) GA (G1) = 131.705; (j) HZ (G1) = 822; (k) ReZG1 
(G1) = 37.983; (l) ReZG2 (G1) = 1028.

Proof Suppose that Gramicidin S is represented by 
G1, where Er,s is the set of edges connecting vertices in 
the graph with corresponding degrees r and s. Between 
vertices of degrees r and s, the frequencies |Er,s| show 
the number of edges. The expression |E1,2| = 2 denotes 
two edges present between the vertices of degree 1 and 
2, while the expression |E1,3| = 7 denotes eighteen edges 
present between the vertices of degree 1 and 3. Similarly, 
|E2,2| = 2, |E2,3| = 12 |E3,3| = 10. Then,

https://www.chemspider.com
https://www.chemspider.com
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
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a) By using First Zagreb Index

b) By using Second Zagreb Index

c) By using Forgotten Index

d) By using Forgotten Index

e) By using Shilpa-Shanmukha Index

M1 (G) =
∑

rs∈E(G)

(dr + ds),

M1 (G1) = 2(1+ 2)+ 7(1+ 3)+ 2(2+ 2)

+ 12(2+ 3)+ 10(3+ 3) = 2× 3

+ 7× 4 + 2× 4 + 12× 5+ 10× 6 = 162.

M2 (G) =
∑

rs∈E(G)

(dr × ds),

M2 (G1) = 2(1× 2)+ 7(1× 3)+ 2(2× 2)

+ 12(2× 3)+ 10(3× 3)

= 2× 2+ 7× 3+ 2× 4 + 12× 6

+ 10× 9 = 195.

H (G) =
∑

rs∈E(G)

2

(dr + ds)
,

H (G) = 2
2

1+ 2
+ 7

2

1+ 3
+ 2

2

2+ 2

+ 12
2

2+ 3
+ 10

2

3+ 3

= 2
2

3
+ 7

2

4
+ 2

2

4
+ 12

2

5
+ 10

2

6
= 13.966.

F (G) =
∑

rs∈E(G)

[

(dr)2 + (ds)2
]

,

F (G1) = [2(12+ 22)+ 7(12+ 32)

+ 2(22+ 22)+ 12(22+ 32)

+ 10(32+ 32)

= 2× 5+ 7× 10+ 2× 8

+ 12× 13+ 10× 18 = 432.

SS (G1) =
∑

rs∈E(G)

√

dr× ds

dr+ ds
,

f ) By using Randic Index

g) By using Sum Connectivity Index

• SC (G1) =
∑

rs∈E(G)

√

1
dr+ds

,

 

h) By using Geometric Arithmetic Index

• GA (G1) =
∑

rs∈E(G)

2
√
dr×ds

dr+ds
,

 

SS (G1) = 2

√

1× 2

1+ 2
+ 7

√

1× 3

1+ 3
+2

√

2× 2

2+ 2

+ 12

√

2× 3

2+ 3
+ 10

√

3× 3

3+ 3

= 2

√

2

3
+ 7

√

3

4
+2

√

4

4

+ 12

√

6

5
+ 10

√

9

6
= 35.088.

RI (G1) =
∑

rs∈E(G)

√

1

dr × ds
,

RI (G1) = 2

√

1

1× 2
+ 7

√

1

1× 3
+2

√

1

2× 2

+ 12

√

1

2× 3
+ 10

√

1

3× 3

= 2

√

1

2
+ 7

√

1

3
+2

√

1

4

+ 12

√

1

6
+ 10

√

1

9
= 14.688.

SC (G1) = 2

√

1

1+ 2
+ 7

√

1

1+ 3
+2

√

1

2+ 2

+ 12

√

1

2+ 3
+ 10

√

1

3+ 3

= 2

√

1

3
+ 7

√

1

4
+2

√

1

4

+ 12

√

1

5
+ 10

√

1

6
= 15.1037.
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i) By using Hyper Zagreb Index

• HZ (G1) =
∑

rs∈E(G)

(dr + ds)
2,

 

j) By using Redefined First Zagreb Index

GA (G1) = 2× 2

√
1× 2

1+ 2
+ 2× 7

√
1× 3

1+ 3

+ 2× 2

√
2× 2

2+ 2
+ 2× 12

√
2× 3

2+ 3

+ 2× 10

√
3× 3

3+ 3

= 4

√
2

2
+ 14

√
3

4
+ 4

√
4

4

+ 24

√
6

5
+ 20

√
9

6
= 31.7053.

HZ (G1) =

[

2(1+ 2)2 + 7(1+ 3)2 + 2(2+ 2)2

+12(2+ 3)2 + 10(3+ 3)2
]

= 2(3)2 + 7(4)2 + 2(4)2

+ 12(5)2 + 10(6)2 = 822.

ReZ1 (G1) =
∑

rs∈E(G)

(dr × ds)

(dr + ds)
,

k) By using Redefined Second Zagreb Index

• ReZ2(G1) =
∑

rs∈E(G)

(dr × ds)(dr + ds)

 

Remark 3.2 The topological indices of other drugs can 
be obtained using a similar technique as that used in The-
orem 1 and their output is provided in Table 2.

Although a lot of scholars are already calculating top-
ological indices [43–46], we contribute by creating an 
efficient Python program (see Algorithm  1) to compute 
these indices. Especially, our technique can quickly com-
pute through integrating edge partition values for every 
molecular graph in an elegant and seamless manner. This 
Python method advances the field with its efficiency by 
providing simplified procedures, improved accuracy and 
time saving for computing topological indices.

ReZ1 (G1) = 2
1× 2

1+ 2
+ 7

1× 3

1+ 3
+ 2

2× 2

2+ 2
+ 12

2× 3

2+ 3
+ 10

3× 3

3+ 3

= 2
2

3
+ 7

3

4
+ 2

4

4
+ 12

6

5
+ 10

9

6
= 37.9833.

= 2(1× 2) (1+ 2)+ 7(1× 3) (1+ 3)

+ 2(2× 2) (2+ 2)+ 12(2× 3) (2+ 3)

+ 10(3× 3) (3+ 3)

= 2× 2× 3+ 7× 3× 4 + 2× 4 × 4

+ 12× 6× 5+ 10× 9× 6 = 1028,

Table 2 The topological indices values for the candidate drugs

Drugs M1 (G) M2 (G) H (G) F (G) SS (G) ABC (G) RI (G) SC (G) GA (G) HZ (G) ReZ1 (G) ReZ2 (G)

a 132 151 12.13 332 29.48 20.04 12.54 12.99 27.20 334 31.31 740

b 114 141 9.533 298 25.06 16.19 9.754 10.43 22.57 580 27.60 738

c 82 96 7.266 214 17.94 12.22 7.613 7.827 16.35 406 19.21 490

d 172 200 14.50 460 37.18 25.35 15.19 15.89 33.59 860 39.88 1020

e 162 195 13.96 432 35.08 23.69 14.68 15.10 31.70 822 37.98 1028

f 248 280 23.06 622 55.39 38.25 23.97 24.66 51.26 1182 58.45 1366

g 272 318 22.81 746 58.20 40.00 24.05 24.97 52.48 1382 62.36 1670

h 236 272 20.73 614 51.84 35.31 21.55 22.48 47.34 1158 55.33 1362

i 206 256 15.20 606 42.32 28.33 16.26 17.15 36.86 1118 46.71 1436
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Algorithm 1 .
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Theorem 1 and Algorithm 1 can both be used to com-
pute topological indices; however algorithmic approach 
is more effective and beneficial in this respect. Moreover, 
Table 3 shows the physio-chemical properties of selected 
drugs collected from ChemSpider [47] and PubChem 
[48] and the computed TIs obtained from their molecular 
structures by developing python algorithm respectively 
as seen above.

Supervised machine learning
Within the field of artificial intelligence, machine learning 
focuses on creating statistical models and algorithms that 
allow computers to learn and make decisions without 
explicit programming. The development of drugs usually 
involves machine learning techniques like Random For-
est Algorithm (RFA), Extreme Gradient Boosting (XGB), 
and linear analysis. Linear analysis techniques like linear 
regression are helpful for simpler, easier-to-understand 
models, ensemble learning techniques like XGB and RFA 
are capable of managing complex nonlinear correlations 
and interactions in data.

Random forest
For machine learning tasks including regression, RFA 
is a potent ensemble learning technique. During train-
ing, it builds a large number of decision trees, and it 

produces the mean prediction (regression) of each indi-
vidual tree. In order to begin, RF bootstraps a technique 
many random sections of the training set. A decision tree 
is trained using each subset, also referred to as a boot-
strap sample. At every split point, a decision tree is built 
for every bootstrap sample using a random subset of fea-
tures. The model performs better overall because of this 
randomness, which aids in decorrelation between the 
trees. Without any pruning, each tree is grown to its full-
est depth. When every tree is constructed, its predictions 
are combined using the Random Forest algorithm. The 
following is a mathematical representation of the predic-
tion formula for regression:

where Y′ is the predicted output,  y1,  y2,…..yn are the pre-
dicted outputs from individual decision trees, and n is 
the total number of trees in the Random Forest. Figure 4 
represent the feature importance of some physiochemi-
cal properties w.r.t topological indices; also Figs. 5 and 6 
illustrate the decision trees.

Violin plots highlight gaps in the data distribution and 
help evaluate the accuracy of predictions against actual 
values graphically as shown in Figs.  7, 8 and 9. RFA 

Y′ =
1

n

n
∑

i=1

y(i),

Table 3 The properties of drugs related to their physical characteristics

Drugs MW (g/mol) Comp Den (g/cm3) FP (°C) MV  (cm3) ST (dyne/cm) P  (cm3) BP (°C) E (kJ/mol)

a 366.4 607 1.3 337.3 287 72.3 42.3 634.1 93.7

b 266.30 397 1.4 205 197 66.3 29.2 415.4 66.8

c 247.25 374 1.8 221.9 135.2 72.8 21.4 443.3 80.9

d 456.6 749 1.4 396.5 328.8 72.3 49.3 732.0 106.8

e 447.9 702 1.4 330.9 329.9 55.0 44.9 623.6 97.1

f 720.9 1040 1.2 526.6 581.7 53.7 78.9 947.0 144.4

g 670.8 1140 1.2 567.7 553.9 54.2 75 1015 155.3

h 613.8 952 1.3 484.7 491.0 63.7 69.8 877.9 133.7

i 449.4 912 1.6 366.6 276.2 70.6 40.6 682.5 105.2

Fig. 4 Graphical representation of feature importance of MW and Den w.r.t TIs
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output error measures are shown in Table 4 and include 
specific parameters like Mean Absolute Error (MAE), 
Mean Squared Error (MSE), and Root Mean Squared 
Error (RMSE). The following formulas can be used to 
determine MAE, MSE, and RMSE:

• MAE = 1
n

∑

∣

∣actual− predicted
∣

∣,

• MSE = 1
n

∑

(actual− predicted)2,

• RMSE = 1
n

√

(

∑

(actual− predicted)2
)

.

The random forest algorithm’s performance and pre-
diction accuracy were examined through information 
gained from both the violin plots and tables.

Linear regression
Linear regression is a fundamental supervised machine 
learning technique that predicts the connection 
between dependent variable and one or more inde-
pendent variables. These models quantify the rela-
tionship between drug structures and their medical 
impacts through the use of various components, such 

Fig. 5 Decision trees for BP

Fig. 6 Random forest algorithm based violin distribution plot
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Fig. 7 Decision trees for Den

Fig. 8 Random forest algorithm based violin distribution plot

Fig. 9 Random forest algorithm based violin distribution plot
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as TIs. The QSPR results are constantly provided by the 
regression equation, which makes it an invaluable for-
mula that is P = X + Y (TI). Here, P is the physiochemi-
cal parameter of a potential drug. Topological index, 
constant and regression coefficient are indicated by 
the symbols TI, X and Y respectively. The correlation 
coefficients between each topological indicator and the 

nine physio-chemical parameters are calculated and 
shown in Table 5 while, bar graph representing the cor-
relation coefficients of all physio-chemical properties 
across different topological indices is shown in Fig. 10. 
Linear regression equations and physio-chemical prop-
erties w.r.t TIs derived below.

Table 4 Random forest error measurement

PP MW Comp Den FP MV ST Pol BP EV

MAE 14.3971 21.690 0.0506 18.9814 16.6246 3.01311 2.2503 30.8837 3.6944

MSE 341.1717 674.165 0.0079 418.5225 399.098 11.1851 7.2899 1127.198 18.5042

RMSE 18.47083 25.9646 0.06277 20.4578 19.977 3.3444 2.6999 33.573 4.3016

R2 0.9864 0.9897 0.8817 0.9705 0.9815 0.8152 0.9799 0.9709 0.9761

Fig. 10 Correlation coefficients of all physio-chemical properties w.r.t Tis

Table 5 Correlation coefficients of TI w.r.t to different physiochemical properties

TIs MW Comp Den FP MV ST Pol BP E

M1 (G) 0.9605 0.9874 0.6658 0.9553 0.9298 0.6472 0.9320 0.9553 0.9452

M2 (G) 0.9326 0.9831 0.6290 0.9266 0.8937 0.6338 0.8947 0.9266 0.9158

H (G) 0.9929 0.9609 0.7430 0.9750 0.9835 0.7000 0.9842 0.9750 0.9667

F (G) 0.9124 0.9831 0.5856 0.9184 0.8662 0.5962 0.8683 0.9184 0.9093

SS (G) 0.9765 0.9801 0.7031 0.9655 0.9547 0.6682 0.9568 0.9655 0.9550

ABC (G) 0.9820 0.9807 0.7031 0.9729 0.9609 0.6698 0.9629 0.9729 0.9640

RI (G) 0.9923 0.9686 0.7292 0.9765 0.9789 0.6971 0.9793 0.9764 0.9690

SC (G) 0.9890 0.9702 0.7283 0.9744 0.9748 0.6877 0.9761 0.97440 0.9655

GA (G) 0.9846 0.9727 0.7237 0.9708 0.9687 0.6800 0.9706 0.9708 0.9607

HZ (G) 0.8766 0.9264 0.4820 0.8499 0.8189 0.6368 0.8166 0.8499 0.8590

ReZ1 (G) 0.9680 0.982 0.6903 0.9570 0.9426 0.6625 0.9445 0.9570 0.9458

ReZ2 (G) 0.8769 0.9653 0.5521 0.8762 0.8249 0.5957 0.8243 0.8762 0.8668
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Linear regression models w.r.t TIs

Regression model for [M2(G)] Regression model for M1(G)
Molecular weight = 22.1100 + 2.11
65[M2(G)]

Molecular weight = 20.3377 + 2.49
77[M1(G)]

Complex-
ity = 0.2808 + 3.5990[M2(G)]

Complexity = 16.339 + 4.1416[M1(G)]

Density = 1.7482 − 0.0016[M2(G)] Density = 1.7593 − 0.0020[M1(G)]

Flash 
point = 46.9325 + 1.5793[M2(G)]

Flash point = 45.2833 + 1.8655[M1(G)]

Molar vol-
ume = − 45.305 + 1.8798[M1(G)]

Molar vol-
ume = − 50.941 + 2.2409[M1(G)]

Surface ten-
sion = 79.4937 − 0.0705[M2(G)]

Surface ten-
sion = 79.4230 − 0.0825[M1(G)]

Polarizabil-
ity = − 1.6054 + 0.2440[M2(G)]

Polarizabil-
ity = − 2.3993 + 0.2913[M1(G)]

Boiling 
point = 154.073 + 2.6109[M2(G)]

Boiling 
point = 151.346 + 3.0842[M1(G)]

Enthalpy of varia-
tion = 32.0454 + 0.3643[M2(G)]

Enthalpy of varia-
tion = 31.5778 + 0.4309[M1(G)]

Regression model for F(G) Regression model for H(G)
Molecular 
weight = 56.1270 + 0.8636[F(G)]

Molecular weight = 14.0675 + 29.5
447[H(G)]

Complex-
ity = 42.5485 + 1.5009[F(G)]

Complex-
ity = 50.3265 + 46.1198[H(G)]

Density = 1.7062 − 0.0006[F(G)] Density = 1.79322 − 0.0254[H(G)]

Flash 
point = 68.2462 + 0.6529[F(G)]

Flash point = 44.9218 + 21.7875[H(G)]

Molar vol-
ume = − 11.6411 + 0.7598[F(G)]

Molar vol-
ume = − 66.0938 + 27.1224[H(G)]

Surface ten-
sion = 77.8286 − 0.0277[F(G)]

Surface ten-
sion = 80.3293 − 1.0205[H(G)]

Polarizabil-
ity = 2.6997 + 0.0987[F(G)]

Polarizabil-
ity = − 4.2840 + 3.5197[H(G)]

Boiling 
point = 189.3117 + 1.0793[F(G)]

Boiling point = 150.7451 + 36.0198
[H(G)]

Enthalpy of varia-
tion = 36.8359 + 0.1509[F(G)]

Enthalpy of varia-
tion = 31.3317 + 5.0423[H(G)]

Regression model for ABC Regression model for SS(G)
Molecular weight = 20.3827 + 16.94
18[ABC(G)]

Molecular weight = 9.7915 + 11.77
57[SS(G)]

Complex-
ity = 37.6722 + 27.2928[ABC(G)]

Complex-
ity = 16.8938 + 19.0652[SS(G)]

Density = 1.7710 − 0.0140[ABC(G)] Density = 1.7819 − 0.0098[SS(G)]

Flash point = 46.5920 + 12.6059[A
BC(G)]

Flash 
point = 39.4157 + 8.7440[SS(G)]

Molar vol-
ume = − 55.2781 + 15.3641[ABC(G)]

Molar vol-
ume = − 64.516 + 10.6698[SS(G)]

Surface ten-
sion = 79.6061 − 0.5662[ABC(G)]

Surface ten-
sion = 80.0087 − 0.3948[SS(G)]

Polarizabil-
ity = − 2.9516 + 1.9965[ABC(G)]

Polarizabil-
ity = − 4.1564 + 1.3866[SS(G)]

Boiling point = 153.5087 + 20.8404
[ABC(G)]

Boiling point = 141.6433 + 14.455
8[SS(G)]

Enthalpy of varia-
tion = 31.769 + 2.915[ABC(G)]

Enthalpy of varia-
tion = 30.2478 + 2.0188[SS(G)]

Regression model for SC Regression model for RI
Molecular weight = 13.3437 + 27.1
882[SC(G)]

Molecular weight = 16.2195 + 28.11
00[RI(G)]

Complex-
ity = 39.4253 + 43.0217[SC(G)]

Complex-
ity = 47.5607 + 44.2587[RI(G)]

Density = 1.7876 − 0.0230[SC(G)] Density = 1.7843 − 0.0238[RI(G)]
Flash point = 43.2542 + 20.1170[
SC(G)]

Flash point = 45.7931 + 20.7737[R
I(G)]

Molar vol-
ume = − 64.6865 + 24.836[SC(G)]

Molar vol-
ume = − 62.3854 + 25.6982[RI(G)]

Surface ten-
sion = 80.1367 − 0.9262[SC(G)]

Surface ten-
sion = 80.1996 − 0.9676[RI(G)]

Polarizabil-
ity = − 4.1379 + 3.2252[SC(G)]

Polarizabil-
ity = − 3.7882 + 3.3340[RI(G)]

Boiling point = 147.989 + 33.2581
[SC(G)]

Boiling point = 152.1868 + 34.3436
[RI(G)]

Enthalpy of varia-
tion = 30.9983 + 4.6526[SC(G)]

Enthalpy of varia-
tion = 31.4694 + 4.8117[RI(G)]

Regression model for HZ Regression model for GA

Molecular weight = 123.0392 + 0.3
994[HZ(G)]

Molecular weight = 9.4468 + 13.008
5[GA(G)]

Complex-
ity = 170.448 + 0.6808[HZ(G)]

Complex-
ity = 28.0960 + 20.7296[GA(G)]

Density = 1.6200 − 0.0003[HZ(G)] Density = 1.7901 − 0.0110[GA(G)]
Flash point = 128.5374 + 0.2908[
HZ(G)]

Flash 
point = 40.1194 + 9.6328[GA(G)]

Molar vol-
ume = 52.1288 + 0.3458[HZ(G)]

Molar vol-
ume = − 67.435 + 11.8602[GA(G)]

Surface ten-
sion = 76.9305 − 0.0142[HZ(G)]

Surface ten-
sion = 80.1620 − 0.4401[GA(G)]

Polarizabil-
ity = 11.1992 + 0.0447[HZ(G)]

Polarizabil-
ity = − 4.5259 + 1.5410[GA(G)]

Boiling point = 288.9813 + 0.4807
[HZ(G)]

Boiling point = 142.8059 + 15.9243
[GA(G)]

Enthalpy of varia-
tion = 49.5430 + 0.0686[HZ(G)]

Enthalpy of varia-
tion = 30.377 + 2.2248[GA(G)]
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Regression model for ReZ2 Regression model for ReZ1

Molecular weight = 57.3870 + 0.37
80[ReZ2(G)]

Molecular weight = 6.6707 + 11.031
7[ReZ1(G)]

Complex-
ity = 29.1286 + 0.6712[ReZ2(G)]

Complex-
ity = 3.7703 + 18.0524[ReZ1(G)]

Density = 1.6995 − 0.0003[ReZ2(G)] Density = 1.7808 − 0.0091[ReZ1(G)]
Flash point = 71.4891 + 0.2836[R
eZ2(G)]

Flash point = 37.1349 + 8.1906[Re
Z1(G)]

Molar vol-
ume = − 7.2151 + 0.3295[ReZ2(G)]

Molar vol-
ume = − 65.6712 + 9.9559[ReZ1(G)]

Surface ten-
sion = 78.3134 − 0.0126[ReZ2(G)]

Surface ten-
sion = 80.1156 − 0.3699[ReZ1(G)]

Polarizabil-
ity = 3.4246 + 0.0427[ReZ2(G)]

Polarizabil-
ity = − 4.2984 + 1.2936[ReZ1(G)]

Boiling point = 194.6729 + 0.4689
[ReZ2(G)]

Boiling point = 137.8725 + 13.5410[
ReZ1(G)]

Enthalpy of varia-
tion = 37.6498 + 0.0655[ReZ2(G)]

Enthalpy of varia-
tion = 29.7872 + 1.8895[ReZ1(G)]

Computation of statistical parameters

The use of statistical parameters to compare Topologi-
cal Indices (TIs) with characteristic of correlation coeffi-
cients is useful in model analysis. In a regression model, 
the standard error (SE) of the estimate measures the 

mean variance of expected outcomes from actual values, 
Tables  6, 7 and 8 shows the SE, F-statistics and signifi-
cance p values. Furthermore, comparison graphs through 
Figs.  11, 12, 13, 14, 15, 16, 17, 18 and 19 include both 
actually acquired and mathematically derived physio-
chemical property values from regression models.

Additionally, the majority of p-values are less than 0.05 
a specific value, and mostly r exceeds 0.6 on a consistent 
basis as seen in Table 4.

Extreme gradient boosting
Extreme Gradient Boosting, is a powerful machine 
learning method that is well-known for its efficiency in 
predictive mathematical modeling, here we provided 
Pseudo-code namely Algorithm-2, provides useful infor-
mation about XGB, including information about its 
flexibility and adaptability. The distributions plot of the 
actual and predicted values are shown in Figs. 20, 21 and 
22, which are essential for evaluating the effectiveness 
of the model and detecting any variations. Furthermore 
aiding in our understanding is the violin plot, which dis-
plays the data distribution graphically while highlight-
ing the peculiarities specific to XGB. Table 9 also offers 
error estimates, which helps towards a comprehensive 

Table 7 Statistical parameter F of selected TI w.r.t to different physiochemical properties

PP M1 (G) M2 (G) H (G) F (G) SS (G) ABC (G) RI (G) SC (G) GA (G) HZ (G) ReZ1 (G) ReZ2 (G)

MW 83.395 46.709 487.405 34.7817 143.621 188.974 448.475 312.633 222.460 23.2333 104.061 23.2960

Comp 271.70 201.92 84.2454 201.633 170.782 176.326 106.140 112.171 123.147 42.3803 189.211 95.7834

Den 5.5750 4.5815 8.6267 3.6527 6.8434 6.8431 7.9472 7.9071 7.6985 2.118 6.3713 3.0698

FP 73.011 42.478 134.601 37.7397 96.1971 123.998 143.390 131.469 114.694 18.2061 76.1270 23.1472

MV 44.703 27.782 207.420 21.03 72.0792 84.3624 160.318 133.890 106.512 14.2541 55.8091 14.9086

ST 5.0446 4.7003 6.7258 3.860 5.6467 5.6972 6.6178 6.2794 6.0191 4.7753 5.4749 3.8512

Pol 46.245 28.082 216.826 21.45 75.7137 89.1208 163.754 141.758 113.688 14.0056 57.8610 14.8396

BP 73.017 42.480 134.645 37.73 96.2157 124.017 143.428 131.506 114.726 18.2072 76.1393 23.1466

E 58.639 36.375 99.8741 33.42 72.5636 92.0793 107.540 96.1721 83.7735 19.7141 59.3577 21.1432

Table 6 Statistical parameter SE of selected TI w.r.t to different physiochemical properties

PP M1 (G) M2 (G) H (G) F (G) SS (G) ABC (G) RI (G) SC (G) GA (G) HZ (G) ReZ1 (G) ReZ2 (G)

MW 50.098 64.993 21.4217 73.6889 38.810 34.0248 22.3184 26.6421 31.4443 86.6267 45.1974 86.5371

Comp 46.022 53.155 80.4328 53.1921 57.622 56.7448 72.2319 70.3806 67.3475 109.336 54.8500 75.7839

Den 0.1545 0.1609 0.1386 0.1678 0.1472 0.1472 0.1417 0.1419 0.1429 0.1814 0.1498 0.1726

FP 39.990 50.854 30.0609 53.4796 35.212 31.2538 29.1692 30.3989 32.4264 71.2495 39.2341 65.1496

MV 61.389 74.847 30.1454 83.3679 49.639 46.1817 34.1257 37.1889 41.4316 95.7486 55.6984 94.3075

ST 6.7244 6.8226 6.2991 7.0814 6.5623 6.5493 6.3240 6.4041 6.4678 6.8008 6.6074 7.0845

Pol 7.8448 9.6645 3.8262 10.7309 6.2941 5.8387 4.3806 4.6934 5.2106 12.4898 7.1077 12.2490

BP 66.111 84.071 49.6893 88.4150 58.209 51.6654 48.2170 50.2493 53.6010 117.788 64.8577 107.707

E 10.305 12.677 8.0765 13.1314 9.3606 8.3882 7.8016 8.2202 8.7636 16.1544 10.2498 15.7389
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Table 8 Statistical parameter P of selected TI w.r.t to different physiochemical properties

PP M1 (G) M2 (G) H (G) F (G) SS (G) ABC (G) RI (G) SC (G) GA (G) HZ (G) ReZ1 (G) ReZ2 (G)

MW 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001

Comp 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Den 0.04 0.04 0.02 0.03 0.03 0.03 0.02 0.02 0.027 0.189 0.039 0.123

FP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001

MV 0.000 0.001 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.006

ST 0.05 0.06 0.03 0.09 0.04 0.04 0.03 0.040 0.043 0.065 0.051 0.090

Pol 0.000 0.001 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.006

BP 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001

E 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.001 0.002

Fig. 11 Graphical comparison w.r.t linear regression for MW

Fig. 12 Graphical comparison w.r.t linear regression for Comp
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Fig. 13 Graphical comparison w.r.t linear regression for Den

Fig. 14 Graphical comparison w.r.t linear regression for FP

Fig. 15 Graphical comparison w.r.t linear regression for MV
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Fig. 16 Graphical comparison w.r.t linear regression for ST

Fig. 17 Graphical comparison w.r.t linear regression for Pol

Fig. 18 Graphical comparison w.r.t linear regression for BP
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Fig. 19 Graphical comparison w.r.t linear regression for EV

Fig. 20 XGB algorithm based violin distribution plot of MW, Comp and Den

Fig. 21 XGB algorithm based violin distribution plot of FP, MV and ST

Fig. 22 XGB algorithm based violin distribution plot of Pol, BP and EV
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review of the model’s predictive power and general accu-
racy while using XGB algorithm, having a well-organized 
overview of implementation procedures like the one 
provided by pseudo-code proves invaluable for expe-
diting the process and improving understanding of its 
complexities.

Algorithm 2 XGB for QSPR model of anti-HIV

Step 1:
i. Start working with the dataset, import the necessary libraries, such 
as numpy, pandas, xgboost, matplotlib and plot-tree into Python

ii. In Python, define a dataset as a dictionary. Include key-value pairs, 
where a collection of data points for a given feature correlates to each 
key, which shows an attribute

Step 2:
iii. Get the data ready for analysis after defining the data-set dictionary

iv. Use the pd.DataFrame(data) function to convert a dictionary 
into a pandas DataFrame, making data management and analysis easier

v. Separate the features (X) and the target variable (y)

Step 3:
vi. Train an XGB regression model

vii. After the model has been trained, evaluate its efficiency and predic-
tion using unknown data

Step 4:
viii. To illustrate the difference between predicted and actual values, 
make a scatter plot with the actual values on the y-axis and expected 
values on the x-axis

ix. Provide predicted values in a tabular style, like a DataFrame or struc-
tured array, so that they may be easily compared to actual values

Table 9 XGB error measurement

PP MW Comp Den FP MV ST Pol BP EV

MAE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MSE 4.0729 3.005 5.7742 4.4125 4.3283 7.3177 7.0550 4.7962 5.4326

RMSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Table 10 Drug properties predicted by the RFA

Drugs MW (g/mol) Comp Den (g/cm3) FP (°C) MV  (cm3) ST (dyne/cm) P  (cm3) BP (°C) E (kJ/mol)

a 361.98 578.90 1.36 309.61 272.60 69.99 40.18 587.25 89.71

b 284.66 438.18 1.45 238.35 203.62 69.05 30.46 470.53 75.99

c 263.50 404.96 1.67 232.31 161.92 71.64 24.96 460.52 79.77

d 451.40 749.63 1.42 372.34 321.59 67.12 46.84 692.06 103.38

e 443.29 708.86 1.41 347.55 322.41 60.90 45.32 651.10 99.31

f 680.60 1037.04 1.25 518.40 544.12 56.72 74.92 933.48 142.44

g 669.76 1101.52 1.28 549.22 547.41 56.01 74.51 984.45 150.50

h 632.84 978.68 1.29 499.90 504.34 61.20 70.93 897.61 136.86

i 469.76 892.64 1.54 383.23 305.96 68.10 45.42 710.03 108.59

Table 11 Drug properties predicted by the XGB

Drugs MW (g/mol) Comp Den (g/cm3) FP (°C) MV  (cm3) ST (dyne/cm) P  (cm3) BP (°C) E (kJ/mol)

a 366.4 606.99 1.30 337.29 287 72.29 42.30 634.09 93.70

b 266.30 397 1.40 205.0 197 66.30 29.20 415.40 66.80

c 247.25 374 1.79 221.89 135.20 72.79 21.49 443.29 80.89

d 456.59 748.99 1.39 396.49 328.79 72.29 49.29 731.99 106.79

e 447.90 702 1.39 330.90 329.89 55 44.89 623.60 97.10

f 720.89 1040 1.20 526.59 581.69 53.70 78.89 946.99 144.39

g 670.79 1139.99 1.20 567.69 553.89 54.20 74.99 1014.99 155.29

h 613.79 951.99 1.30 484.69 491 63.69 69.80 877.89 133.69

i 449.40 911.99 1.59 366.0 276.2 70.59 40.60 682.50 105.20
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Fig. 23 Graphical comparison of MW

Fig. 24 Graphical comparison of Den

Fig. 25 Graphical comparison of MV
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Physio‑chemical parameters comparison analysis
When XGB and RFA were used to forecast the physio-
chemical properties of anti-HIV medicines, the results 
showed that XGB predictions consistently produced 
higher values than RFA. This implies that when it comes 
to the physio-chemical characteristics of anti-HIV drugs, 
the XGB algorithm typically yields more optimistic 
forecasts.

Even though these two machine learning models pro-
vide insightful information about the structure–activity 
relationship of associated drugs, the difference in pre-
dicted values emphasizes how crucial it is to take into 
account a variety of computational strategies and vali-
dation methods in order to guarantee the precision and 
dependability of predictions made during the drug dis-
covery and development process. Tables  10 and 11 are 
the Experimental and actual data for prediction of RFA 

and XGB w.r.t physical properties as well as through 
Figs. 23, 24, 25, 26 and 27 shown the graphical compari-
son between XGB and RFA listed below.

Standard errors measurements like MAE, MSE, and 
RMSE are used to evaluate the performance of predic-
tive models like RFA and XGB. To evaluate the relative 
efficiency of the models and compare the error indica-
tors, visualizations such as tables and graphs were used. 
In terms of prediction accuracy, XGB performed better 
than RFA, as seen by lower MAE, MSE, and RMSE val-
ues. Furthermore, compared to RFA, greater  R2 values 
for XGB demonstrated a better fit of the model to the 
data. It was easier to comprehend why XGB is such a 
strong algorithm for predictive modeling problems 
compared to the graphical representations and error 
tables.

Fig. 26 Graphical comparison of Pol

Fig. 27 Graphical comparison of EV
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Conclusions
The conclusion of our analysis gives information on 
the potential efficacy of the drugs under examination 
in treating HIV-1 disease. In order to predict physio-
chemical properties, we compared ability to forecast of 
RFA, Linear Regression, and XGB in this work. Met-
rics including MAE, MSE, RMSE, and  R2 values were 
used to assess their effectiveness. With substantially 
lower error rates and higher  R2 values than the other 
models, XGB performed better. The efficacy of XGB 
was further demonstrated by graphical representations. 
Particularly in the treatment of HIV, the findings have 
important implications for drug development. Using 
machine learning algorithms such as XGB can improve 
drug property prediction efficiency. The superiority of 
XGB is derived from its iterative prediction refining. 
Some more techniques and data-set optimization may 
be investigated in future studies. The research contrib-
utes to larger-scale predictive modeling efforts in the 
pharmaceutical industry. The possibilities of predic-
tive modeling will grow with further development of 
machine learning techniques. Overall, this work shows 
that advanced algorithms can be used to improve the 
drug development process.
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