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Abstract 

The presence of heavy metals in wastewater is an environmental concern and the current treatment procedures are 
very expensive so it is necessary to find effective and inexpensive biosorbents. In this study, Fucus vesiculosus was used 
as a biosorbent for the biosorption of Cr(III) ions from the aqueous solutions. Biosorption parameters, such as pH, 
adsorbent dose, contact time, and initial concentrations of Cr(III) had the most impact on the sorption process. The 
required pH value for sorption was 5, the biosorbent dose was 4.0 g/L, the contact time was seen to occur after 90 
min, and the Cr(III) removal decreased from 98.9 to 92%. The maximum biosorption capacity of chromium was 14.12 
mg/g. FTIR analysis of Fucus vesiculosus biomass before the sorption process contains carboxyl, amino, hydroxyl, 
alkyne, and carbonyl groups, and according to the analysis after the sorption process, it was found that Cr(III) metal 
ions were incorporated within the sorbent during the interaction with (=C–H) active functional groups. The biosorp‑
tion data were found to be perfectly suited by Langmuir equilibrium isotherm model. According to the results of this 
study, Fucus vesiculosus is an effective biosorbent for the removal of Cr(III) from aqueous solutions.
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Introduction
Heavy metals are toxic and carcinogenic, and cannot be 
biodegraded. Heavy metals such as zinc, copper, nickel, 
mercury, cadmium, lead, chromium, and arsenic have 
a tendency to build up in living organisms and cause a 
decrease in species diversity [1–3]. Metal contamina-
tion is a global environmental problem that persists and 
should be addressed with sufficient measures to pre-
vent its exposure to the public. Heavy metals deposited 
because of industrial processes should be removed before 
they are received into the water since they are particu-
larly baleful to aquatic habitats. Among these metals, 

chromium is one of the worthy environmental troubles 
that continue to cause contamination of aqueous systems 
and it is present in various oxidation states such as Cr(III) 
and Cr(VI). Chromium is used in several industries 
such as iron, steel, leather, metal coating, textile indus-
try, electric power plants, coil coating, electroplating, 
film, photography, galvanometer, and automotive bat-
tery manufacturing industries [4–7]. The disposal of this 
commonly used metal in the environment causes criti-
cal pollution [8]. Moreover, searching for an important 
approach to remove such contaminants is an indispensa-
ble task for researchers. In this regard, various biological, 
physical, and chemical methods have been adopted for 
eliminating such heavy metals from industrial effluents 
such as chemical precipitation, ion exchange, and mem-
brane separation techniques. It is preferable to use bio-
logical materials (sorbents) as an alternative method for 
removing chromium from aqueous solutions because the 
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commonly used procedures for removing Cr(III) from 
effluents include chemical precipitation, lime coagula-
tion, ion exchange, reverse osmosis and solvent extrac-
tion were apart from being economically expensive have 
disadvantages like incomplete metal removal, high rea-
gent and energy requirements, and generation of toxic 
sludge or other waste products that require disposal. Effi-
cient and environment friendly methods are thus needed 
to be developed to reduce heavy metal content. In this 
context, considerable attention has been focused in 
recent years upon the field of biosorption for the removal 
of heavy metal ions from aqueous effluents. Biosorp-
tion is a property of certain types of inactive, non-living 
microbial biomass to bind and concentrate heavy metals 
from even very dilute aqueous solution. Biomass exhibits 
this property, acting just as chemical substance, as an ion 
exchanger of biological origin [9]. Due to some benefits 
over conventional methods, the use of sorption materials 
in the removal and accumulation of heavy metals from 
aqueous solutions has recently received a lot of attention.

Several adsorbents have been used to remove Cr(VI) 
from water over the last few years, including commercial 
inorganic materials such as clay, silica gel, zeolite, alu-
mina, and activated carbon, as well as bio products [10, 
11] which may be alive or dead, and their effectiveness is 
determined by their loading capacity, selectivity, affinity, 
and rate of ion adsorption [12]. Lignocelluloses materials, 
in general, are piquing researchers’ interest due to their 
simple design, ease of handling, cheap operating costs, 
ease of availability, eco-friendliness, efficiency, and pro-
duction of minimal toxic chemicals and biological sludge 
[13]. Furthermore, these materials are abundant in poly 
functional groups, which can contribute significantly to 
the selective adsorption of Cr(VI) from aqueous solutions 
[14]. Another notable property of biosorbents is their 
ability to convert Cr(VI) to Cr(III) at lower pH values 
and to totally remove Cr(VI) at moderate concentrations 
[15]. The removal ability of the biosorbents is affected by 
parameters such as pH, adsorbent dose, size, concentra-
tion, and contact time during the process. 

Various studies indicate that non-living sorbents are 
more effective for binding metals than biological sorbents 
[7]. Marine algae are known to possess excellent mineral 
binding capacity in different bio-selective procedures. 
The cell membranes of brown algae are usually com-
posed of cellulose and algal acid, which is a straight-chain 
polysaccharide with a carboxyl group (–COOH) primar-
ily responsible for binding to minerals, while sulfated 
polysaccharide algae bind to ion salts.. Because of these 
properties, algae (sorbents) are a good choice for adsorb-
ing metal ions from the aqueous solutions in a short 
period and reducing heavy metal concentricity to the ppb 
range [16]. The sorption mechanism of heavy metals on 

biosorbents is thought to involve one or more of these: 
ion exchange, biosorption, complexation, partial precipi-
tation formation, chelation, and electrostatic interaction. 
However, the most significant way that heavy metal ions 
are adsorbed by algae is through the ion exchange pro-
cess [17]. The presence of sulfate groups, as well as a large 
number of carboxylic groups in brown marine algae, has 
been attributed to the biosorption of trivalent metal cati-
ons [18]. The characterization of the biosorbent structure 
and exploration of the reaction mechanism of sorbate 
ions and biosorbents can be identified with the help of 
FTIR (Fourier transform infrared) spectroscopy and SEM 
(A scanning electron microscope coupled with an energy 
dispersive spectrometer) is important to determine the 
structure of the Fucus vesiculosus  [19, 20]. The reports 
on this kind of biosorbents and their utilization in elimi-
nating heavy metals are few [21].

This paper investigates the biosorption capacity of 
Fucus vesiculosus (algae known by different common 
names such as bladder wrack, black tang, rockweed, sea 
grapes, sea oak, cut weed, and rock wrack) and the chro-
mium affinity toward it. To determine the best conditions 
for biosorption, the effects of pH, equilibrium time, and 
initial concentrations were examined. FTIR spectroscopy 
is used to determine the specific functions involved in the 
association of chromium with this type of algae.

Experimental methods
Preparation and analysis of biomass 
Sun-dried Fucus vesiculosus brown algae were brought 
from a local market in Cairo and then dried and 
grounded by an electrical grinder to conduct the biosorp-
tion procedures. FTIR spectroscopy was used to deter-
mine the effective groups that chromium can occupy 
before and after the biosorption. The spectra ranges were 
600–4000  cm−1 using “Thermo Fisher Nicolet 50 spec-
troscopy” [22]. A scanning electron microscope (SEM) is 
one of the common methods for imaging the microstruc-
ture and morphology of the materials [23].

Preparation of metal solution
The preparation of 20 mg/L Cr(III) solution was carried 
out by diluting the working standard solution 1000 mg/L 
 (CrCl2 Merck) to different concentrations from 10 to 50 
mg/L. The pH values of those prepared solutions were 
adjusted using 1N NaOH and/or 1N HCl.

Biosorption experiment
Biosorption of chromium by (Fucus) was performed by 
contacting 4g/L of Fucus with chromium concentration(20 
mg/L) in a 1000  cm3 Pyrex conical flask intermittently for 
90 min on the stirrer at 300 rpm. The mixture was filtered, 
and the residual concentration of the filtrate was analyzed 
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using Inductively coupled plasma optical emission spec-
trometry (ICP-OES) which is well suited for such analy-
sis because it is precise for lower concentrations [24]. The 
adsorbed amount of chromium (mg/g) was calculated 
using the following formula:

where the equilibrium biosorption capacity of Fucus for 
chromium is denoted by  qe (mg/g), the weight of the 
biosorbent is symbolized by M(g), and the sorbate vol-
ume is symbolized by V(L).  Co and  Ce represent the metal 
concentration before and after sorption (mg/L). Hence 
the chromium uptake ratio can be evaluated by the next 
equation:

Effects of operational parameters
The determination of the optimal adsorption parameters 
such as pH of the biosorption solution, dose of biosorbent, 
biosorption time, and concentration of the adsorbate solu-
tion were essential in knowing the biosorption efficiency 
of the biosorbent under equilibrium condition [25]. The 
optimal effective adsorption parameters determined when 
equilibrium occurs can be achieved by preparing a series 
of a series of chromium solutions with pH values from 2 
to 7 at a concentration of 20 mg/L, a shaking speed of 300 
rpm, and a doses of (0.5, 0.1, 0.2 and 0.3) g of the adsor-
bent (Fucus vesiculosus ) at 25 °C. The pH adjustment was 
performed using 1 N NaOH and/or 1 N HCl solutions. To 
establish the optimal contact time for biosorption stud-
ies, 0.2 g of Fucus vesiculosus  powder was added to 50 
mL of chromium solution at a concentration of 20 mg/L 
for 10–120 min at 25  °C. After the sorption process, the 
samples were filtered off through 0.45 μm membrane filter 
paper. Also the effect of biosorbent dose was investigated 
in the 0.05–0.3 g range. This was performed by adding a 
specific dose of 50 mL of chromium solution (20 mg/L) and 
shaking it for 90 min. After that, the sorption capacity of 
Fucus vesiculosus  was calculated using the aforementioned 
equations. The impact of chromium initial concentration 
on the biosorption capacity of the biosorbent was studied 
by utilizing 0.2 g of Fucus powder and various concentra-
tions of chromium solution (10, 20, 30, 40, and 50 mg/L) 
for 90 min at 25 °C and pH 5. 

Biosorption isotherm models
Biosorption isotherms were employed to determine 
the biosorption behavior of the biosorbent and to pro-
vide a connection between the sorbate concentration 

(1)qe =
(Co − Ce)V

M
,

(2)R% =
Co− Ce

Co
× 100.

 Ce and the biosorption capacity  qe per mass unit of the 
biosorbent at equilibrium. Langmuir isotherm shows 
that the biosorption occurs on a homogeneous mon-
olayer containing large biosorption sites [26]. The lin-
ear form of the Langmuir equation is presented as the 
following:

where  qe is the adsorption capacity at equilibrium,  Ce 
represents the equilibrium concentrations of chromium, 
 qm is the maximum adsorption capacity at equilibrium 
and  KL is Langmuir constant which indicates the adsorp-
tion energy. The basic characteristics of the Langmuir 
isotherm can be described in terms of dimensionless fac-
tor  RL, which is assumed by:

Co is the initial concentration of adsorbate and  RL 
explains the adsorption preference of this isotherm and 
indicates whether the adsorption is irreversible if  RL = 0, 
linear if  RL = 1, or unfavorable if  RL > 1. 

Freundlich isotherm postulates that biosorption 
occurs at the available locations on heterogeneous sur-
faces [27]. The correlation factor  R2 is used to evaluate 
the applicability of an isothermal model. The known 
logarithmic form of the Freundlich model is presented 
in Eq. (5).

where  qe and  Ce are the capacity of biosorption (mg/g) 
and the concentration of sorbate (mg/L) at equilibrium, 
1/n is related to the intensity of biosorption, KF, and n are 
constants.

Temkin model postulates the interactions of adsor-
bent-sorbate. It exhibits that the heat of an adsorbed 
substance is reduced linearly than logarithmically 
[28]. This model is characterized by a uniform binding 
energy distribution up to maximum binding energy and 
it is implemented by plotting  qe against  lnCe and then 
the constants can be calculated from their slope and 
intercept.

where  qe denotes the quantity of adsorbed molecules that 
reach a state of equilibrium (mg/g);  Co is related to the 
concentration of the metal (mg/L). β constant is linked to 
the heat of biosorption, while R is the gas constant (8.314 
J/mol K), and K represents the Temkin isotherm constant 
(L/g) [29].

(3)
Ce

qe
=

1

qmKL
+

Ce

qm
,

(4)RL =
1

(1+ bCo)

(5)lnqe = lnqKF +
1

n
lnCe,

(6)qe = βTlnKT + βTlnCe,
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Biosorption kinetic models
Normally, the simulation of biosorption kinetics and evalu-
ation of the reaction rates involve the utilization of the 
pseudo-first-order, pseudo-second-order, and Elovich 
kinetic models. The pseudo-first-order kinetic model clari-
fies the correlation between the adsorbent sorption sites 
that are occupied and the number of unoccupied sites 
but The relation between the adsorption capacity of the 
adsorbent and the time established by the pseudo-second-
order kinetic model [30]. Equations (7) and (8) provide the 
mathematical expressions for the pseudo-first-order and 
pseudo-second-order, respectively [31].

where  qe is the amount of chromium adsorbed onto 
adsorbent at equilibrium in (mg/g),  qt is the amount 
chromium adsorbed onto adsorbent at any time in 
(mg/g), and  K1 is the kinetics rate constant of the pseudo-
first-order model  (min−1).  K2 is the kinetics rate constant 
of the pseudo-second-order model (g  mg−1  min−1).

Elovich model is utilized to explain the kinetics of chemi-
cal biosorption of gas onto solid adsorbents, but it has 
been proven to be effective in describing various types of 
biosorption [32]. The following equation illustrates the 
Elovich model:

(7)log(qe − qt) = logqe −

(

K1

2.303

)

,

(8)
t

qt
=

1

K2qe2
+

t

qe
,

(9)qt =
1

b
ln(ab)+

1

b
lnt,

where  qt (mg/g) is the adsorbate quantity at time t, a is a 
chemisorption rate constant and b is a constant that rep-
resents the amplitude of surface coverage and they can 
be calculated from the relation between their slope and 
intercept by plotting  qt versus lnt. a (mg/g  min−1) repre-
sents the initial rate of sorption, and b (g/mg) represents 
the desorption constant.

Results and discussion
SEM analysis 
The surface morphology and initial formation of this spe-
cies of algae have been found to have rough surfaces with 
pores of various sizes and shapes, increasing the surface 
area for metal ions to interact as shown in Fig. 1.

FT‑IR analysis
Fucus vesiculosus dried biomass before and after the 
sorption of chromium was analyzed using Fourier 
transform infrared (FTIR) spectroscopy to identify 
how metal ions and surface biomass interact. Fucus 
vesiculosus algae contain polysaccharides that include 
many negative charges and functional groups that 
can interact with chromium, and these functional 
groups include carboxylate, hydroxyl, amino, and 
nitro groups [33]. The spectra of adsorbents before 
and after chromium uptake were measured from 600 
to 4000  cm−1 wavenumber [34]. The spectra of Fucus 
vesiculosus before the biosorption process showed 
different absorption bands at 3280, 2922, 2318, 1259, 
and1080  cm−1 were shifted to 3287, 2944, 1625, 1220, 
and 1029  cm−1, respectively, after biosorption of chro-
mium. This result indicated chemical bonding among 
binding sites on Fucus biomass and the chromium 
[35]. The sorption bands of the sorbent at 1535 and 

Fig. 1 Scanning electron micrograph of dried Fucus vesiculosus brown algae
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1416  cm−1 remain unchanged after the sorption pro-
cess while those at 1013 and 872  cm−1 disappeared 
(Fig. 2a, b). The vibrational bands in the pure biomass 
of Fucus vesiculosus before chromium sorption at 3280 
 cm−1 and 2922  cm−1 are assigned to (C–H stretching) 
alkyne and alkene groups [36]. The vibrational band at 
 2318cm−1 is related to carbon dioxide (O=C=O). The 
band at 1535  cm−1 is due to N–O functional group 
[37]. The sharp band at 1416  cm−1 is probably due to 
the bending vibration of the hydroxyl group (O–H) 
[38]. The vibrational band at 1259  cm−1 is restricted 
to (C–O) stretching [39]. The band at 1080  cm−1 
relates to the (C–N) stretching mode [40]. The bands 
between the wavenumbers of 1800–750  cm−1 (finger-
print regions) reflected the biochemical compositions, 
especially the moieties of carbohydrate, lipid, protein 
secondary and polyphenols [41] The band at  860cm−1 
is due to =C–H bending disappeared in the FTIR spec-
trum for the biomass sample of Fucus vesiculosus after 
the chromium sorption process [42]. Figure  2b dem-
onstrated that the chromium was incorporated within 
the sorbent during the interaction with the active 
functional groups (=C–H) [43].

Biosorption studies
The pH of the contact solution is an important parameter 
controlling the biosorption process. The variation of pH 
values changes the solution acidity or basicity and affects 
the Fucus surface charge. The pH of the initial chromium 
concentration (20 mg/L) varied from 2.0 to 9.0 at a con-
stant dose (4 g/L) and the stirring rate at 300 rpm for 90 
min at room temperature (25 °C), as shown in Fig. 3. The 
sorption of chromium was raised by increasing pH ranges 
from 2.0 to 5.0 where the capacity removal percentage of 
chromium reached 96.15%. It may be due to the active 
functional groups in the sorbent that facilitate biosorp-
tion by participating in metal ion binding [44]. This was 
followed by a gradual decrease in the chromium removal 
% at pH values greater than 5.0. The sorbent mass was 
then varied (0.05–0.3 g/50mL) for an initial Cr(III) con-
centration of 20 mg/L at 25 °C and pH 5.0 for 90 min as 
shown in Fig.  4. The sorption of Cr(III) increased with 
an increase in sorbent mass at an equilibrium time of 
90 min from 46 to 96% and the equilibrium biosorption 
capacity reached 29 mg/g. This is because the higher the 
initial concentration of the metal ions, the higher the 
chance of collisions with adsorption sites on the surface 
of the adsorbent. Moreover, the driving force of mass 
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Fig. 2  a, b FT‑IR spectrum of Fucus vesiculosus before and after Cr(III) sorption



Page 6 of 11Asaad  BMC Chemistry          (2024) 18:145 

transfer is better, which is conducive to reduce the mass 
transfer resistance and increase the biosorption capac-
ity [45]. Figure 5 shows the removal of Cr(III) which was 
accomplished within 90 min so there is no any additional 
sorption and an equilibrium state is reached. The rate of 
the biosorption process will increase significantly with 
increasing contact time so that it reaches the equilibrium 
point. Where, the longer the contact time, the greater the 
adsorption capacity. Figure 6 explains the effect of Cr(III) 

concentrations on the sorption process under study in 
which the higher uptake occurred at 90 min under equi-
librium [46]. It may be imputed to the consumption of 
the available sites of the sorbent stable amount at equi-
librium. Therefore, 90 min is the time required time for 
the sorption process. The sorption of Cr(III) declined 
from 10 mg/L to 50 mg/L and there was a significant ris-
ing in  qe of Cr(III) at the Fucus surface when the Cr(III) 
concentration ascents from 2.5 to 11.5 mg respectively. 
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Hence the decrease in percentage removal from 98.9% to 
92% may be attributed to the lack of other available sites 
of the sorbent and there is a repulsion force between the 
sorbate and bulk phase which reduces the uptake of the 
chromium [47, 48].

Biosorption isotherms
The biosorption isotherms are commonly used to reflect 
the performance of biosorbents in biosorption processes. 

Langmuir isotherm is useful for monolayer adsorption, 
the Freundlich isotherm shows adsorption on the het-
erogeneous surfaces of adsorbate-adsorbent systems and 
the Temkin isotherm model assumes that the adsorption 
energy of all molecules decreases linearly with increas-
ing adsorbent surface occupancy. In this research, the 
biosorption isotherms were achieved for chromium solu-
tions of different initial concentrations from 10 to 50 
mg/L, an algae dose of 4 g/L at 300 rpm for 90 min, and 
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at pH 5 [49–51]. The concentration of adsorbed chro-
mium was determined according to Eq.  (3). Figure 7a–c 
represented the biosorption isotherms of Cr(III) by the 
Fucus surface at pH 5 using the Langmuir, Freundlich, 
and Temkin models, respectively. Isotherm parameters 
are reported in Table  1. The Langmuir constant val-
ues  (KL) show that strong interactions between metal 
ions and apparent functional groups are involved in the 
biosorption processes, regardless of the nature of metal 
ions or biosorbent. The separation factor in Langmuir 
isotherm  (RL) was less than one and the correlation factor 
 (R2) was 99%, which showed that the biosorption process 
was favorable [52]. The parameter 1/n in the Freundlich 
model is less than unity indicating that all biosorption 
processes are favourable. Moreover, the obtained values 
have better performance in biosorption of chromium(III) 
metal ions. These observations are also supported by the 
Temkin model parameters (Table  1), which show that 
in the biosorption process, the retention of metal ions 
is achieved through strong interactions, confirming the 
removal efficiency trend. 

Biosorption kinetics
The kinetics of the Cr(III) biosorption process was evalu-
ated using different kinetic models. Pseudo-first, second-
order kinetics, and Elovich models were applied as shown 
in (Fig. 8a–c) and the estimated kinetic parameters have 

been illustrated in Table 2. The appropriate kinetic model 
of Cr(III) biosorption was governed by the linear cor-
relation coefficient  (R2) values taken from model plots. 
The value of  R2 in the pseudo-second-order kinetic 
model (0.991) was higher than the value of  R2 in the 
pseudo-first-order (0.933), hence it may be attributed 
to chemically induced biosorption kinetics including 
valence strength via ion exchange or through the elec-
tron interactions between adsorbed molecules on the 
Fucus surface and the adsorbent [53, 54]. It has been 
achieved that the high correlation coefficient indicate 
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Fig. 7  a–c Langmuir, Freundlich and Temkin Isotherms for the sorption of Cr(III) on the Fucus vesiculosus 

Table 1 Fitting parameters of isotherm models for the 
biosorption of Cr(III) on the Fucus vesiculosus biosorbent

Models Parameters Values

qmax 17.06 mg/g

KL 0.52 L/mg

Langmuir RL 0.16

R2 0.99

Kf 5.39 mg/g

Freundlich n 1.7

R2 0.98

βT 0.27

Temkin KT 1.97 L/g

R2 0.97
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a good fit of experimental data to the pseudo-second-
order model [55]. Also, this indicated that the rate con-
stant  (K2) of Cr(III) was 0.062 g/mg min, which reveals 
that the pseudo-second-order kinetic model is based 
on the assumption that the rate-limiting step is chemi-
cal sorption or chemisorption and predicts the behavior 
over the whole range of adsorption. In this condition, the 
adsorption rate is dependent on adsorption capacity not 
on concentration of adsorbate [56]. Moreover, in order 
to comprehend the characteristics of chemisorption, the 
Elovich model has been utilized. The amounts of (1/b) 
and (1/b) ln (ab) have been evaluated by the slope and 

intercept of the linear correlation [57, 58]. The value of 
(1/b) represents the number of available sites required for 
biosorption, while the biosorption quantity is indicated 
by the value of (1/b) ln (ab). Elovich model data has been 
demonstrated in (Table 2).

Conclusions
This study presents a new approach using Fucus vesicu-
losus algae to remove chromium from aqueous solutions 
in a safe and environmental manner. The maximum chro-
mium removal capacity was 96.15% at pH 5, and dose 
(4.0 g/L) in 90 min. The biosorption models described 
the biosorption equilibrium of chromium with Fucus 
vesiculosus, the maximum biosorption capacity of chro-
mium was 14.12 mg/g and the isothermal constants were 
determined. The obtained results confirmed that the 
biosorption equilibrium data are excellently integrated 
into the Langmuir model and also the pseudo-second-
order equation gave an excellent correlation between the 
experimental and the calculated data in the biosorption 
of Cr(III). Finally, it was concluded that Fucus vesiculosus 
is an effective and environmentally friendly biosorbent 
and a suitable candidate for the removal of Cr(III) from 
aqueous solutions. 
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